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Abstract

We investigate the existence of solutions for nonlinear third order ordinary differential equations
and inclusions equipped with non-separated type strip-multi-point boundary conditions on an arbitrary
domain. We make use of standard fixed point theorems for single-valued and multi-valued maps to
obtain the desired results. Several new results appear as special cases from the present work by fixing
the parameters involved in the problems.

1 Introduction

In this paper, we discuss the existence and uniqueness of solutions for a third order ordinary differential
equation equipped with non-separated type strip-multi-point boundary conditions given by

u′′′(t) = f(t, u(t)), a < t < T, a, T ∈ R,
α1u(a) + α2u(T ) = α3

∫ ξ
a
u(s)ds+

∑m
j=1 γju(σj),

β1u
′(a) + β2u

′(T ) = β3

∫ ξ
a
u′(s)ds+

∑m
j=1 ρju

′(σj),

δ1u
′′(a) + δ2u

′′(T ) = δ3

∫ ξ
a
u′′(s)ds+

∑m
j=1 νju

′′(σj),

(1)

where f : [a, T ] × R → R is a given continuous function, a < ξ < σ1 < σ2 < · · · < σm < T, and
αj , βj , δj ∈ R (j = 1, 2, 3), γj , ρj , νj ∈ R+ (j = 1, 2, . . . ,m). Secondly, we extend our discussion to the
multi-valued analogue of the problem (1):

u′′′(t) ∈ F (t, u(t)), a < t < T, a, T ∈ R,
α1u(a) + α2u(T ) = α3

∫ ξ
a
u(s)ds+

∑m
j=1 γju(σj),

β1u
′(a) + β2u

′(T ) = β3

∫ ξ
a
u′(s)ds+

∑m
j=1 ρju

′(σj),

δ1u
′′(a) + δ2u

′′(T ) = δ3

∫ ξ
a
u′′(s)ds+

∑m
j=1 νju

′′(σj),

(2)

where F : [a, T ]× R→ P(R) is a multivalued map, P(R) is the family of all nonempty subsets of R.
Nonlinear boundary value problems of differential equations appear extensively in a variety of areas

such as underground water flow, blood flow problems, population dynamics, chemical engineering, ther-
moelasticity, etc. For more details and explanation, see [1, 2]. Widespread applications of boundary value
problems motivated many researchers to develop the existence criteria, analytic techniques and numerical
methods for solving these problems. During the last few decades, there has been considerable development
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in the study of boundary value problems involving nonlocal and integral boundary conditions. In contrast
to the classical boundary data, nonlocal boundary conditions help to take into account certain peculiarities
of physical, chemical or other processes happening inside the domain. For the theoretical development of
nonlocal boundary value problems, see [3]—[13] and the references cited therein. On the other hand, integral
boundary conditions enable to formulate the real world problems involving arbitrary shaped structures, e.g.,
blood vessels in fluid flow problems. For application details and recent development of the topic, we refer the
reader to the works [14]—[23]. On the other hand, inclusions problems play a significant role in the study of
dynamical systems and stochastic processes. Examples include control problems [24, 25], granular systems
[26], dynamics of wheeled vehicles [27], etc. In the text [28], one can find details of the pressing issues
in stochastic processes, queueing networks, optimization and their application in finance, control, climate
control, etc.
The objective of the present paper is to enhance the scope of third-order boundary value problems in the

context of strip and multi-point boundary data on an arbitrary domain. It is well-known that a significant
feature in the study of nonlinear boundary value problems is to examine how the properties of nonlinear
function/functions present in a problem influence the nature of its solutions. Keeping this important aspect
in mind, we derive a variety of existence results for the problem (1) subject to different kinds of nonlinearities
by applying different tools of functional analysis such as Krasnosel’skĭıfixed point theorem, Leray-Schauder
nonlinear alternative for single valued maps and Leray-Schauder degree theory. In order to ensure the
uniqueness of solutions for the given problem, we rely on contraction mapping principle. In relation to
the problem (2), we have proved two results: the first one deals with convex valued right hand side of the
inclusions and is based on nonlinear alternative for Kakutani maps, while the second one is concerned with
the nonconvex valued right hand side of the inclusions and relies on Covitz and Nadler fixed point theorem.
We organize the rest of the paper as follows. In Section 2, we prove an auxiliary lemma related to the

linear variant of the problem (1). The existence and uniqueness results for the boundary value problem (1),
together with illustrative examples, are presented in Section 3. Section 4 deals with the existence of solutions
for multi-valued boundary value problem (2) involving convex valued as well as non-convex valued maps.
We conclude the paper with Section 5 in which several special cases are presented.

2 Preliminary Result

The following lemma plays a key role in defining the solution for the problems at hand.

Lemma 1 Let h ∈ C([a, T ],R) andδ1 + δ2 − δ3(ξ − a)−
m∑
j=1

νj

β1 + β2 − β3(ξ − a)−
m∑
j=1

ρj

α1 + α2 − α3(ξ − a)−
m∑
j=1

γj

 6= 0.

Then the following linear problem

u′′′(t) = h(t), a < t < T,

α1u(a) + α2u(T ) = α3

∫ ξ
a
u(s)ds+

∑m
j=1 γju(σj),

β1u
′(a) + β2u

′(T ) = β3

∫ ξ
a
u′(s)ds+

∑m
j=1 ρju

′(σj),

δ1u
′′(a) + δ2u

′′(T ) = δ3

∫ ξ
a
u′′(s)ds+

∑m
j=1 νju

′′(σj),

(3)

is equivalent to the integral equation

u(t) =

∫ t

a

(t− s)2

2
h(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
h(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
h(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
h(s)ds

]
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− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)h(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
h(s)ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)h(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

h(s)ds

+δ3

∫ ξ

a

(ξ − s)h(s)ds+

m∑
j=1

νj

∫ σj

a

h(s)ds
]
, (4)

where {
∆ = ζ1ζ2ζ4, P1(t) = ζ1ζ5 − ζ1ζ4(t− a),

P2(t) = ζ3ζ5 − ζ2ζ6 − ζ3ζ4(t− a) + ζ2ζ4
(t−a)2

2 ,
(5)

ζ1 = δ1 + δ2 − δ3(ξ − a)−
∑m
j=1 νj 6= 0,

ζ2 = β1 + β2 − β3(ξ − a)−
∑m
j=1 ρj 6= 0,

ζ3 = β2(T − a)− β3
(ξ−a)2

2 −
∑m
j=1 ρj(σj − a),

ζ4 = α1 + α2 − α3(ξ − a)−
∑m
j=1 γj 6= 0,

ζ5 = α2(T − a)− α3
(ξ−a)2

2 −
∑m
j=1 γj(σj − a),

ζ6 = α2
(T−a)2

2 − α3
(ξ−a)3

3! −
∑m
j=1 γj

(σj−a)2

2 .

(6)

Proof. Integrating u′′′(t) = h(t) three times from a to t, we get

u(t) = c0 + c1(t− a) + c2
(t− a)2

2
+

∫ t

a

(t− s)2

2
h(s)ds, (7)

where c0, c1 and c2 are arbitrary real constants. Using the third boundary condition of (3) in u′′(t) =

c2 +
∫ t
a
h(s)ds, gives

c2 =
1

ζ1

[
− δ2

∫ T

a

h(s)ds+ δ3

∫ ξ

a

(ξ − s)h(s)ds+

m∑
j=1

νj

∫ σj

a

h(s)ds
]
. (8)

Now, by using the second boundary condition of (3) in u′(t) = c1 + c2(t− a) +
∫ t
a
(t− s)h(s)ds, we obtain

c1 =
1

ζ2

[
− β2

∫ T

a

(T − s)h(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
h(s)ds+

m∑
j=1

ρj

∫ σj

a

(σj − s)h(s)ds
]

+
ζ3

ζ1ζ2

[
− δ2

∫ T

a

h(s)ds+ δ3

∫ ξ

a

(ξ − s)h(s)ds+

m∑
j=1

νj

∫ σj

a

h(s)ds
]
.

Finally, by using the first boundary condition of (3) in (7), we find that

c0 =
1

∆

{(
ζ3ζ5 − ζ2ζ6

)[
− δ2

∫ T

a

h(s)ds+ δ3

∫ ξ

a

(ξ − s)h(s)ds+

m∑
j=1

νj

∫ σj

a

h(s)ds
]

−ζ1ζ5

[
− β2

∫ T

a

(T − s)h(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
h(s)ds+

m∑
j=1

ρj

∫ σj

a

(σj − s)h(s)ds
]

+ζ1ζ2

[
− α2

∫ T

a

(T − s)2

2
h(s)ds+ α3

∫ ξ

a

(ξ − s)3

3!
h(s)ds

+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
h(s)ds

]}
,

where ∆ and ζi (i = 1, . . . , 6) are given by (5), (6), respectively. Substituting the values of c0, c1 and c2 into
(7), we obtain the solution (4). This completes the proof.



508 On Nonlinear Third-Order BVP

3 Main Results

Let D = C([a, T ],R) denote the Banach space of all continuous functions from [a, T ] → R endowed with
the norm defined by ‖u‖ = sup{|u(t)|, t ∈ [a, T ]}. In view of Lemma 1, we transform problem (1) into an
equivalent fixed point problem as

u = Su, (9)

where S : D → D is defined by

(Su)(t) =

∫ t

a

(t− s)2

2
f(s, u(s))ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
f(s, u(s))ds

+α3

∫ ξ

a

(ξ − s)3

3!
f(s, u(s))ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
f(s, u(s))ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)f(s, u(s))ds+ β3

∫ ξ

a

(ξ − s)2

2
f(s, u(s))ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)f(s, u(s))ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

f(s, u(s))ds

+δ3

∫ ξ

a

(ξ − s)f(s, u(s))ds+

m∑
j=1

νj

∫ σj

a

f(s, u(s))ds
]
. (10)

Observe that the problem (1) has solutions if the operator equation (9) has fixed points. For computational
convenience, we set

Q =
(T − a)3

3!
+

1

|ζ4|

[
|α2|

(T − a)3

3!
+ |α3|

(ξ − a)4

4!
+

m∑
j=1

γj
(σj − a)3

3!

]
+
P̄1

|∆|

[
|β2|

(T − a)2

2
+ |β3|

(ξ − a)3

3!
+

m∑
j=1

ρj
(σj − a)2

2

]
+
P̄2

|∆|

[
|δ2|(T − a) + |δ3|

(ξ − a)2

2
+

m∑
j=1

νj(σj − a)
]
, (11)

where P̄i = supt∈[a,T ]

∣∣Pi(t)∣∣, i = 1, 2. Now we are in a position to present our first existence result which
relies on Krasnosel’skĭı’s fixed point theorem [29].

Theorem 1 Let f : [a, T ]× R→ R be a continuous function satisfying the conditions:

(H1) |f(t, u)− f(t, v)| ≤ `|u− v|, ∀t ∈ [a, T ], ` > 0, u, v ∈ R;

(H2) there exist a function χ ∈ C([a, T ],R+) with ‖χ‖ = supt∈[a,T ] |χ(t)| such that |f(t, u)| ≤ χ(t), ∀(t, u) ∈
[a, T ]× R.

In addition, it is assumed that `Q1 < 1, where Q1 = Q − (T−a)3

3! (Q is defined by (11)). Then the problem
(1) has at least one solution on [a, T ].

Proof. Consider Br = {u ∈ D : ‖u‖ ≤ r}, where r ≥ Q‖χ‖ and Q is given by (11), and introduce the
operators S1 and S2 on Br as

(S1u)(t) =

∫ t

a

(t− s)2

2
f(s, u(s))ds,

(S2u)(t) =
1

ζ4

[
− α2

∫ T

a

(T − s)2

2
f(s, u(s))ds+ α3

∫ ξ

a

(ξ − s)3

3!
f(s, u(s))ds
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+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
f(s, u(s))ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)f(s, u(s))ds

+β3

∫ ξ

a

(ξ − s)2

2
f(s, u(s))ds+

m∑
j=1

ρj

∫ σj

a

(σj − s)f(s, u(s))ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

f(s, u(s))ds+ δ3

∫ ξ

a

(ξ − s)f(s, u(s))ds

+

m∑
j=1

νj

∫ σj

a

f(s, u(s))ds
]
.

Notice that (Su)(t) = (S1u)(t) + (S2u)(t) for all t ∈ [a, T ]. For u, v ∈ Br, we have

‖S1u+ S2v‖ = sup
t∈[a,T ]

{∣∣∣ ∫ t

a

(t− s)2

2
f(s, u(s))ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
f(s, v(s))ds

+α3

∫ ξ

a

(ξ − s)3

3!
f(s, v(s))ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
f(s, v(s))ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)f(s, v(s))ds+ β3

∫ ξ

a

(ξ − s)2

2
f(s, v(s))ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)f(s, v(s))ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

f(s, v(s))ds

+δ3

∫ ξ

a

(ξ − s)f(s, v(s))ds+

m∑
j=1

νj

∫ σj

a

f(s, v(s))ds
]∣∣∣}

≤ ‖χ‖ sup
t∈[a,T ]

{ (t− a)3

3!
+

1

|ζ4|

[
|α2|

(T − a)3

3!
+ |α3|

(ξ − a)4

4!

+

m∑
j=1

γj
(σj − a)3

3!

]
+

1

|∆| |P1(t)|
[
|β2|

(T − a)2

2
+ |β3|

(ξ − a)3

3!

+

m∑
j=1

ρj
(σj − a)2

2

]
+

1

|∆| |P2(t)|
[
|δ2|(T − a) + |δ3|

(ξ − a)2

2

+

m∑
j=1

νj(σj − a)
]}

≤ ‖χ‖Q ≤ r,

where Q is given by (11). Thus S1u + S2v ∈ Br. Using the assumption (H1) and Q1 = Q − (T − a)3

3!
, we

obtain

‖S2u− S2v‖ ≤ sup
t∈[a,T ]

{ 1

|ζ4|

[
|α2|

∫ T

a

(T − s)2

2

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds+ |α3|

∫ ξ

a

(ξ − s)3

3!

×
∣∣∣f(s, u(s))− f(s, v(s))

∣∣∣ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds]

+
1

|∆| |P1(t)|
[
|β2|

∫ T

a

(T − s)
∣∣∣f(s, u(s))− f(s, v(s))

∣∣∣ds+ |β3|
∫ ξ

a

(ξ − s)2

2
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×
∣∣∣f(s, u(s))− f(s, v(s))

∣∣∣ds+

m∑
j=1

ρj

∫ σj

a

(σj − s)
∣∣∣f(s, u(s))− f(s, v(s))

∣∣∣ds]
+

1

|∆| |P2(t)|
[
|δ2|

∫ T

a

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds+ |δ3|

∫ ξ

a

(ξ − s)

×
∣∣∣f(s, u(s))− f(s, v(s))

∣∣∣ds+

m∑
j=1

νj

∫ σj

a

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds]}

≤ `‖u− v‖
{ 1

|ζ4|

[
|α2|

(T − a)3

3!
+ |α3|

(ξ − a)4

4!
+

m∑
j=1

γj
(σj − a)3

3!

]
+
|P̄1|
|∆|

[
|β2|

(T − a)2

2
+ |β3|

(ξ − a)3

3!
+

m∑
j=1

ρj
(σj − a)2

2

]
+
|P̄2|
|∆|

[
|δ2|(T − a) + |δ3|

(ξ − a)2

2
+

m∑
j=1

νj(σj − a)
]}

≤ `Q1‖u− v‖,

which implies that S2 is a contraction in view of the given condition `Q1 < 1.
Next we show that S1 is compact and continuous. Notice that continuity of f implies that the operator

S1 is continuous. Also, S1 is uniformly bounded on Br as

‖S1u‖ ≤ ‖χ‖
(T − a)3

3!
.

Let us fix sup(t,u)∈[a,T ]×Br
|f(t, u)| = f̄ , and take t1, t2 ∈ [a, T ] with t1 < t2. Then

|(S1u)(t2)− (S1u)(t1)| =
∣∣∣ ∫ t1

a

[ (t2 − s)2

2
− (t1 − s)2

2

]
f(s, u(s))ds

+

∫ t2

t1

(t2 − s)2

2
f(s, u(s))ds

∣∣∣
≤ f̄

(t2 − t1)3

3
+

1

3!

∣∣(t2 − a)3 − (t1 − a)3
∣∣→ 0 as t2 → t1,

independently of u ∈ Br. This implies that S1 is relatively compact on Br. Hence, it follows by the Arzelá-
Ascoli theorem that the operator S1 is compact on Br. Thus all the assumptions of Krasnosel’skĭı’s fixed
point theorem are satisfied. In consequence, we deduce that the problem (1) has at least one solution on
[a, T ].

Now we show the existence of solutions for the problem (1) via Leray-Schauder nonlinear alternative for
single valued maps [30].

Theorem 2 Let f : [a, T ]× R→ R be a continuous function. Assume that

(H3) there exist a function p ∈ C([a, T ],R+), and a nondecreasing function Ψ : R+ → R+ such that
|f(t, u)| ≤ p(t)Ψ(‖u‖), ∀(t, u) ∈ [a, T ]× R;

(H4) there exists a constant M > 0 such that

M

‖p‖Ψ(M)Q
> 1. (12)

Then the boundary value problem (1) has at least one solution on [a, T ].
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Proof. We complete the proof in several steps. In the first step, we show that the operator S : D → D defined
by (10) maps bounded sets into bounded sets in D. For the positive number r̄, let Br̄ = {u ∈ D : ‖u‖ ≤ r̄}
be a bounded set in D. Then, for any u ∈ Br̄, we have

‖(Su)‖ = sup
t∈[a,T ]

|(Su)(t)| = sup
t∈[a,T ]

{∣∣∣ ∫ t

a

(t− s)2

2
f(s, u(s))ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
f(s, u(s))ds

+α3

∫ ξ

a

(ξ − s)3

3!
f(s, u(s))ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
f(s, u(s))ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)f(s, u(s))ds+ β3

∫ ξ

a

(ξ − s)2

2
f(s, u(s))ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)f(s, u(s))ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

f(s, u(s))ds

+δ3

∫ ξ

a

(ξ − s)f(s, u(s))ds+

m∑
j=1

νj

∫ σj

a

f(s, u(s))ds
]∣∣∣}

≤ ‖p‖Ψ(‖u‖) sup
t∈[a,T ]

{ (t− a)3

3!
+

1

|ζ4|

[
|α2|

(T − a)3

3!
+ |α3|

(ξ − a)4

4!

+

m∑
j=1

γj
(σj − a)3

3!

]
+

1

|∆| |P1(t)|
[
|β2|

(T − a)2

2
+ |β3|

(ξ − a)3

3!

+

m∑
j=1

ρj
(σj − a)2

2

]
+

1

|∆| |P2(t)|
[
|δ2|(T − a) + |δ3|

(ξ − a)2

2
+

m∑
j=1

νj(σj − a)
]}

≤ ‖p‖Ψ(‖u‖)Q ≤ ‖p‖Ψ(r̄)Q.

Next we show that S maps bounded sets into equicontinuous sets of D. Observe that continuity of S follows
from that of f. Let t1, t2 ∈ [a, T ] with t1 < t2 and u ∈ Br̄, where Br̄ is a bounded set of D. Then we have

|(Su)(t2)− (Su)(t1)| ≤
∣∣∣ ∫ t1

a

[ (t2 − s)2

2
− (t1 − s)2

2

]
f(s, u(s))ds+

∫ t2

t1

(t2 − s)2

2
f(s, u(s))ds

∣∣∣
+
∣∣∣ζ1ζ4

∆

∣∣∣(t2 − t1)
[
|β2|

∫ T

a

(T − s)|f(s, u(s))|ds+ |β3|
∫ ξ

a

(ξ − s)2

2
|f(s, u(s))|ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)|f(s, u(s))|ds
]

+
1

|∆|

(
|ζ3ζ4|(t2 − t1) +

|ζ2ζ4|
2

(t22 − t21)
)

×
[
|δ2|

∫ T

a

|f(s, u(s))|ds+ |δ3|
∫ ξ

a

(ξ − s)|f(s, u(s))|ds+

m∑
j=1

νj

∫ σj

a

|f(s, u(s))|ds
]

≤ ‖p‖Ψ(r̄)
{ (t2 − t1)3

3
+

1

3!

∣∣∣(t2 − a)3 − (t1 − a)3
∣∣∣+
∣∣∣ζ1ζ4

∆

∣∣∣(t2 − t1)
[
|β2|

(T − a)2

2

+|β3|
(ξ − a)3

3!
+

m∑
j=1

ρj
(σj − a)2

2

]
+

1

|∆|

(
|ζ3ζ4|(t2 − t1) +

|ζ2ζ4|
2

(t22 − t21)
)

×
[
|δ2|(T − a) + |δ3|

(ξ − a)2

2
+

m∑
j=1

νj(σj − a)
]}
.

Notice that the right hand side of the above inequality tends to zero independently of u ∈ Br̄ as (t2−t1)→ 0.
Since S satisfies the above assumptions, therefore it follows by the Arzelá-Ascoli theorem that the operator
S : D → D is completely continuous.
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The result will follow form the Leray-Schauder nonlinear alternative for single valued maps [30] once the
boundendness of the set of all solutions to the equation u = λSu for λ ∈ [0, 1] is established. Let u be a
solution. Then, using the computation in the first step, one can find that

|u(t)| = |λ(Su)(t)| ≤ ‖p‖Ψ(‖u‖)Q,

which, on taking the norm for t ∈ [a, T ], yields

‖u‖
‖p‖Ψ(‖u‖)Q ≤ 1.

In view of (H4), there exists M such that ‖u‖ 6= M . Let us set

U = {u ∈ C([a, T ],R) : ‖u‖ < M}.

Note that the operator S : U → D is continuous and completely continuous. From the choice of U , there is
no u ∈ ∂U such that u = λS(u) for some λ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-
Schauder type [30], we deduce that S has a fixed point u ∈ U which is a solution of the problem (1). This
completes the proof.

Our next existence result for the problem (1) is based on Leray-Schauder degree theory.

Theorem 3 Let f : [a, T ]× R→ R be a continuous function. Suppose that

(H5) there exist constants 0 ≤ ν < Q−1, and M > 0 such that

|f(t, u)| ≤ ν|u|+M for all (t, u) ∈ [a, T ]× R,

where Q is defined by (11).

Then the problem (1) has at least one solution on [a, T ].

Proof. We define an operator S : D → D as in (10). In view of the fixed point problem

u = Su, (13)

we will show the existence of at least one solution u ∈ D satisfying (13). Set a ball BR ⊂ D as

BR = {u ∈ D : max
t∈[a,T ]

|u(t)| < R},

with a constant radius R > 0. Then we show that the operator S : BR → D satisfies a condition

u 6= θSu, ∀u ∈ ∂BR, ∀θ ∈ [0, 1]. (14)

Let us set
H(θ, u) = θSu, u ∈ D, θ ∈ [0, 1].

As shown in Theorem 2, we have that the operator S is continuous, uniformly bounded and equicontinuous.
Then, by the Arzelá-Ascoli theorem, a continuous map hθ defined by hθ(u) = u − H(θ, u) = u − θSu is
completely continuous. If (14) holds, then the following Leray-Schauder degrees are well defined and it
follows by the homotopy invariance of topological degree that

deg(hθ, BR, 0) = deg(I − θS, BR, 0) = deg(h1, BR, 0)

= deg(h0, BR, 0) = deg(I,BR, 0) = 1 6= 0, 0 ∈ BR,
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where I denotes the unit operator. By the nonzero property of Leray-Schauder degree, we have h1(u) =
u− Su = 0 for at least one u ∈ BR. Let us assume that u = θSu for some θ ∈ [0, 1] and for all t ∈ [a, T ] so
that

|u(t)| = |θSu(t)|

≤ (ν|u|+M) sup
t∈[a,T ]

{ (t− a)3

3!
+

1

|ζ4|

[
|α2|

(T − a)3

3!
+ |α3|

(ξ − a)4

4!

+

m∑
j=1

γj
(σj − a)3

3!

]
+

1

|∆| |P1(t)|
[
|β2|

(T − a)2

2
+ |β3|

(ξ − a)3

3!

+

m∑
j=1

ρj
(σj − a)2

2

]
+

1

|∆| |P2(t)|
[
|δ2|(T − a) + |δ3|

(ξ − a)2

2
+

m∑
j=1

νj(σj − a)
]}

≤ (ν|u|+M)Q,

which, on taking the norm for t ∈ [a, T ] and solving for ‖u‖, yields

‖u‖ ≤ MQ

1− νQ.

If R = MQ
1−νQ + 1, then the inequality (14) holds. This completes the proof.

Finally, we discuss the uniqueness of solutions for the problem (1) via Banach’s contraction mapping
principle.

Theorem 4 Assume that f : [a, T ] × R → R is a continuous function satisfying the condition (H1). Then
the boundary value problem (1) has a unique solution on [a, T ] if ` < 1/Q, where Q is given by (11).

Proof. Consider a set Bw = {u ∈ D : ‖u‖ ≤ w}, where w ≥ QM

1− `Q, sup
t∈[a,T ]

|f(t, 0)| = M . In the first step,

we show that SBw ⊂ Bw, where the operator S is defined by (10). For any u ∈ Bw, t ∈ [a, T ], we find that

|f(s, u(s))| = |f(s, u(s))− f(s, 0) + f(s, 0)| ≤ |f(s, u(s))− f(s, 0)|+ |f(s, 0)|
≤ `‖u‖+M ≤ `w +M.

Then, for u ∈ Bw, we obtain

‖(Su)‖ = sup
t∈[a,T ]

{∣∣∣ ∫ t

a

(t− s)2

2
f(s, u(s))ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
f(s, u(s))ds

+α3

∫ ξ

a

(ξ − s)3

3!
f(s, u(s))ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
f(s, u(s))ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)f(s, u(s))ds+ β3

∫ ξ

a

(ξ − s)2

2
f(s, u(s))ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)f(s, u(s))ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

f(s, u(s))ds

+δ3

∫ ξ

a

(ξ − s)f(s, u(s))ds+

m∑
j=1

νj

∫ σj

a

f(s, u(s))ds
]∣∣∣}

≤ (`w +M) sup
t∈[a,T ]

{ (t− a)3

3!
+

1

|ζ4|

[
|α2|

(T − a)3

3!
+ |α3|

(ξ − a)4

4!



514 On Nonlinear Third-Order BVP

+

m∑
j=1

γj
(σj − a)3

3!

]
+

1

|∆| |P1(t)|
[
|β2|

(T − a)2

2
+ |β3|

(ξ − a)3

3!

+

m∑
j=1

ρj
(σj − a)2

2

]
+

1

|∆| |P2(t)|
[
|δ2|(T − a) + |δ3|

(ξ − a)2

2

+

m∑
j=1

νj(σj − a)
]}
≤ (`w +M)Q ≤ w,

where Q is given by (11). This shows that SBw ⊂ Bw.
Now we show that the operator S is a contraction. For u, v ∈ D, we have

‖Su− Sv‖ = sup
t∈[0,T ]

∣∣∣Su(t)− Sv(t)
∣∣∣

≤ sup
t∈[a,T ]

{∫ t

a

(t− s)2

2

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds

+
1

|ζ4|

[
|α2|

∫ T

a

(T − s)2

2

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds

+|α3|
∫ ξ

a

(ξ − s)3

3!

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds

+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds]

+
|P̄1|
|∆|

[
|β2|

∫ T

a

(T − s)
∣∣∣f(s, u(s))− f(s, v(s))

∣∣∣ds
+|β3|

∫ ξ

a

(ξ − s)2

2

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)
∣∣∣f(s, u(s))− f(s, v(s))

∣∣∣ds]
+
|P̄2|
|∆|

[
|δ2|

∫ T

a

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds

+|δ3|
∫ ξ

a

(ξ − s)
∣∣∣f(s, u(s))− f(s, v(s))

∣∣∣ds
+

m∑
j=1

νj

∫ σj

a

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds]}

≤ `Q‖u− v‖,

where we have used (11). By the given assumption: ` < 1/Q, it follows that the operator S is a contraction.
Thus, by Banach’s contraction mapping principle, we deduce that the operator S has a fixed point, which
corresponds to a unique solution of the problem (1) on [a, T ]. The proof is completed.

Example 1 Consider the following non-separated multi-point boundary value problem with bounded nonlin-
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earity: 

u′′′(t) = t
15
√
t2+80

tan−1 u(t) + e−t, t ∈ [1, 3],

α1u(a) + α2u(T ) = α3

∫ ξ
a
u(s)ds+

∑4
j=1 γju(σj),

β1u
′(a) + β2u

′(T ) = β3

∫ ξ
a
u′(s)ds+

∑4
j=1 ρju

′(σj),

δ1u
′′(a) + δ2u

′′(T ) = δ3

∫ ξ
a
u′′(s)ds+

∑4
j=1 νju

′′(σj),

(15)

where a = 1, T = 3, m = 4, α1 = 1/4, α2 = 1/2, α3 = 1, β1 = 1/5, β2 = 3/8, β3 = 1, δ1 = 1/3, δ2 =
2/3, δ3 = 1, γ1 = 1/2, γ2 = 7/10, γ3 = 9/10, γ4 = 11/10, ρ1 = 1/4, ρ2 = 5/12, ρ3 = 7/12, ρ4 = 9/12, ν1 =
2/5, ν2 = 13/20, ν3 = 9/10, ν4 = 23/20, ξ = 3/2, σ1 = 7/4, σ2 = 15/8, σ3 = 16/8, σ4 = 17/8. Clearly,

|f(t, u)| ≤ π|t|
30
√
t2 + 80

+ |e−t|, |f(t, u)− f(t, v)| ≤ `|u− v|,

with ` = 1/(5
√

89). Using the given values, we find that |ζ1| = 2.55 6= 0, |ζ2| = 1.93 6= 0, |ζ4| = 2.95 6=
0, |ζ3| = 3.904167, |ζ5| = 5.2, |ζ6| = 2.437825 and |∆| = 28.961625, (ζi (i = 1, . . . , 6) and ∆ are given

by (6), (5) respectively), Q = 23.41751009, Q1 = 22.084177, (Q is defined by (11) and Q1 = Q − (T−a)3

3! ).
Furthermore, we note that all the conditions of Theorem 1 are satisfied with `Q1 ≈ 0.468184 < 1. Hence the
conclusion of Theorem 1 applies to the problem (15). We also observe that all the conditions of Theorem
4 hold true with `Q ≈ 0.496450 < 1. Hence we deduce by the conclusion of Theorem 4 that there exists a
unique solution for problem (15) on [1, 3].

Example 2 Consider the third-order ordinary differential equation with periodic nonlinearity:

u′′′(t) =
1

7
√
t+ 24

[
sinu+

3

4

]
, t ∈ [1, 3],

supplemented with the boundary conditions of the problem (15). Evidently, |f(t, u)| ≤ 1
7
√
t+24

[
|u| + 3

4

]
,

Ψ(‖u‖) = ‖u‖ + 3
4 , p(t) = 1

7
√
t+24

and ‖p‖ = 1
35 . We find by (12) that M > 1.516353. In consequence, it

follows by the conclusion of Theorem 2 that the problem (15) has at least one solution on [1, 3].

4 The Multi-Valued Case

In this section, we prove the existence of solutions for the multi-valued boundary value problem (2) when
the multivalued map involved in the problem has convex as well nonconvex values. For the related concepts
of multi-valued analysis, we refer the reader to the books [31, 32].

Definition 1 A function u ∈ C3([a, T ],R) is a solution of the problem (2) if

α1u(a) + α2u(T ) = α3

∫ ξ

a

u(s)ds+

m∑
j=1

γju(σj),

β1u
′(a) + β2u

′(T ) = β3

∫ ξ

a

u′(s)ds+

m∑
j=1

ρju
′(σj),

δ1u
′′(a) + δ2u

′′(T ) = δ3

∫ ξ

a

u′′(s)ds+

m∑
j=1

νju
′′(σj),

and there exists function v ∈ L1([a, T ],R) such that v(t) ∈ F (t, u(t)) a.e. t ∈ [a, T ] and

u(t) =

∫ t

a

(t− s)2

2
v(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
v(s)ds
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+α3

∫ ξ

a

(ξ − s)3

3!
v(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
v(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)v(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
v(s)ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)v(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

v(s)ds

+δ3

∫ ξ

a

(ξ − s)v(s)ds+

m∑
j=1

νj

∫ σj

a

v(s)ds
]
. (16)

4.1 The Carathéodory Case

Here we prove an existence result for the problem (2) by applying nonlinear alternative for Kakutani maps
[30] when F has convex values and is of Carathéodory type.

Theorem 5 Assume that F : [a, T ] × R → Pcp,c(R) is L1-Carathéodory satisfying the assumption (H4),
where Pcp,c(R) = {Y ∈ P(R) : Y is compact and convex}. In addition we suppose that:

(B1) there exist a function p ∈ C([a, T ],R+), and a nondecreasing function Ψ : R+ → R+ such that

‖F (t, u)‖ = sup{|v| : v ∈ F (t, u)} ≤ ‖p‖Ψ(‖u‖), (t, u) ∈ [a, T ]× R.

Then the boundary value problem (2) has at least one solution on [a, T ].

Proof. To transform the problem (2) into a fixed point problem, we define an operator F : D −→ P(D) by

F(u) =



h ∈ D :

h(t) =



∫ t
a

(t−s)2
2 v(s)ds+ 1

ζ4

[
− α2

∫ T
a

(T−s)2
2 v(s)ds

+α3

∫ ξ
a

(ξ−s)3
3! v(s)ds+

∑m
j=1 γj

∫ σj
a

(σj−s)2
2 v(s)ds

]
− 1

∆P1(t)
[
− β2

∫ T
a

(T − s)v(s)ds+ β3

∫ ξ
a

(ξ−s)2
2 v(s)ds

+
∑m
j=1 ρj

∫ σj
a

(σj − s)v(s)ds
]

+ 1
∆P2(t)

[
− δ2

∫ T
a
v(s)ds

+δ3

∫ ξ
a

(ξ − s)v(s)ds+
∑m
j=1 νj

∫ σj
a
v(s)ds

]
,


for v ∈ SF,u. It is obvious that the fixed points of F are solutions of the boundary value problem (2). We
will show that F satisfies the assumptions of Leray-Schauder nonlinear alternative [30]. For that, we split
the proof into several steps.

Step 1. F(u) is convex for each u ∈ D.
This step is obvious since SF,u is convex (F has convex values), and therefore we omit the proof.

Step 2. F maps bounded sets (balls) into bounded sets in D.
For the positive number r, let Br = {u ∈ D : ‖u‖ ≤ r} be a bounded set in D. Then, for each

h ∈ F(u), u ∈ Br, there exists v ∈ SF,u such that

h(t) =

∫ t

a

(t− s)2

2
v(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
v(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
v(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
v(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)v(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
v(s)ds



Ahmad et al. 517

+

m∑
j=1

ρj

∫ σj

a

(σj − s)v(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

v(s)ds

+δ3

∫ ξ

a

(ξ − s)v(s)ds+

m∑
j=1

νj

∫ σj

a

v(s)ds
]
.

Then, as in Theorem 2, one can find that ‖h‖ ≤ ‖p‖Ψ(r)Q.

Step 3. F maps bounded sets into equicontinuous sets of D.
Let t1, t2 ∈ [a, T ] with t1 < t2 and u ∈ Br. Then, for each h ∈ F(u), we obtain

|h(t2)− h(t1)|

≤ ‖p‖Ψ(r)
{ (t2 − t1)3

3
+

1

3!

∣∣∣(t2 − a)3 − (t1 − a)3
∣∣∣+
∣∣∣ζ1ζ4

∆

∣∣∣(t2 − t1)
[
|β2|

(T − a)2

2

+|β3|
(ξ − a)3

3!
+

m∑
j=1

ρj
(σj − a)2

2

]
+

1

|∆|

(
|ζ3ζ4|(t2 − t1) +

|ζ2ζ4|
2

(t22 − t21)
)

×
[
|δ2|(T − a) + |δ3|

(ξ − a)2

2
+

m∑
j=1

νj(σj − a)
]}
→ 0 as t2 − t1 → 0,

independently of u ∈ Br. Therefore, the Ascoli-Arzelá theorem applies and that the operator F : D → P(D)
is completely continuous. Since F is completely continuous, we have to show that it is upper semi-continuous
(u.s.c.). In order to do so, we establish that F has a closed graph ([31, Proposition 1.2]) in the following
step.

Step 4. F has a closed graph.
Let un → u∗, hn ∈ F(un) and hn → h∗. Then we need to show that h∗ ∈ F(u∗). Associated with

hn ∈ F(un), there exists vn ∈ SF,un such that, for each t ∈ [a, T ],

hn(t) =

∫ t

a

(t− s)2

2
vn(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
vn(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
vn(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
vn(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)vn(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
vn(s)ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)vn(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

vn(s)ds

+δ3

∫ ξ

a

(ξ − s)vn(s)ds+

m∑
j=1

νj

∫ σj

a

vn(s)ds
]
.

Thus it suffi ces to show that there exists v∗ ∈ SF,u∗ such that, for each t ∈ [a, T ],

h∗(t) =

∫ t

a

(t− s)2

2
v∗(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
v∗(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
v∗(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
v∗(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)v∗(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
v∗(s)ds
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+

m∑
j=1

ρj

∫ σj

a

(σj − s)v∗(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

v∗(s)ds

+δ3

∫ ξ

a

(ξ − s)v∗(s)ds+

m∑
j=1

νj

∫ σj

a

v∗(s)ds
]
.

Let us consider the linear operator Θ : L1([a, T ],R)→ D given by

v 7→ Θ(v)(t) =

∫ t

a

(t− s)2

2
v(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
v(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
v(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
v(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)v(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
v(s)ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)v(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

v(s)ds

+δ3

∫ ξ

a

(ξ − s)v(s)ds+

m∑
j=1

νj

∫ σj

a

v(s)ds
]
.

Observe that ‖hn(t)− h∗(t)‖ → 0 as n→∞, and thus, it follows by closed graph result [33] that Θ ◦ SF is
a closed graph operator. Further, we have hn(t) ∈ Θ(SF,un). Since un → u∗, we have

h∗(t) =

∫ t

a

(t− s)2

2
v∗(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
v∗(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
v∗(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
v∗(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)v∗(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
v∗(s)ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)v∗(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

v∗(s)ds

+δ3

∫ ξ

a

(ξ − s)v∗(s)ds+

m∑
j=1

νj

∫ σj

a

v∗(s)ds
]
,

for some v∗ ∈ SF,u∗ .

Step 5. We show there exists an open set U ⊆ D with u /∈ λF(u) for any λ ∈ (0, 1) and all u ∈ ∂U.
Let λ ∈ (0, 1) and u ∈ λF(u). Then there exists v ∈ L1([0, 1],R) with v ∈ SF,u such that, for t ∈ [a, T ],

we have

u(t) = λ

∫ t

a

(t− s)2

2
v(s)ds+ λ

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
v(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
v(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
v(s)ds

]
−λ 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)v(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
v(s)ds
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+

m∑
j=1

ρj

∫ σj

a

(σj − s)v(s)ds
]

+ λ
1

∆
P2(t)

[
− δ2

∫ T

a

v(s)ds

+δ3

∫ ξ

a

(ξ − s)v(s)ds+

m∑
j=1

νj

∫ σj

a

v(s)ds
]
.

Then, for t ∈ [a, T ], using the computation in the first step leads to

‖u‖ ≤ ‖p‖Ψ(‖u‖)Q,

which can alternatively be expressed as
‖u‖

‖p‖Ψ(‖u‖)Q ≤ 1.

By the condition (H4), we can find a positive number M such that ‖u‖ 6= M . Let us set

U = {u ∈ D : ‖u‖ < M}.

Note that the operator F : U → P(D) is a compact multi-valued map, u.s.c. with convex closed values.
From the choice of U , there is no u ∈ ∂U such that u ∈ λF(u) for some λ ∈ (0, 1). Consequently, by the
nonlinear alternative of Leray-Schauder type [30], we deduce that F has a fixed point u ∈ U which is a
solution of the problem (2). This completes the proof.

4.2 The Lipschitz Case

In this subsection, we prove the existence of solutions for the problem (2) for nonconvex valued right hand
side by applying a fixed point theorem for multivalued maps due to Covitz and Nadler [34]. Let (X, d) be a
metric space induced from the normed space (X; ‖ · ‖). Consider Hd : P(X)× P(X)→ R ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pcl,b(X), Hd) is a metric space (see [28]).

Definition 2 A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 2 ([34]) Let (X, d) be a complete metric space. If N : X → Pcl(X) is a contraction, then FixN 6=
∅.

Theorem 6 Assume that:

(A1) F : [a, T ] × R → Pcp(R) is such that F (·, u) : [a, T ] → Pcp(R) is measurable for each u ∈ R, where
Pcp(R) = {Y ∈ P(R) : Y is compact};

(A2) for almost all t ∈ [a, T ] and u1, w1 ∈ R, Hd(F (t, u1), F (t, w1)) ≤ m(t)|u1−w1| with m ∈ C(J,R+) and
d(0, F (t, 0)) ≤ m(t), for almost all t ∈ [a, T ].

Then the boundary value problem (2) has at least one solution on [a, T ] if ‖m‖Q < 1 where Q is defined by
(11).
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Proof. Consider the operator F defined at the beginning of the proof of Theorem 5. Observe that the set
SF,u is nonempty for each u ∈ D by the assumption (A1), so F has a measurable selection (see Theorem III.6
[35]). Now we show that the operator F satisfies the assumptions of Lemma 2. We show that F(u) ∈ Pcl(D)
for each u ∈ D. Let {un}n≥0 ∈ F(u) be such that un → u (n → ∞) in D. Then u ∈ D and there exists
vn ∈ SF,un such that, for each t ∈ [a, T ],

un(t) =

∫ t

a

(t− s)2

2
vn(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
vn(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
vn(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
vn(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)vn(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
vn(s)ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)vn(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

vn(s)ds

+δ3

∫ ξ

a

(ξ − s)vn(s)ds+

m∑
j=1

νj

∫ σj

a

vn(s)ds
]
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn converges to v in
L1([a, T ],R). Thus, v ∈ SF,u and for each t ∈ [a, T ], we have

un(t)→ u(t) =

∫ t

a

(t− s)2

2
v(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
v(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
v(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
v(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)v(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
v(s)ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)v(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

v(s)ds

+δ3

∫ ξ

a

(ξ − s)v(s)ds+

m∑
j=1

νj

∫ σj

a

v(s)ds
]
.

Hence, u ∈ F (u).

Next we show that there exists δ < 1
(
δ := ‖m‖Q

)
such that

Hd(F(u),F(ū)) ≤ δ‖u− ū‖ for each u, ū ∈ C3([a, T ],R).

Let u, ū ∈ C3([a, T ],R) and h1 ∈ F(u). Then there exists v1(t) ∈ F (t, u(t)) such that, for each t ∈ [a, T ],

h1(t) =

∫ t

a

(t− s)2

2
v1(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
v1(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
v1(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
v1(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)v1(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
v1(s)ds
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+

m∑
j=1

ρj

∫ σj

a

(σj − s)v1(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

v1(s)ds

+δ3

∫ ξ

a

(ξ − s)v1(s)ds+

m∑
j=1

νj

∫ σj

a

v1(s)ds
]
.

By (A2), we have Hd(F (t, u(t)), F (t, ū(t)) ≤ m(t)|u(t) − ū(t)|. So, there exists z ∈ F (t, u(t)) such that
|v1(t)− z| ≤ m(t)|u(t)− ū(t)| for almost all t ∈ [a, T ]. Define the multifunction U : [a, T ]→ P(R) by

U(t) = {z ∈ R : |v1(t)− z| ≤ m(t)|u(t)− ū(t)|, for almost all t ∈ [a, T ]}.

It is easy to check that the multifunction U(·) ∩ F (·, u(·)) is measurable. Hence, we can choose v2 ∈ SF,u
such that

|v1(t)− v2(t)| ≤ m(t)|u(t)− ū(t)|,
for almost all t ∈ [a, T ]. For each t ∈ [a, T ], let us define

h2(t) =

∫ t

a

(t− s)2

2
v2(s)ds+

1

ζ4

[
− α2

∫ T

a

(T − s)2

2
v2(s)ds

+α3

∫ ξ

a

(ξ − s)3

3!
v2(s)ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
v2(s)ds

]
− 1

∆
P1(t)

[
− β2

∫ T

a

(T − s)v2(s)ds+ β3

∫ ξ

a

(ξ − s)2

2
v2(s)ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)v2(s)ds
]

+
1

∆
P2(t)

[
− δ2

∫ T

a

v2(s)ds

+δ3

∫ ξ

a

(ξ − s)v2(s)ds+

m∑
j=1

νj

∫ σj

a

v2(s)ds
]
.

Thus we have

|h1(t)− h2(t)| ≤ sup
t∈[a,T ]

{∫ t

a

(t− s)2

2
|v1(s)− v2(s)|ds+

1

|ζ4|

[
|α2|

∫ T

a

(T − s)2

2
|v1(s)− v2(s)|ds

+|α3|
∫ ξ

a

(ξ − s)3

3!
|v1(s)− v2(s)|ds+

m∑
j=1

γj

∫ σj

a

(σj − s)2

2
|v1(s)− v2(s)|ds

]
+

1

|∆| |P1(t)|
[
|β2|

∫ T

a

(T − s)|v1(s)− v2(s)|ds+ |β3|
∫ ξ

a

(ξ − s)2

2
|v1(s)− v2(s)|ds

+

m∑
j=1

ρj

∫ σj

a

(σj − s)|v1(s)− v2(s)|ds
]

+
1

|∆| |P2(t)|
[
|δ2|

∫ T

a

|v1(s)− v2(s)|ds

+|δ3|
∫ ξ

a

(ξ − s)|v1(s)− v2(s)|ds+

m∑
j=1

νj

∫ σj

a

|v1(s)− v2(s)|ds
]}

≤ ‖m‖‖u− ū‖
{ (T − a)3

3!
+

1

|ζ4|

[
|α2|

(T − a)3

3!
+ |α3|

(ξ − a)4

4!

+

m∑
j=1

γj
(σj − a)3

3!

]
+

1

|∆| |P1(t)|
[
|β2|

(T − a)2

2
+ |β3|

(ξ − a)3

3!

+

m∑
j=1

ρj
(σj − a)2

2

]
+

1

|∆| |P2(t)|
[
|δ2|(T − a) + |δ3|

(ξ − a)2

2
+

m∑
j=1

νj(σj − a)
]}
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≤ ‖m‖Q‖u− ū‖,

which implies that
‖h1 − h2‖ ≤ ‖m‖Q‖u− ū‖.

Analogously, interchanging the roles of u and ū, we obtain

Hd(F(u),F(ū)) ≤ ‖m‖Q‖u− ū‖.

So F is a contraction. Therefore, it follows by Lemma 2 that F has a fixed point u which is a solution of
(2). This completes the proof.

5 Conclusions

We have presented the existence theory for a new class of single-valued and multi-valued third-order boundary
value problems on an arbitrary domain involving non-separated integro-multi-point boundary conditions. It
is worthwhile to mention that the boundary conditions considered in the present work are of fairly general
nature and specialize to various cases by fixing the involved parameters appropriately. For instance, the
boundary conditions in problems (1) and (2) reduce to non-separated type multi-point boundary conditions
for α3 = β3 = δ3 = 0, while the non-separated type strip boundary conditions follow by fixing γj = ρj =
νj = 0,∀j. Moreover, the given boundary conditions become anti-periodic boundary conditions if we take
α3 = β3 = δ3 = 0, γj = ρj = νj = 0,∀j and αi = βi = δi = 1, i = 1, 2. Similarly, initial and terminal
integro-multi-point boundary conditions can be obtained by fixing α1 = β1 = δ1 = 1, α2 = β2 = δ2 = 0 and
α1 = β1 = δ1 = 0, α2 = β2 = δ2 = 1, respectively. In case we set αi = βi = δi = 0, i = 1, 2, our results
correspond to integro-multi-point boundary conditions of the form:

α3

∫ ξ

a

u(s)ds+

m∑
j=1

γju(σj) = 0, β3

∫ ξ

a

u′(s)ds+

m∑
j=1

ρju
′(σj) = 0,

δ3

∫ ξ

a

u′′(s)ds+

m∑
j=1

νju
′′(σj) = 0. (17)

Observe that the boundary data in (17) only contain the interior points of the interval [a, T ] and these
boundary condition can be interpreted as the sum of scalar multiple of the strip condition and sum of
discrete values of u, u′, u′′ at interior points σj (j = 1, 2, . . . ,m) amount to zero. In the nutshell, our results
are not only new in the given configuration but also correspond to several new ones as special cases with
appropriate choice of the parameters involved in the boundary conditions.

Acknowledgment. We thank the referee for his/her useful remarks on our paper.
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