Iterative Approximation Of Best Proximity Pairs Of Asymptotically Relatively Nonexpansive Mappings*

S. Ithaya Ezhil Manna ${ }^{\dagger}$, A. Anthony Eldred ${ }^{\ddagger}$

Received 13 May 2020

Abstract

We prove the strong convergence of iterative approximation of best proximity pairs of an asymptotically relatively nonexpansive mappings on a uniformly convex Banach spaces using Noor's iteration schemes under various control conditions on iteration parameters. We also provide an example to support our results.

1 Introduction

Let U be a nonempty subset of a Banach space X and S be a mapping from U into U. Iterative approximation of fixed points on nonexpansive mappings was studied by various authors (see [5], [6], [9], [10], [13], [14], [17]) using Mann iteration schemes $\left(x_{0} \in U, x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S x_{n}, n \geq 0\right.$, where $\left.\left\{\alpha_{n}\right\} \subseteq[0,1]\right)$ and Ishikawa iteration schemes $\left(x_{0} \in U, x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S y_{n}, y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} S x_{n}, n \geq 0\right.$, where $\left.\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subseteq[0,1]\right)$. Thereafter modification of Mann and Ishikawa [18] iteration schemes was introduced to approximate fixed points of mapping with asymptotic behaviour. Later, Xu and Noor [22] in 2002 introduced three steps (Noor) iterative schemes $\left(x_{0} \in U, x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S^{n} y_{n} ; y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} S^{n} z_{n} ; z_{n}=\right.$ $\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} S^{n} x_{n}, n \geq 0$, where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are real sequences in $\left.[0,1]\right)$ to approximate fixed points of asymptotically nonexpansive mappings.

Let U and V be nonempty subsets of a Banach space X. A mapping $S: U \cup V \rightarrow X$ such that $S(U) \subseteq U, S(V) \subseteq V$ is said to be relatively nonexpansive [2] if $\|S x-S y\| \leq\|x-y\|$ for all $(x, y) \in U \times V$ and asymptotically relatively nonexpansive [16] if $\left\|S^{n} x-S^{n} y\right\| \leq k_{n}\|x-y\|$ for all $(x, y) \in U \times V$. Under this weaker assumption over S, the existence of the so-called best proximity pair, that is, a point $(p, q) \in U \times V$ such that

$$
p=S p, \quad q=S q \quad \text { and } d(p, q)=\operatorname{dist}(U, V)
$$

was studied by various authors (see [1], [3], [4], [7], [15]). Recently, S. Rajesh and P. Veeramani [16] have proved the following theorem which ensures the existence of best proximity pair for asymptotically relatively nonexpansive mappings.

Theorem 1 ([16, Theorem 3.2]) Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a nearly uniformly convex ($N U C$) Banach space. Suppose $S: U \cup V \rightarrow U \cup V$ is a continuous and asymptotically relatively nonexpansive mappings satisfying $S(U) \subseteq U$ and $S(V) \subseteq V$. Further, assume that (U, V) has the rectangle property and the property $U C$. Then there exist $u \in U$ and $v \in V$ such that $S u=u$, $S v=v$ and $\|u-v\|=\operatorname{dist}(U, V)$.

Here we establish the strong convergence of best proximity pairs for Theorem 1 with the help of Noor iteration schemes under variety of control conditions.

[^0]
2 Preliminaries

Here we recall some important definitions, notations and results which are necessary for our main results.
Definition 1 ([2]) Let U and V be nonempty subsets of a Banach space X and $(u, v) \in U \times V$. Then a point $u($ or $v)$ is said to be a proximal point of $v($ or $u)$ if $\|u-v\|=\operatorname{dist}(U, V)$.

Definition $2([2,8])$ Let U and V be nonempty subsets of a Banach space X. The pair (U, V) is said to be proximal pair if and only if for each (u, v) in $U \times V$, there exists $\left(u_{1}, v_{1}\right)$ in $U \times V$ such that $\left\|u-v_{1}\right\|=$ $\operatorname{dist}(U, V)=\left\|v-u_{1}\right\|$. If $\left(u_{1}, v_{1}\right)$ in $U \times V$ is unique then the pair (U, V) is called sharp proximal pair.

Definition 3 ([8]) The pair (U, V) is said to be a proximal parallel pair if the pair (U, V) is sharp proximal pair and there exists a unique $h \in X$ such that $V=U+h$.

The proximal pair of (U, V) denoted as $\left(U_{0}, V_{0}\right)$ which are given by

$$
\begin{aligned}
& U_{0}=\left\{u \in U:\left\|u-v^{\prime}\right\|=\operatorname{dist}(U, V) \text { for some } v^{\prime} \in V\right\}, \\
& V_{0}=\left\{v \in V:\left\|u^{\prime}-v\right\|=\operatorname{dist}(U, V) \text { for some } u^{\prime} \in U\right\} .
\end{aligned}
$$

Also

$$
\mathcal{P}(x)= \begin{cases}y \in U_{0}:\|x-y\|=\operatorname{dist}(U, V) & \text { if } x \in V_{0} \\ y \in V_{0}:\|x-y\|=\operatorname{dist}(U, V) & \text { if } x \in U_{0}\end{cases}
$$

and $\operatorname{Fix}(S)=\{x \in U \cup V / S(x)=x\}$.
Definition 4 ([20]) The pair (U, V) is said to satisfy the property $U C$ if and only if the following holds: If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in U and $\left\{z_{n}\right\}$ be a sequence in V such that $\lim _{n \rightarrow \infty} d\left(x_{n}, z_{n}\right)=\operatorname{dist}(U, V)$ and $\lim _{n \rightarrow \infty} d\left(y_{n}, z_{n}\right)=\operatorname{dist}(U, V)$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$.
Definition 5 ([16]) Let (U, V) be a nonempty convex parallel pair in a Banach space X. The pair (U, V) is said to have the rectangle property if and only if $\|x+h-y\|=\|y+h-x\|$, for any $x, y \in U$, where $h \in X$ such that $V=U+h$.

Lemma 2 ([19]) Let X be a normed linear space. Then for all $x, y \in X$ and $t \in[0,1]$,

$$
\|t x+(1-t) y\|^{2} \leq t\|x\|^{2}+(1-t)\|y\|^{2}
$$

Lemma 3 ([23]) Assume $f:[0, \infty) \rightarrow[0, \infty)$ with $f(0)=0$ be a strictly increasing map. If a sequence $\left\{x_{n}\right\}$ in $[0, \infty)$ satisfies $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$, then $\lim _{n \rightarrow \infty} x_{n}=0$.

Lemma 4 ([21]) A Banach space X is uniformly convex ($U C$) if and only if for each fixed number $r>0$, there exists a continuous strictly increasing function $\varphi:[0, \infty) \rightarrow[0, \infty), \varphi(t)=0 \Leftrightarrow t=0$, such that

$$
\|\lambda x+(1-\lambda) y\| \leq \lambda\|x\|+(1-\lambda)\|y\|-2 \lambda(1-\lambda) \varphi(\|x-y\|)
$$

for all $\lambda \in[0,1]$ and all $x, y \in X$ such that $\|x\| \leq r$ and $\|y\| \leq r$.
Lemma 5 ([12]) Let U be a nonempty convex subset of a normed linear space X and $S: U \rightarrow U$ be a uniformly k-Lipschitzian mapping. For $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \subseteq[0,1]$ and $x_{1} \in U$, define $x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+$ $\alpha_{n} S^{n} y_{n}, y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} S^{n} z_{n}$ and $z_{n}=\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} S^{n} x_{n}, n \geq 1$. Then

$$
\left\|x_{n}-S\left(x_{n}\right)\right\| \leq c_{n}+c_{n-1} k\left(2+2 k+2 k^{2}+k^{3}\right),
$$

where $c_{n}=\left\|x_{n}-S^{n}\left(x_{n}\right)\right\|$, for all $n \geq 1$.

3 Convergence Results

Let (U, V) be a nonempty closed and convex pair in a strictly convex Banach space X. For $x_{1} \in U_{0}$, put $y_{1}:=\mathcal{P}\left(x_{1}\right) \in V_{0}$. Define the sequence pair $\left\{\left(x_{n}, y_{n}\right) \in U_{0} \times V_{0}\right\}$ as follows:

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S^{n} x_{n}^{\prime}, \quad y_{n+1}=\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} S^{n} y_{n}^{\prime} \tag{1}\\
x_{n}^{\prime}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} S^{n} x_{n}^{\prime \prime}, \quad y_{n}^{\prime}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S^{n} y_{n}^{\prime \prime}, \\
x_{n}^{\prime \prime}=\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} S^{n} x_{n}, \quad y_{n}^{\prime \prime}=\left(1-\gamma_{n}\right) y_{n}+\gamma_{n} S^{n} y_{n}, \quad n=1,2,3 \ldots,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ satisfying one of the following conditions:
(A) $0<\epsilon \leq \alpha_{n}\left(1-\alpha_{n}\right) \leq 1 ; \beta_{n} \rightarrow 0$ and $0 \leq \gamma_{n} \leq 1$ as $n \rightarrow \infty$,
(B) $0<\epsilon \leq \alpha_{n} \leq 1 ; 0<\epsilon \leq \beta_{n}\left(1-\beta_{n}\right) \leq 1$ and $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$,
(C) $0<\epsilon \leq \alpha_{n}, \beta_{n} \leq 1$ and $0<\epsilon \leq \gamma_{n}\left(1-\gamma_{n}\right) \leq 1$ as $n \rightarrow \infty$.

Lemma 6 Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex Banach space X also assume that (U, V) have rectangle and UC property. Let $S: U \cup V \rightarrow U \cup V$ is a continuous and noncyclic asymptotically relatively nonexpansive mapping with $\sum_{n \geq 1}\left(k_{n}-1\right)<\infty$. Assume $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are real sequences as defined in (1). Then
(i) $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists for all $q \in \operatorname{Fix}(S) \cap V_{0}$.
(ii) $\lim _{n \rightarrow \infty}\left\|y_{n}-p\right\|$ exists for all $p \in \operatorname{Fix}(S) \cap U_{0}$.

Proof. For any $q \in \operatorname{Fix}(S) \cap V_{0}$, we have

$$
\begin{aligned}
\left\|x_{n+1}-q\right\| & =\left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S^{n} x_{n}^{\prime}-q\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|+k_{n} \alpha_{n}\left\|x_{n}^{\prime}-q\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|+k_{n} \alpha_{n}\left\|\left(1-\beta_{n}\right) x_{n}+\beta_{n} S^{n} x_{n}^{\prime \prime}-q\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|+k_{n} \alpha_{n}\left(1-\beta_{n}\right)\left\|x_{n}-q\right\|+k_{n}^{2} \alpha_{n} \beta_{n}\left\|x_{n}^{\prime \prime}-q\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|+k_{n} \alpha_{n}\left(1-\beta_{n}\right) \| x_{n}-q \\
& +k_{n}^{2} \alpha_{n} \beta_{n}\left\|\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} S^{n}\left(x_{n}\right)-q\right\| \\
\leq & \left\{1+\alpha_{n}\left(k_{n}-1\right)\left(\beta_{n} \gamma_{n} k_{n}^{2}+\beta_{n} k_{n}+1\right)\right\}\left\|x_{n}-q\right\| \\
& \left\|x_{n+1}-q\right\| \leq\left(1+\mu_{n}\right)\left\|x_{n}-q\right\| \leq e^{\sum_{i=1}^{\infty} \mu_{i}}\left\|x_{1}-q\right\| \\
& \left\|x_{n+1}-q\right\| \leq e^{\sum_{i=1}^{\infty} k_{i}^{3}-1}\left\|x_{1}-q\right\| .
\end{aligned}
$$

where $\mu_{n}=k_{n}{ }^{3}-1$. Since $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$ (which implies that $\left.\sum_{n=1}^{\infty}\left(k_{n}^{3}-1\right)<\infty\right),\left\{\left\|x_{n}-q\right\|\right\}$ is a bounded sequence and hence $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exists for all $q \in \operatorname{Fix}(S) \cap V_{0}$. Similarly, we can show that $\lim _{n \rightarrow \infty}\left\|y_{n}-p\right\|$ exists for all $p \in \operatorname{Fix}(S) \cap U_{0}$.

Lemma 7 Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex Banach space X, also assume that (U, V) have rectangle and UC property. Let $S: U \cup V \rightarrow U \cup V$ be a continuous uniformly k-Lipschitzian and noncyclic asymptotically relatively nonexpansive mapping with $\sum_{n \geq 1}\left(k_{n}-1\right)<\infty$. For $x_{1} \in U_{0}$, let $y_{1} \in V_{0}$ be a unique proximal point of x_{1}. Assume $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are real sequences as defined in (1) and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ satisfy either (A) or (B) or (C), then

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|y_{n}-S y_{n}\right\|=0
$$

Proof. Let $q \in F(T) \cap V_{0}$, then

$$
\begin{align*}
&\left\|x_{n}^{\prime \prime}-q\right\|=\left\|\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} S^{n} x_{n}-q\right\| \\
&=\left\|\left(1-\gamma_{n}\right)\left(x_{n}-q\right)+\gamma_{n}\left(S^{n} x_{n}-q\right)\right\| \\
& \leq\left(1-\gamma_{n}\right)\left\|x_{n}-q\right\|+\gamma_{n}\left\|S^{n} x_{n}-q\right\|-2 \gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S^{n} x_{n}-x_{n}\right\|\right) \\
& \leq\left(1-\gamma_{n}\right)\left\|x_{n}-q\right\|+k_{n} \gamma_{n}\left\|x_{n}-q\right\|-2 \gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S^{n} x_{n}-x_{n}\right\|\right) \\
&\left\|x_{n}^{\prime \prime}-q\right\| \leq\left(1-\gamma_{n}+k_{n} \gamma_{n}\right)\left\|x_{n}-q\right\|-2 \gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S^{n} x_{n}-x_{n}\right\|\right) \tag{2}\\
&\left\|x_{n}^{\prime}-q\right\|=\left\|\left(1-\beta_{n}\right) x_{n}+\beta_{n} S^{n} x_{n}^{\prime \prime}-q\right\| \\
&=\left\|\left(1-\beta_{n}\right)\left(x_{n}-q\right)+\beta_{n}\left(S^{n} x_{n}^{\prime \prime}-q\right)\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|x_{n}-q\right\|+\beta_{n}\left\|S^{n} x_{n}^{\prime \prime}-q\right\|-2 \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime \prime}-x_{n}\right\|\right) \\
&\left\|x_{n}^{\prime}-q\right\| \leq\left(1-\beta_{n}\right)\left\|x_{n}-q\right\|+k_{n} \beta_{n}\left\|x_{n}^{\prime \prime}-q\right\|-2 \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime \prime}-x_{n}\right\|\right) \tag{3}\\
&\left\|x_{n+1}-q\right\|=\left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S^{n} x_{n}^{\prime}-q\right\| \\
&=\left\|\left(1-\alpha_{n}\right)\left(x_{n}-q\right)+\alpha_{n}\left(S^{n} x_{n}^{\prime}-q\right)\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|+\alpha_{n}\left\|S^{n} x_{n}^{\prime}-q\right\|-2 \alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime}-x_{n}\right\|\right) \\
&\left\|x_{n+1}-q\right\| \leq\left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|+k_{n} \alpha_{n}\left\|x_{n}^{\prime}-q\right\|-2 \alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime}-x_{n}\right\|\right) \tag{4}
\end{align*}
$$

Applying equations (2) and (3) in (4), we get

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| \leq & \left\{1+\alpha_{n}\left(k_{n}-1\right)\left(\beta_{n} \gamma_{n} k_{n}^{2}+\beta_{n} k_{n}+1\right)\right\}\left\|x_{n}-q\right\| \\
& -2 \alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime}-x_{n}\right\|\right)-2 k_{n} \alpha_{n} \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime \prime}-x_{n}\right\|\right) \\
& -2 k_{n}^{2} \alpha_{n} \beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S^{n} x_{n}-x_{n}\right\|\right)
\end{aligned}
$$

This can be transformed into the following three equations:

$$
\begin{align*}
& 2 \alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime}-x_{n}\right\|\right) \leq\left\|x_{n}-q\right\|-\left\|x_{n+1}-q\right\| \\
&+\alpha_{n}\left(\beta_{n} \gamma_{n} k_{n}^{2}+\beta_{n} k_{n}+1\right)\left(k_{n}-1\right)\left\|x_{n}-q\right\| \\
& \leq\left\|x_{n}-q\right\|-\left\|x_{n+1}-q\right\|+M\left(k_{n}-1\right), \tag{5}\\
& 2 k_{n} \alpha_{n} \beta_{n}\left(1-\beta_{n}\right) g\left(\| S^{n} x_{n}^{\prime \prime}-\right.\left.x_{n} \|\right) \leq\left\|x_{n}-q\right\|-\left\|x_{n+1}-q\right\|+M\left(k_{n}-1\right), \tag{6}\\
& 2 k_{n}^{2} \alpha_{n} \beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S^{n} x_{n}-x_{n}\right\|\right) \leq\left\|x_{n}-q\right\|-\left\|x_{n+1}-q\right\|+M\left(k_{n}-1\right) . \tag{7}
\end{align*}
$$

Now we have to show that for the given conditions, $\lim _{n \rightarrow \infty}\left\|S^{n} x_{n}-x_{n}\right\| \rightarrow 0$.
Case (i). Suppose the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ satisfy condition (A).
Then summing up the first m terms of equation (5), we get

$$
\sum_{n=1}^{m} 2 \alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime}-x_{n}\right\|\right) \leq\left\|x_{1}-q\right\|-\left\|x_{m+1}-q\right\|+M \sum_{n=1}^{m}\left(k_{n}^{3}-1\right)<\infty
$$

for all $m \geq 1$. Therefore, $\sum_{n=1}^{\infty} 2 \alpha_{n}\left(1-\alpha_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime}-x_{n}\right\|\right)<\infty$. Since $\alpha_{n}\left(1-\alpha_{n}\right) \geq \epsilon, g\left(\left\|S^{n} x_{n}^{\prime}-x_{n}\right\|\right) \rightarrow 0$ as $n \rightarrow \infty, \lim _{n \rightarrow \infty}\left\|S^{n} x_{n}^{\prime}-x_{n}\right\| \rightarrow 0$ from Lemma 3. Also

$$
\begin{aligned}
&\left\|S^{n} x_{n}-\mathcal{P} x_{n}\right\| \leq\left\|S^{n} x_{n}-\mathcal{P} S^{n} x_{n}^{\prime}\right\|+\left\|\mathcal{P} S^{n} x_{n}^{\prime}-\mathcal{P} x_{n}\right\| \\
&=\left\|S^{n} x_{n}-S^{n}\left(\mathcal{P} x_{n}^{\prime}\right)\right\|+\left\|S^{n} x_{n}^{\prime}-x_{n}\right\| \\
& \leq k_{n}\left\|x_{n}-\mathcal{P} x_{n}^{\prime}\right\|+\left\|S^{n} x_{n}^{\prime}-x_{n}\right\| \\
& \leq k_{n}\left\|x_{n}-\mathcal{P}\left\{\left(1-\beta_{n}\right) x_{n}+\beta_{n} S^{n} x_{n}^{\prime \prime}\right\}\right\|+\left\|S^{n} x_{n}^{\prime}-x_{n}\right\| \\
&=k_{n}\left\|x_{n}-\mathcal{P} x_{n}+\beta_{n}\left(\mathcal{P} x_{n}-\mathcal{P} S^{n} x_{n}^{\prime \prime}\right)\right\|+\left\|S^{n} x_{n}^{\prime}-x_{n}\right\| \\
& \leq k_{n}\left\|x_{n}-\mathcal{P} x_{n}\right\|+k_{n} \beta_{n}\left\|\mathcal{P} x_{n}-\mathcal{P} S^{n} x_{n}^{\prime \prime}\right\|+\left\|S^{n} x_{n}^{\prime}-x_{n}\right\|, \\
&\left\|S^{n} x_{n}-\mathcal{P} x_{n}\right\| \leq k_{n}\left\|x_{n}-\mathcal{P} x_{n}\right\|+k_{n} \beta_{n}\left\|x_{n}-S^{n} x_{n}^{\prime \prime}\right\|+\left\|S^{n} x_{n}^{\prime}-x_{n}\right\| .
\end{aligned}
$$

That is, $\lim _{n \rightarrow \infty}\left\|S^{n} x_{n}-\mathcal{P} x_{n}\right\|=\operatorname{dist}(A, B)$ which implies that $\lim _{n \rightarrow \infty}\left\|S^{n} x_{n}-x_{n}\right\| \rightarrow 0$.
Case (ii). If the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ satisfy condition (B).
Then adding the first m terms of equation (6), we get

$$
\sum_{n=1}^{m} k_{n} \alpha_{n} \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime \prime}-x_{n}\right\|\right) \leq\left\|x_{1}-q\right\|-\left\|x_{m+1}-q\right\|+M \sum_{n=1}^{m}\left(k_{n}^{3}-1\right)<\infty
$$

for all $m \geq 1$. As $m \rightarrow \infty$, we get $\sum_{n=1}^{\infty} \alpha_{n} \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|S^{n} x_{n}^{\prime \prime}-x_{n}\right\|\right)<\infty$. Then by Lemma 3, we have that $\lim _{n \rightarrow \infty}\left\|S^{n} x_{n}^{\prime \prime}-x_{n}\right\| \rightarrow 0$. Now

$$
\begin{aligned}
\left\|S^{n} x_{n}-\mathcal{P} x_{n}\right\| & \leq\left\|S^{n} x_{n}-\mathcal{P} S^{n} x_{n}^{\prime \prime}\right\|+\left\|\mathcal{P} S^{n} x_{n}^{\prime \prime}-\mathcal{P} x_{n}\right\| \\
& \leq k_{n}\left\|x_{n}-\mathcal{P} x_{n}^{\prime \prime}\right\|+\left\|S^{n} x_{n}^{\prime \prime}-x_{n}\right\| \\
& \leq k_{n}\left\|x_{n}-\mathcal{P} x_{n}+\gamma_{n}\left(\mathcal{P} x_{n}-\mathcal{P} S^{n} x_{n}\right)\right\|+\left\|S^{n} x_{n}^{\prime \prime}-x_{n}\right\| \\
\left\|S^{n} x_{n}-\mathcal{P} x_{n}\right\| & \leq k_{n}\left\|x_{n}-\mathcal{P} x_{n}\right\|+k_{n} \gamma_{n}\left\|x_{n}-S^{n} x_{n}\right\|+\left\|S^{n} x_{n}^{\prime \prime}-x_{n}\right\|
\end{aligned}
$$

We obtain that $\lim _{n \rightarrow \infty}\left\|S^{n} x_{n}-\mathcal{P} x_{n}\right\|=\operatorname{dist}(A, B)$ and hence $\lim _{n \rightarrow \infty}\left\|S^{n} x_{n}-x_{n}\right\|=0$.
Case (iii). Assume that the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ satisfy condition (C).
Then taking summation on the first m terms of the equation (7), we get

$$
\sum_{n=1}^{m} k_{n}^{2} \alpha_{n} \beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S^{n} x_{n}-x_{n}\right\|\right) \leq\left\|x_{1}-q\right\|-\left\|x_{m+1}-q\right\|+M \sum_{n=1}^{m}\left(k_{n}^{3}-1\right)<\infty
$$

for all $m \geq 1$. As $m \rightarrow \infty, \sum_{n=1}^{m} k_{n}^{2} \alpha_{n} \beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S^{n} x_{n}-x_{n}\right\|\right) \rightarrow 0$ which gives

$$
k_{n}^{2} \alpha_{n} \beta_{n} \gamma_{n}\left(1-\gamma_{n}\right) g\left(\left\|S^{n} x_{n}-x_{n}\right\|\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

But $($ as $n \rightarrow \infty) k_{n} \rightarrow 1, \alpha_{n}, \beta_{n} \geq \epsilon>0$ and $\gamma_{n}\left(1-\gamma_{n}\right) \geq \epsilon>0$,

$$
g\left(\left\|S^{n} x_{n}-x_{n}\right\|\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Then by Lemma 3, we get that $\lim _{n \rightarrow \infty}\left\|S^{n} x_{n}-x_{n}\right\| \rightarrow 0$. From all the above cases, $\left\|S^{n} x_{n}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Further, since the mapping S is k-Lipschitzian, we have the following from Lemma 5 ,

$$
\left\|S x_{n}-x_{n}\right\| \leq c_{n}+c_{n-1} k\left(2+2 k+2 k^{2}+k^{3}\right)
$$

where $c_{n}=\left\|x_{n}-S^{n}\left(x_{n}\right)\right\|$, for all $n \geq 1$. Hence

$$
\lim _{n \rightarrow \infty}\left\|S x_{n}-x_{n}\right\|=0
$$

Similarly we can show that, $\lim _{n \rightarrow \infty}\left\|S y_{n}-y_{n}\right\|=0$.

Theorem 8 Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex Banach space X, also assume that (U, V) have rectangle and $U C$ property. Let $S: U \cup V \rightarrow U \cup V$ be a continuous uniformly k-Lipschitzian and noncyclic asymptotically relatively nonexpansive mapping with $S(U)$ contained in a compact subset and $\sum_{n \geq 1}\left(k_{n}-1\right)<\infty$. For $x_{1} \in U_{0}$, let $y_{1} \in V_{0}$ be a unique proximal point of x_{1}. Assume $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are real sequences as defined in (1), and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ satisfy either (A) or (B) or (C). Then the sequence pair $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges to (p, q), where $p=S p \in U$ and $q=S q \in V$.

Proof. Let $S(U)$ lie in a compact subset. Then there exists a subsequence $\left\{S x_{n_{k}}\right\}$ of $\left\{S x_{n}\right\}$ which converges to some point $u \in U_{0}$. Then by Lemma 7 , we have $\lim _{n \rightarrow \infty}\left\|S x_{n_{k}}-x_{n_{k}}\right\|=0$ which implies that $x_{n_{k}} \rightarrow u$. Thus, $S u=u$ and therefore $S(\mathcal{P} u)=\mathcal{P} u$. Then by Lemma $6, \lim _{n}\left\|x_{n}-\mathcal{P} u\right\|$ exists and

$$
\lim _{n}\left\|x_{n}-\mathcal{P} u\right\|=\lim _{k}\left\|x_{n_{k}}-\mathcal{P} u\right\|=\|u-\mathcal{P} u\|=\operatorname{dist}(U, V)
$$

which gives that $x_{n} \rightarrow u \in U$. Similarly we can show that, as $n \rightarrow \infty,\left\|S y_{n}-y_{n}\right\|=0$ and $y_{n} \rightarrow v \in V$. For a given $x_{1} \in U$, there exists an element $y_{1}=\mathcal{P}\left(x_{1}\right) \in V$ such that $\left\|x_{1}-y_{1}\right\|=\operatorname{dist}(U, V)$. Here

$$
\begin{aligned}
\left\|x_{2}-y_{2}\right\| & =\left\|\left(1-\alpha_{1}\right) x_{1}+\alpha_{1} S x_{1}^{\prime}-\left(\left(1-\alpha_{1}\right) y_{1}+\alpha_{1} S y_{1}^{\prime}\right)\right\| \\
& \leq\left(1-\alpha_{1}\right)\left\|x_{1}-y_{1}\right\|+\alpha_{1}\left\|S x_{1}^{\prime}-S y_{1}^{\prime}\right\| \\
& \leq\left(1-\alpha_{1}\right)\left\|x_{1}-y_{1}\right\|+k_{1} \alpha_{1}\left\|x_{1}^{\prime}-y_{1}^{\prime}\right\| \\
& =\left(1-\alpha_{1}\right)\left\|x_{1}-y_{1}\right\|+k_{1} \alpha_{1}\left\|\left(1-\beta_{1}\right) x_{1}+\beta_{1} S x_{1}^{\prime \prime}-\left(\left(1-\beta_{1}\right) y_{1}+\beta_{1} S y_{1}^{\prime \prime}\right)\right\| \\
& \vdots \\
\leq & \left\{1+\alpha_{1}\left(k_{1}-1\right)\left(\beta_{1} \gamma_{1} k_{1}^{2}+\beta_{1} k_{1}+1\right)\right\}\left\|x_{1}-y_{1}\right\| \\
& \left\|x_{2}-y_{2}\right\| \leq k_{1}^{3}\left\|x_{1}-y_{1}\right\| .
\end{aligned}
$$

In general,

$$
\left\|x_{n}-y_{n}\right\| \leq k_{n}^{3}\left\|x_{1}-y_{1}\right\| .
$$

As $n \rightarrow \infty$,

$$
\left\|x_{n}-y_{n}\right\| \rightarrow \operatorname{dist}(U, V)
$$

Finally,

$$
\|u-v\|=\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=\operatorname{dist}(U, V)
$$

which deduces that $(u, v) \in \operatorname{Prox}_{U \times V}(S)$. This completes the proof.
If we choose $\gamma_{n}=0$ in Theorem 8, then Noor's type (three steps) iteration schemes reduces to Ishikawa's type iteration schemes. In this case conditions (A) and (B) are still valid, but (C) is not.

Corollary 9 Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex Banach space X, also assume that (U, V) have rectangle and $U C$ property. Let $S: U \cup V \rightarrow U \cup V$ be a continuous uniformly k-Lipschitzian and noncyclic asymptotically relatively nonexpansive mapping with
$S(U)$ contained in a compact subset and $\sum_{n \geq 1}\left(k_{n}-1\right)<\infty$. For $x_{1} \in U_{0}$, let $y_{1} \in V_{0}$ be a unique proximal point of x_{1}, define the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ as follows:

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}=S^{n} x_{n}^{\prime}, \quad y_{n+1}=\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} S^{n} y_{n}^{\prime} \\
x_{n}^{\prime}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} S^{n} x_{n}, \quad y_{n}^{\prime}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} S^{n} y_{n} \quad(n=1,2,3 \ldots)
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are sequences in $[0,1]$ satisfying one of the following conditions:
$\left(A_{1}\right) 0<\epsilon \leq \alpha_{n}\left(1-\alpha_{n}\right) \leq 1$ and $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$,
$\left(B_{1}\right) 0<\epsilon \leq \alpha_{n} \leq 1 ; 0<\epsilon \leq \beta_{n}\left(1-\beta_{n}\right) \leq 1$ as $n \rightarrow \infty$.
Then the sequence pair $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges to (p, q), where $p=S p \in U$ and $q=S q \in V$.
Putting $\beta_{n}=\gamma_{n}=0$ in Theorem 8, then Noor's type (three steps) iteration schemes reduces to Mann's type iteration schemes. In such cases, condition (A) alone valid.

Corollary 10 Let (U, V) be a nonempty, bounded closed convex proximal parallel pair in a uniformly convex Banach space X also assume that (U, V) have rectangle and UC property. Let $S: U \cup V \rightarrow U \cup V$ is a continuous and noncyclic asymptotically relatively nonexpansive mapping with $S(U)$ contained in a compact subset and $\sum_{n \geq 1}\left(k_{n}-1\right)<\infty$. For $x_{1} \in U_{0}$, let $y_{1} \in V_{0}$ be a unique proximal point of x_{1}, define the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ as follows:

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S^{n} x_{n}, y_{n+1}=\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} S^{n} y_{n} \quad(n=1,2,3 \ldots),
$$

where $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$ satisfying the condition $0<\epsilon \leq \alpha_{n}\left(1-\alpha_{n}\right) \leq 1$. Then the sequence pair $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges to (p, q), where $p=S p \in U$ and $q=S q \in V$.

Example 1 Let (U, V) be a nonempty pair of subsets of the Hilbert space l^{2} such that

$$
U=\left\{\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) / \sum_{i=1}^{\infty}\left|x_{i}\right| \leq 1\right\}
$$

and

$$
V=\left\{\left(1, y_{1}, y_{2}, y_{3}, \ldots\right) / \sum_{i=1}^{\infty}\left|y_{i}\right| \leq 1\right\}
$$

It is evident that U and V are closed, convex and compact subsets of l^{2}. Define a mapping $S: U \cup V \rightarrow U \cup V$ by

$$
S x= \begin{cases}\left(0,0, x_{1}^{2}, A_{2} x_{2}, A_{3} x_{3}, \ldots\right) & \text { if } x \in U \\ \left(1,0, x_{1}^{2}, A_{2} x_{2}, A_{3} x_{3}, \ldots\right) & \text { if } x \in V\end{cases}
$$

where $\left\{A_{i}\right\}=\left\{\frac{1}{2^{1 / 2^{i-1}}}\right\}$. It is easy to verify that S is an asymptotically relatively nonexpansive mapping but not relatively nonexpansive(refer [11]). Clearly $\operatorname{dist}(U, V)=1$. Let us consider the point $(u, v) \in U \times V$. Then $u=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) \in U$ and $v=\left(1, y_{1}, y_{2}, y_{3}, \ldots\right) \in V$. If we choose $u^{\prime}=\left(0, y_{1}, y_{2}, y_{3}, \ldots\right) \in U$ and $v^{\prime}=\left(1, x_{1}, x_{2}, x_{3}, \ldots\right) \in V$, then $\left\|u-v^{\prime}\right\|=\left\|u^{\prime}-v\right\|=\operatorname{dist}(U, V)$. Since the point is arbitrary, the pair (U, V) is a proximal pair of a Banach space l^{2} and also $U=U_{0}$ and $V=V_{0}$. Since $X=l^{2}$ is strictly convex Banach space, the pair (U, V) is a proximinal parallel pair (refer Lemma 3.1 in [16]) and so the pair (U, V) posses the rectangle property (refer Example 2.1 in [16]). Obviously U is a convex set and therefore the pair (U, V) satisfies the property UC (refer Proposition 3 in [20]). Hence by Theorem 8, the sequence pair $\left\{\left(x_{n}, y_{n}\right)\right\}$ under the mapping S, converges to the best proximity pair, say (p, q) of (U, V), where $(p, q)=((0,0,0, \ldots),(1,0,0, \ldots))$.

Take $\left\{\alpha_{n}\right\}=\left\{\frac{2 n}{3 n+1}\right\},\left\{\beta_{n}\right\}=\left\{\frac{1}{n^{2}+1}\right\}$ and $\left\{\gamma_{n}\right\}=\left\{\frac{n}{n+1}\right\}$. Then clearly the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ satisfy condition (A). Assume the initial guess as $x_{1}=(0,0.001,0.019,0.080,0,0, \ldots.) \in U_{0}$. Putting this initial value in equation (1), we get the following sequence of iterations in 3 decimal places:

Iterations S. No	Corresponding Iteration values
I	$\begin{aligned} & x_{1}^{\prime \prime}=(0,0,0.001,0.046,0.033,0,0,0,0,0, \ldots .) \\ & x_{1}^{\prime}=(0,0,0.001,0.04,0.002,0.015,0,0,0,0, \ldots) \\ & x_{2}=(0,0,0.001,0.04,0.016,0.009,0.007,0, \ldots) \end{aligned}$
II	$\begin{aligned} x_{2}^{\prime \prime} & =(0,0,0,0.001,0.005,0.023,0.011,0.005,0.005,0 \ldots) \\ x_{2}^{\prime} & =(0,0,0.008,0.032,0.013,0.007,0.006,0.004,0.002,0.001,0.001,0, \ldots) \\ x_{3} & =(0,0,0,0.017,0.007,0.017,0.009,0.004,0.003,0.002,0.001,0, \ldots) \end{aligned}$
III	$\begin{aligned} x_{3}^{\prime \prime}= & (0,0,0,0.004,0.002,0.004,0.011,0.005,0.012,0.006,0.003,0.002, \\ & \quad 0.001,0, \ldots) \\ x_{3}^{\prime}= & (0,0,0,0.015,0.006,0.015,0.008,0.003,0.003,0.002,0.002,0, \ldots) \\ x_{4}= & (0,0,0,0.007,0.003,0.007,0.001,0.004,0.009,0.001,0.002,0.002, \\ & 0.001,0.001,0, \ldots) \end{aligned}$
IV	$\begin{aligned} x_{4}^{\prime \prime}= & (0,0,0,0.001,0.0008,0.005,0.001,0.005,0,0.003,0.007,0,0.001 \\ & \quad 0.001,0, \ldots) \\ x_{4}^{\prime}= & (0,0,0,0.001,0.001,0.0007,0.005,0.001,0.005,0.002,0.001,0.001, \\ & 0, \ldots) \\ x_{5}= & (0,0,0,0.002,0.001,0.002,0,0.001,0.003,0.003,0,0.002,0.001, \\ & 0.003,0, \ldots) \end{aligned}$
V	$\begin{aligned} x_{5}^{\prime \prime}= & (0,0,0,0,0,0,0,0,0.001,0.001,0,0.0008,0.002,0.002,0,0.0016 \\ & \quad 0.0008,0.002,0, \ldots) \\ x_{5}^{\prime}= & (0,0,0,0.002,0.0009,0.002,0,0.0009,0.003,0.003,0.002,0.001, \\ & 0.003,0, \ldots) \\ x_{6}= & (0,0,0,0,0,0,0,0.001,0.002,0,0.001,0,0.001,0.001,0.001,0.001, \\ & 0,0.001,0, \ldots) \end{aligned}$
VI	$\begin{aligned} x_{6}^{\prime \prime}= & (0,0,0,0,0,0,0,0,0,0,0,0,0,0.0008,0.0017,0,0.0008,0.001,0 \\ & 0.001,0.001,0.001,0.001,0,0.001,0, \ldots) \\ x_{6}^{\prime}= & (0,0,0,0,0,0,0,0.001,0.002,0.001,0,0.001,0.001,0.001,0.001,0, \\ & 0.001,0 \ldots) \\ x_{7}= & (0,0,0,0,0, \ldots .) \end{aligned}$

Acknowledgement. The authors thank the referee(s) for their comments and suggestions towards the improvement of the paper.

References

[1] A. Abkar and M. Gabeleh, Global optimal solutions of noncyclic mappings in metric spaces, J. Optim. Theory Appl., 153(2012), 298-305.
[2] A. A. Eldred, W. A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math., 171(2005), 283-293.
[3] A. A. Eldred and A. Praveen, Convergence of Mann's iteration for relatively nonexpansive mappings, Fixed Point Theory, 18(2017), 545-554.
[4] A. Almeida, E. Karapinar and K. Sadarangani, A note on best proximity point theorems under weak P-property, Abstr. Appl. Anal., 2014, Art. ID 716825, 4 pp.
[5] W. G. Jr. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc., 149(1970), 65-73.
[6] M. Edelstein, A remark on a theorem of M. A. Krasnoselskii, Amer. Math. Monthly., 73(1966), 509-510.
[7] E. Karapinar and F. Khojasteh, An approach to best proximity points results via simulation functions, J. Fixed Point Theory Appl., 19(2017), 1983-1995.
[8] R. Espínola, A new approach to relatively nonexpansive mappings, Proc. Amer. Math. Soc., 136(2008), 1987-1995.
[9] G. Marino, B. Scardamaglia and E. Karapinar, Strong convergence theorem for strict pseudocontractions in Hilbert spaces, J. Inequ. and Appl., 134(2016), 1-12.
[10] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147-150.
[11] S. I. E. Manna and A. A. Eldred, Strong convergence for best proximity pairs of asymptotically relatively nonexpansive mappings, Far East J. Math. Sci., 109(2018), 25-35.
[12] S. I. E. Manna and A. A. Eldred, Weak and strong convergence theorem for three steps iteration of asymptotically firmly type nonexpansive mappings, Nonlinear Func. Ana. Appl., 24(2019), 747-757.
[13] M. A. Krasnoselskii, Two observations about the method of successive approximations, Usp. Math. Nauk., 10(1955), 123-127.
[14] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(1953), 506-510.
[15] M. Gabeleh, Minimal sets of noncyclic relatively nonexpansive mapping in convex metric spaces, Fixed Point Theory, 16(2015), 313-322.
[16] S. Rajesh and P. Veeramani, Best proximity point theorems for asymptotically relatively nonexpansive mappings, Numer. Funct. Anal. Optim., 37(2016), 80-91.
[17] B. E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl., 56(1976), 741750.
[18] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158(1991), 407-413.
[19] Y. Song and Q. Li, Successive approximations for quasi firmly type nonexpansive mappings, Math. Commun., 16(2011), 251-264.
[20] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with the UC property, Nonlinear., 71(2009), 2918-2926.
[21] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(1991), 1127-1138.
[22] B. Xu and M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach space, J. Math. Anal. Appl., 267(2002), 444-453.
[23] H. Y. Zhou, G. T. Guo, H. J. Hwang and Y. J. Cho, On the iterative methods for nonlinear operator equations in Banach spaces, PanAmer. Math. J., 14(2004), 61-68

[^0]: *Mathematics Subject Classifications: 39B12, 41A65, 47H10.
 ${ }^{\dagger}$ Department of Mathematics, St. Josephís College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu 620002, India
 ${ }^{\ddagger}$ Department of Mathematics, St. Josephís College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu 620002, India

