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Abstract
In this paper, we present the numerical result obtained by a MATLAB version of a second order non-

standard finite difference scheme for the numerical solution of the perpetual American put option models
of financial markets. These models can be derived from the celebrated Black-Scholes models letting the
time go to infinity. The considered problem is a free boundary problem defined on a semi-infinite interval
so that it is a non-linear problem complicated by a boundary condition at infinity.

By using non-uniform maps and non-standard finite difference formulae, we show how it is possible to
apply the boundary condition at infinity exactly. Moreover, we define a posteriori error estimator that is
based on the Richardson classical extrapolation theory. Our finite difference scheme and error estimator
are favourably tested for a simple problem with a known exact analytical solution, the scheme is found
to be of second order accuracy.

1 Introduction

In the market of financial derivatives, the most important problem is the so-called option valuation problem
or in a few words: the problem of computing a fair price for a given option. Analytical solutions of models of
American option problems are seldom available, so such derivatives of financial markets must be priced by
numerical methods (Amin and Khanna [2], Barraquand and Pudet [5], Broadie and Detemple [9], Nielsen et
al. [27], Barone-Adesi [4], Düring and Fournié [12], Milev and Tagliani [26]), Fazio [15] or Fazio et al. [16]).
In this paper, we present a MATLAB version of a non-standard finite difference scheme for the numerical
solution of the perpetual American put option models of financial markets. These models can be derived
from the celebrated Black-Scholes models (Leland [25], Avellaneda and Parás [3], Frey and Patie [20] and
Jandačka and Ševčovič [22]) letting the time go to infinity (Bensoussan [6] or Elliot and Kopp [13, pp. 196-
199]). The considered problem is a free boundary problem defined on a semi-infinite interval so that it is a
non-linear problem complicated by a boundary condition at infinity.
By using non-uniform maps, we show how it is possible to apply the boundary condition at infinity

exactly. Non-uniform maps have been applied to the numerical solution of ordinary and partial differential
equations on unbounded domains (van de Vooren and Dijkstra [31], Botta et al. [7], Davis [11], Grosch and
Orszag [21], Boyd [8], Alshina et al. [1], Koleva [23] or Fazio and Jannelli [17, 18]). Moreover, we deduce an a
posteriori error estimator within Richardson classical extrapolation theory, see Fazio and Jannelli [19]. Our
finite difference scheme and error estimator are favourably tested for a simple problem with a known exact
analytical solution. From the obtained numerical results we can asses that: the finite difference method is
second-order accurate, the numerical solution can be improved by repeated Richardson extrapolations and
the error estimator provides upper bounds for the exact error.
As this author’s knowledge is concerned this is the first time that the perpetual American put model is

solved by a quasi-uniform non-standard finite difference scheme. Naturally, it would be possible to use the
defined error estimator in order to find a numerical solution within a given prefixed error tolerance. To this
end, we should modify our numerical algorithm in the same way it has been done by this author for the
classical American put model, see Fazio [14, 15] for details.
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2 Perpetual American Put Option

In order to test our error estimator, in this section, we consider a test problem with known exact analytical
solution. This problem is a free boundary problem arising as a simple toy model in the study of financial
markets [6]. A mathematical model describing the perpetual American put option is given by

1
2σ

2S2 d
2P
dS2 + rS

dP
dS − rP = 0 , on R ≤ S <∞,

P (R) = max{E −R, 0} , dP
dS (R) = −1,

limS→∞ P (S) = 0,

(1)

where S is the price of a given asset, P (S) is the price of the perpetual American put option to sell the asset,
R is the unknown free boundary, σ, r and E are the volatility, interest rate and exercise price of the asset,
respectively. This problem (1) has the exact solution

P (S) = (E −R)R2r/σ
2

S−2 r/σ
2

, R =
2rE

2r + σ2
,

see [13, pp. 196-199]. In order to fix the domain, see Crank [10, pp. 187-192], we can apply Landau’s
transformation of variables

x = S/R , u(x) = P (x R).

In the new variables, the put option problem (1) can be rewritten as follows
1
2σ

2x2 d
2u
dx2 + rx

du
dx − ru = 0, on 1 ≤ x <∞,

u(1) = max{E −R, 0}, du
dx (1) = −R,

limx→∞ u(x) = 0.

(2)

Moreover, this model can be rewritten in standard form as a first-order system of ordinary differential
equations. The model (1) is a special instance of the American put option obtained formally by letting
the time variable to go to infinity. In recent years several generalizations, ranging from the introduction of
further relevant market parameters to non-constants volatility and the like, of this model have been proposed
in the literature. In particular, one can take into account: the presence of transaction costs (see e.g. Leland
[25], Avellaneda and Parás [3]), feedback and illiquid market effects due to large traders choosing given
stock-trading strategies (Frey and Patie [20]), risk from unprotected portfolio (Jandačka and Ševčovič [22]).
In order to take into account also those different models, and using the fixed boundary formulation (2), we
study here the following class of problems

du
dx = φ(x, u, v) , on 1 ≤ x <∞,

dv
dx = ψ(x, u, v),

dR
dx = 0,

u(1) = max{E −R, 0} , v(1) = −R , limx→∞ u(x) = 0,

(3)

where R is treated as a supplementary variable because its value is unknown and has to be found as part
of the solution. Of course, our benchmark problem (2) belongs to (3) for a suitable change of variables and
functional form of φ and ψ.

3 Quasi-Uniform Grids

Let us consider the smooth strict monotone quasi-uniform maps x = x(ξ), the so-called grid generating
functions,

x = −c · ln(1− ξ) + 1, (4)

and

x = c
ξ

1− ξ + 1, (5)
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where ξ ∈ [0, 1], x ∈ [1,∞], and c > 0 is a control parameter. So that, a family of uniform grids ξn = n/N
defined on interval [0, 1] generates one parameter family of quasi-uniform grids xn = x(ξn) on the interval
[1,∞]. The two maps (4) and (5) are referred to as a logarithmic and an algebraic maps, respectively. The
logarithmic map (4) gives slightly better resolution near x = 1 than the algebraic map (5), while the algebraic
map gives much better resolution than the logarithmic map as x→∞. In fact, it is easily verified that

−c · ln(1− ξ) + 1 < c
ξ

1− ξ + 1,

for all ξ but ξ = 0.
The problem under consideration can be discretized by introducing a uniform grid ξn of N + 1 nodes in

[0, 1] with ξ0 = 0 and ξn+1 = ξn + h with h = 1/N , so that xn is a quasi-uniform grid in [1,∞]. The last
interval in (4) and (5), namely [xN−1, xN ], is infinite but the point xN−1/2 is finite, because the non integer
nodes are defined by

xn+α = x

(
ξ =

n+ α

N

)
,

with n ∈ {0, 1, . . . , N − 1} and 0 < α < 1. These maps allow us to describe the infinite domain by a finite
number of intervals. The last node of such grid is placed on infinity so right boundary conditions are taken
into account correctly.

4 A Non-Standard Finite Difference Scheme

We can approximate the values of u(x) on the mid-points of the grid

u(xn+1/2) ≈
xn+3/4 − xn+1/2
xn+3/4 − xn+1/4

un +
xn+1/2 − xn+1/4
xn+3/4 − xn+1/4

un+1. (6)

that is a non-standard central difference formula. Taking into account the results by Veldam and Rinzema
[32], for the first derivative at the mid-points of the grid we can apply the following approximation

du

dx
(xn+1/2) ≈

un+1 − un
2
(
xn+3/4 − xn+1/4

) , (7)

that is, again, a non-standard central difference formula. These finite difference formulae use the value
uN = u∞, but not xN = ∞. The two finite difference approximations (6) and (7) have order of accuracy
O(N−2). For a system of differential equations, formulae (6) and (7) can be applied component-wise. The
approximation (6) is a variant of the formula used by Fazio and Jannelli [18] allowing for a simpler definition
of the finite difference scheme. A non-standard finite difference scheme on a quasi-uniform grid for our
financial problem (1) can be defined by using the approximations given by (6) and (7) above.
We denote by the 3−dimensional vector Un = (Un, Vn, R)

T the numerical approximation to the solution
u(xn) = (u(xn), v(xn), R)

T of (3) at the points of the mesh, that is for n = 0, 1, . . . , N . A finite difference
scheme for (3) can be written as follows:

Un+1 −Un − an+1/2φ
(
xn+1/2, bn+1/2Un+1 + cn+1/2Un

)
= 0,

1U0 = max{E −R, 0} , 2U0 = −R , 1UN = 0,

for n = 0, 1,. . . , N − 1, here φ = (φ, ψ, 0)T , adopting Lambert’s notation for the vector components [24,
pp. 1-5],rU is the r-component of the vector U and

an+1/2 = 2
(
xn+3/4 − xn+1/4

)
,

bn+1/2 =
xn+1/2−xn+1/4
xn+3/4−xn+1/4 ,

cn+1/2 =
xn+3/4−xn+1/2
xn+3/4−xn+1/4 ,

(8)

for n = 0, 1, . . . , N − 1.
It is evident that (8) is a nonlinear system of 3 · (N + 1) equations in the 3 · (N + 1) unknowns U =

(U0,U1, . . . ,UN )
T .
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5 Richardson Extrapolation

The utilization of a quasi-uniform grid allows us to improve our numerical results. The algorithm is based on
Richardson extrapolation, introduced by Richardson in [28, 29]. Within Richardson extrapolation, we carry
on several calculations on embedded uniform or quasi-uniform grids with total number of nodes N : e.g., for
the numerical results reported in the next section we used N = 2, 4, 8, 16, 32, 64, 128, 256, 512 or N = 5,
10, 20, 40, 80, 160, 320, 640, 1280. We can identify these grids with the number of grid-points Ng where the
index g = 0 identifies the coarsest one, 1, 2, and so on go towards the finest grid where the index has to be
fixed in advance as G, so that G = 8 in our case. Between two adjacent grids, all nodes of the largest steps
are identical to even nodes of the denser grid due to quasi-uniformity. For a scalar value U we can apply k
Richardson extrapolations on the used grids

Ug+1,k+1 = Ug+1,k +
Ug+1,k − Ug,k

qpk − 1 , (9)

where g ∈ {0, 1, 2, . . . , G−1}, k ∈ {0, 1, 2, . . . , G−1}, q = Ng/Ng−1 is the grid refinement ratio, and pk is the
true order of the discretization error, see Schneider and Marchi [30] and the references quoted therein. This
formula is asymptotically exact in the limit as N goes to infinity if we use uniform or quasi-uniform grids.
We notice that to obtain each value of Ug+1,k+1 requires two computed solutions U in two adjacent grids,
namely g+1 and g at the extrapolation level k. For any g, the level k = 0 represents the numerical solution
of U without any extrapolation, which is obtained as described in section 4. The case k = 1 is the classical
single Richardson extrapolation, which is usually used to estimate the discretization error or to improve the
numerical solution accuracy. If we have computed the numerical solution on G+1 nested grids then we can
apply equation (9) G times performing G Richardson extrapolation.
Here we are interested to show how within Richardson extrapolation theory we can derive an error

estimator. For any value of interest U , the numerical error E can be defined by

E = u− U , (10)

where u is the exact analytical solution. Usually, we have several different sources of errors: discretization,
round-off, iteration and programming errors. Discretization errors are due to our replacement of a continuous
problem with a discrete one and these errors can be reduced by reducing the discretization parameters,
enlarging the value of N in our case. Round-off errors are due to the utilization of floating-point arithmetic
to implement the algorithms available to solve the discrete problem. This kind of error can be reduced by
using higher precision arithmetic, double or, when available, fourth precision. Iteration errors are due to
stopping an iteration algorithm that is converging but only as the number of iterations goes to infinity. Of
course, we can reduce this kind of error by requiring more restrictive termination criteria for our iterations,
the iterations of fsolve MATLAB routine in the present case. Programming errors are behind the scope of
this work but they can be eliminated or at least reduced by adopting what is called structured programming.
When the numerical error is caused prevalently by the discretization error and in the case of smooth enough
solutions the discretization error can be decomposed into a sum of powers of the inverse of N

u = UN + C0

(
1

N

)p0
+ C1

(
1

N

)p1
+ C2

(
1

N

)p2
+ · · · , (11)

where C0, C1, C2, . . . are coeffi cient that depend on u and its derivatives, but are independent on N , and
p0, p1, p2, . . . are the true orders of the error. The value of each pk is usually a positive integer with
p0 < p1 < p2 < · · · and constitute an arithmetic progression of ratio p1 − p0. The value of p0 is called
the asymptotic order or the order of accuracy of the method or of the numerical solution U . So that, the
theoretical order of accuracy of the numerical solutions Ug,k with k extrapolations the pk orders verify the
relation

pk = p0 + k(p1 − p0), (12)

where this equation is valid for k ∈ {0, 1, 2, . . . , G− 1}.
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5.1 Error Estimator

To show how Richardson extrapolation can be also used to get an error estimator for the computed numerical
solution we use the notation introduced above. By replacing into equation (11) N with 2N and subtracting,
to the obtained equation, equation (11) times (1/2)p0 we get the first extrapolation formula

u ≈ U2N +
U2N − UN
2p0 − 1 , (13)

that has a leading order of accuracy equal to p1. Taking into account equation (13) we can conclude that
the error estimator by a first Richardson extrapolation is given by

Eest =
U2N − UN
2p0 − 1 , (14)

where p0 is the order of the numerical method used to compute the numerical solutions. Hence, it gives the
real value of numerical solution error without knowledge of the exact solution. In comparison with (14) a
safer error estimator can be defined by

Esafe = U2N − UN . (15)

Of course, p0 can be found by

p0 ≈
log(|UN − u|)− log(|U2N − u|)

log(2)
, (16)

where u is again the exact solution (or, if the exact solution is unknown, a reference solution computed with
a suitable large value of N), and both u and U2N are evaluated at the same grid-points of UN .

6 Numerical Results

It should be mentioned that all numerical results reported in this paper were performed on an ASUS personal
computer with i7 quad-core Intel processor and 16 GB of RAM memory running Windows 8.1 operating
system.
The non-standard finite difference scheme, as well as the two error estimators described above, have been

implemented in MATLAB. In this way, we take advantage of the available MATLAB built-in functions. In
particular, for the solution of the non-linear system (8) we used the function fsolve. Among the available
alternative we used the “Levenberg-Marquardt”with TolFun = 10−15 and TolX = 10−15 options. These
values of TolFun and TolX define the termination criteria for fsolve. Usually, the fsolve routine performed
between 5 to 11 iterations to get a numerical solution that verifies the stopping criteria.
To set a specific test problem we fixed the following values for the involved parameters

σ2 = 0.1 , r = 0.05 , E = 10 . (17)

As we will see below these values provide an exact solution that remains different from zero within a large
domain. For our numerical computations, we used both the two maps (4) with c = 20 and (5) with c = 10,
but the results reported below are concerned with the first map because the results obtained with the second
map are, indeed, very similar. In order to speed up the computations for different values of N we adopted
a continuation strategy. For a small value of N , usually N = 2 or N = 5, we always used a constant initial
iterate vector made with all components equal to one. Then, when refining the grid we used the accepted
final iterate of the previous value of N as the first iterate for the computation with the next value of N .
Figure 1 shows a reference solution.
The numerical results obtained by setting N = 128 can be seen in the same figure. The non-uniform grid

is clearly visible even if the last grid-point is not shown because it is located at infinity.
Figure 2 shows two sample error estimates made by the error estimator (15), from top to bottom we used

N = 16 to N = 32.
It is easily seen that the safe estimator defined by equation (15) provides upper bounds for the true error.
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Figure 1: Sample exact and numerical solutions for the test problem (1).The symbols indicate: + the exact
solution, • its first derivative, ◦ the numerical solution, and � its numerical first derivative.

Table 1: Richardson’s extrapolations for the free boundary value of the test problem (1) with parameters
fixed in (17). Note that for this problem the exact value is R = 5.

In Table 1 we report, for different values of N , several extrapolations for the free boundary value R of
our test problem (1). These values where computed according to the extrapolation formula

R2N,k+1 = R2N,k +
R2N,k −RN,k
2k+1 − 1 , for k = 0, 1, 2, . . . . (18)

In this table, since the values of N can be seen on the first column, we omitted the first subscript for the
notation defined in equation (9) and used in equation (18) for the extrapolated values of R. We notice that
the first reported values are far from the correct value of R. However, it is noteworthy that these incorrect
values are used by Richardson’s extrapolation formula to compute the accurate value of R3 = 5.000153 in
the last column and the row for N = 512.
Now we can apply the formula (16) to the computed value of R0 in Table 1. The computed values of p0

are given by 0.650819676, 1.009888863, 1.376800758, 1.693756030, 1.893889652, 1.998098336, 2.107064507,
and 2.485357150. Therefore, our claim that the finite difference scheme is second order is correct.
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Figure 2: Safe error estimates provided by equation (15) and true error by equation (10) for the test problem
(1). Here E1 is the solution true error, E2 true error for the solution first derivative, Esafe1 the safe error
estimate for the solution, and Esafe2 the safe error estimate for the solution first derivative.

7 Conclusions

In this paper, we have presented the results obtained by a MATLAB version of a non-standard finite difference
scheme for the numerical solution of the so-called perpetual American put option model of financial markets.
This model can be derived from the celebrated Black-Scholes model letting the time go to infinity. Even
for non-linear Black-Scholes models, there is no known formula for the price of an American put with a
finite exercise time; indeed there are closed formulae for prices of linear models or infinite exercise time
American put, American call option and European put and call options. A variety of numerical methods
and approximations for the American put option price have been developed over the years. An overview of
the various methods can be found for example in Barone-Adesi [4]. The problem considered here is a free
boundary problem defined on a semi-infinite interval so that it is a non-linear problem complicated by a
boundary condition at infinity. By using non-uniform maps, we have shown how it is possible to apply the
boundary condition at infinity exactly in contrast with the definition of a truncated boundary that introduces
an error related to the replacement of infinity by a finite value, see for instance Nielsen et al. [27].
As far as future reseach is concerned, it would be of interest to apply our non-standard difference scheme to

non-linear perpetual America option models. Moreover, it would be relevant to extend our numerical scheme
to Black-Scholes models that are governed by partial differential equations defined on infinite domains. Of
course, we can apply the Landau’s transform to the original moving boundary problem to get a problem
defined on a fixed domain. The semi-discretization in time of the transformed problem with standard methods
like the first order Euler or high order Runge-Kutta type will result in a sequence of problems in the class
(3).
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