
Applied Mathematics E-Notes, 21(2021), 172-178 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Some New Inertial Projection Methods For Quasi Variational

Inequalities∗

Saudia Jabeen†, Muhammad Aslam Noor‡, Khalida Inayat Noor§

Received 19 March 2020

Abstract

The purpose of the current study is to introduce some new inertial-type algorithms for finding the
approximate solution of quasi-variational inequalities. We also estimate the convergence criteria of the
proposed methods under a few appropriate conditions. As a special case, our results include the results of
Shehu et al. [17] for quasi variational inequalities and Noor et al. [14] for solving variational inequalities
as special cases. The idea of the current study may stimulate prospective research.

1 Introduction

Variational inequalities approach, as a very efficient and important origin of the modern mathematical
technology, has been extensively applied to physics, mechanics, economics and transportation equilibrium,
optimization and control, and engineering sciences, and so forth. Variational inequality has been extended
in various directions. A significant and useful generalization of variational inequality is quasi-variational
inequality. If the convex set, which was involved in the variational inequalities, also depends on the solution
explicitly or implicitly, then this inequality is called the quasi-variational inequality, which was studied and
introduced by Bensoussan et al. [4]. See also [5, 9] and the references therein.

Antipin et al. [3] proposed gradient projection and extra gradient methods for finding the solution
of quasi-variational inequality, when the involved operator is strongly monotone and Lipschitz continuous.
Mijajlovic et al. [7] introduced a more general gradient projection method with strong convergence for solving
this inequality in real Hilbert space. This technique works well for various useful purposes, so it has immense
potential. It is essential to consider an iterative scheme with a fast accelerated rate of convergence. Recently,
the inertial method is obtained from the oscillator equation with damping and conservative restoring force.
It has become an indispensable source for refining the performance of the method and has nice convergence
characteristics. The general foremost aspect of inertial-type alternatives is that we use previous iterations
to construct the next. Since constructing inertial methods, many authors have combined the inertial term
{Θn(µn − µn−1)} into various kinds of algorithms, such as Halpern, Kranoselski, Mann, Viscosity, etc for
finding the solution optimization problems and fixed point problems. Here Θn is an extrapolating factor
that stimulates the convergence rate of the method. Polyak [15] was the first author to suggest the heavy
ball method. Alvarez et al. [1] used it to set up a proximal point algorithm. Recently Shehu et al. [17]
suggested and investigated an inertial projection methods for solving quasi variational inequalities, which
include the modified double projection method Noor [11] for solving classical variational inequalities.

Noor et al. [14] have suggested and analyzed a wide class of projection type methods for solving variational
inequalities. Motivated by the work of Noor et al. [14] and Shehu et al. [17], we suggest some new inertial
projection methods for solving quasi variational inequalities. As applications of our results, we obtain several
new and known algorithms as special cases. We analyze the convergence criteria of the proposed techniques
with appropriate conditions. The ideas and techniques of this paper may be starting point for further
research.
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2 Preliminaries

Let K be a nonempty, closed and convex set in a real Hilbert space H with norm ‖ · ‖ and inner product
〈·, ·〉. Let a nonlinear operator T : H −→ H in H. Let K : H −→ H be a set-valued mapping which, for
any element x ∈ H, associates a convex-valued and closed set K(x) ⊂ H.

We consider the quasi-variational inequality [4], which consists of finding x ∈ K(x), such that〈
T x,ν− x

〉
≥ 0, ∀ ν ∈ K (x) , (1)

where ρ > 0 is a constant.
Clearly, if we take K(x) = K, then the above problem reduces to the variational-inequality [16], that is,

finding x ∈ K, such that 〈
T x,ν− x

〉
≥ 0, ∀ ν ∈ K. (2)

Definition 1 A mapping T : H −→ H is called strongly monotone (ξ ≥ 0), if〈
T µ− T ν,µ− ν

〉
≥ ξ ‖µ− ν‖2

, ∀µ,ν ∈ H. (3)

Definition 2 A mapping T : H −→ H is called Lipschitz continuous (η > 0), if

‖T µ− T ν‖ ≤ η ‖µ− ν‖ , ∀µ,ν ∈ H. (4)

From (3) and (4), it is noted that ξ ≤ η. The following projection lemma plays an indispensable role in
obtaining our results.

Lemma 1 ([4]) For a given ω ∈ H, µ ∈ K (µ) such that〈
µ−ω,ν− µ

〉
≥ 0, ∀ν ∈ K (µ) ,

if and only if
µ = ΠK(µ) [ω] ,

where ΠK(µ) is the implicit projection of H onto the closed convex-valued set K (µ) in H.

The projection operator ΠK(µ) satisfies the following assumption. The implicit projection operator PK(µ),
satisfies the condition ∥∥ΠK(µ) [ω]−ΠK(ν) [ω]

∥∥ ≤ υ ‖µ− ν‖ ∀ µ, ν, ω ∈ H, (5)

where υ > 0, is a constant. The next result is very helpful for analyzing our methods.

Lemma 2 ([18]) Consider a sequence of non negative real numbers {%n}, satisfying

%n+1 ≤ (1−Υn)%n + Υn σn + ςn, ∀n ≥ 1,

where

(i) {Υn} ⊂ [ 0, 1] ,
∞∑

n = 1
Υn = ∞;

(ii) lim supσn ≤ 0;

(iii) ςn ≥ 0 (n ≥ 1),
∞∑

n = 1
ςn < ∞.

Then, %n −→ 0 as n −→∞.
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3 Iterative Methods

Now, we use the fixed point formulation to suggest and investigate a new implicit algorithm for solving
inequality (1).

Using Lemma 1, the inequality (1) can be written as the following equivalent form.

Lemma 3 ([12]) Let K (x) be a closed and convex-valued set in H. Then x ∈ K(x) is the solution of problem
(1), if and only if,

x = ΠK(x) [ x− ρT x ] , (6)

where ΠK(x) is the implicit projection of H onto the closed and convex-valued set K (x) in H and ρ > 0 is a
constant.

From (6), we have

x = (1− αn) x + αn ΠK(x) [ (1− λ)x + λ x− ρ {(1− µ)T x + µ T x}] ,

where λ,µ ∈ [0, 1], and αn ∈ [0, 1] for all n ≥ 0.
This equivalent formulation can be used to suggest the following iteration method for solving inequality

(1) as:

Algorithm 1 For a given x0, compute xn+1 by the recurrence relation

xn+1 = (1− αn) xn+1 + ΠK(xn+1) [ (1− λ)xn + λ xn+1 − ρ {(1− µ)T xn + µT xn+1] , n = 0, 1, 2, . . .

where 0 ≤ αn ≤ 1 and λ,µ ∈ [0, 1].

In order to implement Algorithm 1, we can use the following inertial-type predictor and corrector tech-
nique.

Algorithm 2 For a given x0 , x1, compute xn+1 by the iterative schemes

yn = xn + θn ( xn − xn−1 ) , (7)

xn+1 = (1− αn) yn + αn π‖(yn) [ (1− λ) xn + λ yn − ρ {(1− µ)t xn + µtyn} ] (8)

for n = 1, 2, . . . where 0 ≤ Θn, αn ≤ 1 and λ,µ ∈ [0, 1].

For αn = 0, Algorithm 2 reduces to the following algorithm.

Algorithm 3 For given x0 , x1, compute xn+1 by the recurrence relation

yn = xn + Θn ( xn − xn−1 ) ,

xn+1 = ΠK(yn) [ (1− λ) xn + λ yn − ρ {(1− µ)T xn + µ T yn} ] ,

for n = 1, 2, . . . where 0 ≤ Θn ≤ 1 and λ,µ ∈ [0, 1].

For λ = 0 = µ, Algorithm 2 reduces to the following algorithm to solve inequality (1).

Algorithm 4 For given x0 , x1, compute xn+1 by the recurrence relation

yn = xn + Θn ( xn − xn−1 ) ,

µn+1 = (1− αn) yn + αn ΠK(yn) [ xn − ρ T xn] ,

for n = 1, 2, . . . where 0 ≤ Θn, αn ≤ 1.

For λ = 1 = µ, Algorithm 2 reduces to the following algorithm.
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Algorithm 5 ([17]) For given x0 , x1, compute xn+1 by the recurrence relation

yn = xn + Θn ( xn − xn−1 ) ,

xn+1 = (1− αn) yn + αn ΠK(yn) [ yn − ρ T yn] ,

for n = 1, 2, . . . where 0 ≤ Θn, αn ≤ 1

For λ =
1
2

= µ, Algorithm 2 reduces to the following algorithm.

Algorithm 6 For given x0 , x1, compute xn+1 by the recurrence relation

yn = xn + Θn ( xn − xn−1 ) ,

xn+1 = (1− αn) yn + αn ΠK(yn)

[
xn + yn

2
− ρ

T xn + T yn

2

]
,

for n = 1, 2, . . . where 0 ≤ Θn, αn ≤ 1. This method appears to be a new one.

If T is a linear operator, then Algorithm 6 reduces to the following algorithm.

Algorithm 7 For a given x0 , x1, compute xn+1 by the following recurrence relation

yn = xn + Θn ( xn − xn−1 ) ,

xn+1 = (1− αn) yn + αn ΠK(yn)

[
xn + yn

2
− ρ

T (xn + yn)
2

]
,

for n = 1, 2, . . . where 0 ≤ Θn, αn ≤ 1.

Advantage of these methods is that only one projection operator is used.
By choosing adequate and suitable values for parameter λ spaces and operators, we can obtain several

iteration variants from Algorithm 2. This shows that Algorithm 2 is quite general and contains the previous
techniques as special cases.

4 Convergence Analysis

In this section, we analyze the convergence criteria for Algorithm 2 under some appropriate conditions.

Theorem 1 Let the mapping T : H −→ H be a strongly monotone and Lipschitz continuous operator with
constants ξ > 0, η > 0, respectively. Suppose that

1. Assumption P holds.

2. A constant ρ > 0 satisfies the following conditions∣∣∣∣ ρ− ξ

η2

∣∣∣∣ <

√
ξ2µ2 + η2 (1− µ2 − k1(2− k1))

η2µ
, 1− µ2 > k1(2− k1), k1 < 1, 0 < µ ≤ 1, (9)∣∣∣∣ ρ− ξ

η2

∣∣∣∣ <

√
ξ2 − η2 k2(2− k2)

η2
, ξ > η

√
k2(2− k2), k2 < 1, (10)

where k1 = λ− µ + υ, k2 = 2(λ− µ) + υ, and µ ≤ λ.

3. Let Θn, αn ∈ [0, 1], for all n ≥ 1 such that

∞∑
n =1

αn = ∞,

∞∑
n =1

Θn ‖ xn − xn−1 ‖< ∞.
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Then, the approximate xn+1, obtained by the iterative scheme defined in Algorithm 2 converges to unique
solution x ∈ K(x) of problem (1).

Proof. Let x ∈ K(x) be a solution of (1). Then

‖ xn+1 − x ‖ = ‖ (1− αn) yn + αn ΠK(yn) [ (1− λ) xn + λ yn − ρ {(1− µ)T xn + µ T yn} ]
− (1− αn) x− αn ΠK(x) [ (1− λ)x + λ x− ρ {(1− µ)T x + µ T x} ] ‖

≤ (1− αn) ‖ yn − x ‖+ αn ‖ΠK(yn) [ (1− λ) xn + λ yn − ρ {(1− µ)T xn + µ T yn} ]
−ΠK(x) [ (1− λ)x + λ x− ρ {(1− µ)T x + µ T x} ] ‖

≤ (1− αn) ‖ yn − x ‖+ αn ‖ΠK(yn) [ (1− λ) xn + λ yn − ρ {(1− µ)T xn + µ T yn} ]
−ΠK(yn) [ (1− λ)x + λ x− ρ {(1− µ)T x + µ T x} ] ‖
+ αn ‖ΠK(yn) [ (1− λ)x + λ x− ρ {(1− µ)T x + µ T x} ]
−ΠK(x) [ (1− λ)x + λ x− ρ {(1− µ)T x + µ T x} ] ‖

≤ (1− αn) ‖ yn − x ‖+ αn

{
‖ (1− λ) (xn − x) + λ (yn − x)− (1− µ)ρ ( T xn − T x )

− µρ ( T yn − T x ) ‖ + υ ‖ yn − x ‖
}

= (1− αn) ‖ yn − x ‖+ +αn

{
‖ − (λ− µ) (xn − x) + (λ− µ) (yn − x)

+ (1− µ)(xn − x− ρ ( T xn − T x )) + µ(yn − x + ρ ( T yn − T x ))‖ + υ ‖ yn − x ‖
}

≤ (1− αn) ‖ yn − x ‖+ +αn

{
(λ− µ) ‖xn − x‖+ (λ− µ) ‖yn − x‖

+ (1− µ) ‖xn − x− ρ ( T xn − T x ) ‖+ µ ‖yn − x + ρ ( T yn − T x ) ‖

+ υ ‖ yn − x‖
}

, (11)

where we have used the Assumption P.
From the strong monotonicity and Lipschitz continuity of operator T , we have

‖ xn − x− ρ [T xn − T x ] ‖2

=‖ xn − x ‖2 −2 ρ
〈
T xn − T x , xn − x

〉
+ ρ2 ‖ T xn − T x ‖2

≤
(
1− 2 ρξ + ρ2η2

)
‖ xn − x ‖2 . (12)

In a similar way, we have

‖yn − x + ρ ( T yn − T x ) ‖ ≤
(
1− 2ρξ + ρ2η2

)
‖ yn − x ‖2 .

From (7), we have

‖ yn − x ‖ = ‖ xn − x + Θn (xn − xn−1) ‖
≤‖ xn − x ‖ +Θn ‖ xn − xn−1 ‖ . (13)

From condition (9), (11), (12) and (13), we have

‖ xn+1 − x ‖ ≤
[
1− αn (1− ϑ1 )

] [
‖ xn − x ‖ +Θn ‖ xn − xn−1 ‖

]
+ αn ϑ2 ‖ xn − x ‖

≤
[
1− αn (1− ϑ1 )

]
‖ xn − x ‖ +Θn ‖ xn − xn−1 ‖ +αn ϑ2 ‖ xn − x ‖

=
[
1− αn { 1− (ϑ1 + ϑ2) }

]
‖ xn − x ‖ +Θn ‖ xn − xn−1 ‖,

where
ϑ1 := λ− µ + µ

√
1− 2 ρξ + ρ2η2 + υ,
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ϑ2 := λ− µ + (1− µ)
√

1− 2 ρξ + ρ2η2,

ϑ1 + ϑ1 := 2(λ− µ) +
√

1− 2 ρξ + ρ2η2 + υ.

Let w = ϑ1 + ϑ1. Then, from condition (10), we have w ∈ (0, 1). Since
∞∑

n =1
αn = ∞, setting σn = 0 and

ς =
∞∑

n =1

Θn ‖ xn − xn−1 ‖< ∞, using Lemma 2, we have xn −→ x, n −→ ∞. Hence the sequence {xn}

obtained from Algorithm 2 converges to a unique solution x ∈ K(x) satisfying the inequality (1), the desired
result.

Similar convergence analysis for other iterative schemes can be estimated.

For K(x) = K, following result can be obtained from Theorem 1.

Theorem 2 Let a mapping T : H −→ H be strongly monotone and Lipschitz continuous operator with
constants ξ > 0, η > 0 respectively. We assume that the constant ρ > 0 satisfies the following conditions∣∣∣∣ ρ− ξ

η2

∣∣∣∣ <

√
ξ2µ2 + η2 (1− µ2 − k1(2− k1))

η2µ
, 1− µ2 > k1(2− k1), k1 < 1, 0 < µ ≤ 1,∣∣∣∣ ρ− ξ

η2

∣∣∣∣ <

√
ξ2 − η2 k2(2− k2)

η2
, ξ > η

√
k2(2− k2), k2 < 1,

where k1 = λ− µ, k2 = 2(λ− µ) and µ ≤ λ. Then xn+1, obtained from

yn = xn + Θn ( xn − xn−1 ) ,

xn+1 = (1− αn) yn + αn ΠK [ (1− λ) xn + λ yn − ρ {(1− µ)T xn + µ T yn} ] ,

for n = 1, 2, . . ., converges to a unique solution x ∈ K satisfying the quasi variational inequalities (2).

Open Problem. For λ = 0, µ = 1, Algorithm 1 reduces to the extragradient method of Korpelevich
method [6] for quasi-variational inequalities, which is still an interesting problem for finding the solution of
quasi variational inequalities.

Conclusion. In the paper, we have proposed and investigate some new inertial methods to solve quasi
variational inequalities using the equivalence relation between quasi-variational inequality and fixed point
problem. These proposed projection methods include several new and known inertial methods for solving
variational, quasi-variational inequalities and related optimization problems as special cases. We have studied
the convergence criteria of the proposed method. It is an interesting problem to implement these methods
and compare their efficiency with other methods. Results obtained from this study may encourage future
research in this area.

Acknowledgment. The authors thankfully acknowledge the excellent research environment provided by
the Rector, COMSATS University Islamabad, Islamabad Pakistan. The authors are thankful to the learned
referees for their valuable suggestions.



178 Quasi Variational Inequalities

References

[1] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretiza-
tion of a nonlinear oscillator with damping, Set-Valued Anal., 9(2001), 3–11.

[2] A. S. Antipin, Minimization of convex functions on convex sets by means of differential equations, Diff.
Equat., 30(2003), 1365–1357.

[3] A. S. Antipin, M. Jacimovic and N. Mijajlovic, Extra gradient method for solving quasi variational
inequalities, Optimization, 67(2018), 103–112.

[4] A. Bensoussan and J. L. Lions, Application Des Inequalities Variationnelles En Control Eten Stochas-
tique, Dunod, Paris (1978).

[5] S. Jabeen, M. A. Noor and K. I. Noor, Inertial iterative methods for general quasi variational inequalities
and dynamical systems, J. Math. Anal., 11(2020), 14–29.

[6] G. M. Korpelevich, The extra gradient method for finding saddle points and other problems, Ekonomika
Mat. Metody, 12(1976), 747–756.

[7] N. Mijajlovic, J. Milojica and M. A. Noor, Gradient-type projection methods for quasi-variational
inequalities, Optimization Letters. 13 (2019), 1885-1896.

[8] M. A. Noor, An iterative scheme for class of quasi variational inequalities, J. Math. Anal. Appl.,
110(1985), 463–468.

[9] M. A. Noor, Quasi variational inequalities, Appl. Math. Letters, 1(1988), 367–370.

[10] M. A. Noor, New approximation schemes for general quasi variational inequalities, J. Math. Anal. Appl.,
251(2000), 217–230.

[11] M. A. Noor, Some development in general variational inequalities, Appl. Math. Comput., 152(2004),
199–277.

[12] M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi equilibria, Le
Mathematiche, 49(1994), 313–331.

[13] M. A. Noor, K. I. Noor and T. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl.
Math., 47(1993), 285–312.

[14] M. A. Noor, K. I. Noor and T. M. Rassias, Iterative methods for variational inequalities, In Differential
and Integral inequalities(Eds. D. Andrica, T. M. Rassias), Springer Optimization and its Applications,
151(2019), 603–618.

[15] B. T. Polyak, Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat.
Mat. Fiz., 4(1964), 791–803.

[16] G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, C. R. Acad. Sci.Paris,
258(1964), 4413–4416.

[17] Y. Shehu, A. Gibali and S. Sagratella, Inertial projection-type method for solving quasi-variational
inequalities in real Hilbert space, J. Optim. Theory Appl., 184(2020), 877–894.

[18] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66(2002), 240–256.


	Introduction
	Preliminaries
	Iterative Methods
	Convergence Analysis

