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Abstract

The aim of this article is the extension of the convergence of Jarratt type methods for solving equations
with Banach space valued operators. We develop w-continuity conditions and only hypotheses on the first
derivative contrasting earlier work where hypotheses of order higher than one are used on the derivatives.
We also provide error estimates and uniqueness results on the solution based on Lipschitz type conditions
not available before. This is how we extend the applicability of these methods. Numerical experiments
complete this study.

1 Introduction

Let X,Y stand for Banach spaces, D an open convex set with D ⊂ X, L(X,Y ) denote the space of operaotrs
from X into Y that are linear, bounded, and F : D −→ Y be an operator differentiable according to Fréchet.

One of the most interesting and challenging tasks in mathematics is without a doubt the location of a
solution x∗ for the equation

F (x) = 0. (1.1)

It is worth noticing that problems from diverse areas vis mathematical modeling lead to determining x∗. This
task usually involves the development of iterative methods, since the closed form solution is obtained only
in rare occations. After the introduction of the quadratically convergent method of Newton, the need for
faster convergence lead to higher order of convergence methods such as the fourth order Jarratt method [12]
defined for x0 ∈ D and all n = 0, 1, 2, . . .{

yn = xn − F ′(xn)−1F (xn),

xn+1 = xn − JnF ′(xn)−1F (xn),
(1.2)

where Jn = J(xn) = (6F ′(yn)− 2F ′(xn))−1(3F ′(yn) +F ′(xn)). Later the local convergence analysis of three
step method 

yn = xn − 2
3F
′(xn)−1F (xn),

zn = xn − 1
2 (3F ′(yn)− F ′(xn))−1(3F ′(yn) + F ′(xn))F ′(xn)−1F (xn),

xn+1 = zn − T (λn)F ′(xn)−1F (zn),

(1.3)

was studied in [20], where the sixth order of convergence was shown under some conditions on linear operator
T and λn but in the special case when X = Y = Rk. The convergence order was established using seventh
order derivatives, which significantly limit the applicability of method (1.3). For example: Let X = Y =
R, Ω = [− 12 ,

3
2 ]. Define G on Ω by

G(x) = x3 log x2 + x5 − x4

Then, we have x∗ = 1, and
G′(x) = 3x2 log x2 + 5x4 − 4x3 + 2x2,
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G′′(x) = 6x log x2 + 20x3 − 12x2 + 10x,

G′′′(x) = 6 log x2 + 60x2 − 24x+ 22.

Obviously G′′′(x) is not bounded on Ω. So, the convergence of solvers (1.2) and (1.3) are not guaranteed by
the analysis in [7, 12]. In this study we use only assumptions on the first derivative to prove our results.
Moreover, the following were not given: estimates on ‖xn − x∗‖ useful for determining the number of

iterations needed to achieve a predetermined accuracy ε; results on the uniqueness about a ball centered at
x∗. Furthermore, a shot in the dark is used to attain the initial point x0. We handle all these concerns using
only the first derivative, w-continuity conditions on F ′ and utilizing (COC) or (ACOC) to determine the
convergence order (to be defined in Remark 1 that need only the first derivative.)
The setting of a Banach space is used and a more general method defined as

yn = xn − 2
3F
′(xn)−1F (xn),

zn = xn − 1
2 (3F ′(yn)− F ′(xn))−1(3F ′(yn) + F ′(xn))F ′(xn)−1F (xn),

xn+1 = zn −HnF
′(xn)−1F (zn),

(1.4)

where Hn = H(xn), and H : D −→ L(X,Y ). Note that if H = T (λ) and X = Y = Rk method (1.4) reduces
to method (1.3) which in turn has generalized many other popular iterative methods both in the scalar and
multidimensional case [1—25].
In Section 2 the local convergence of method is given, whereas Section 3 contains numerical experiments.

2 Local Convergence Analysis

It is convenient for the analysis to follow the development of some scalar functions and parameters. Consider
a function ω0 : [0,∞) −→ [0,∞) continuous and increasing satisfying ω0(0) = 0. Suppose that equation

ω0(t) = 1 (2.5)

has a minimal positive solution r0. Define functions ω : [0, r0) −→ [0,∞) and v : [0, r0) −→ [0,∞) continuous
and increasing satisfying ω(0) = 0. Define fucntions ϕ1 and ψ1 on the interval [0, r0) by

ψ1(t) =

∫ 1
0
ω((1− θ)t)dθ + 1

3

∫ 1
0
v(θt)dθ

1− ω0(t)

and
ψ1(t) = ϕ1(t)− 1.

Suppose that
v(0)

3
− 1 < 0. (2.6)

Then, in view of these definitions ψ1(0) = −1 and ψ1(t) −→ ∞ as t −→ r−0 . Denote by R0 the minimal
solution of equation ψ1(t) = 0 in (0, r0) assumed to exist by the intermediate value theorem. Suppose that
equation

p(t) = 0 (2.7)

has a minimal positive solution rp, where

p(t) =
1

2
(3ω0(g1(t)t) + ω0(t)).

Set
r1 = min{r0, rp}.
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Define functions ϕ2 and ψ2 on the interval [0, r1) by

ϕ2(t) = ϕ1(t) +
3(ω0(ϕ1(t)t) + ω0(t))

∫ 1
0
v(θt)dθ

4(1− ω0(t))(1− p(t))

and
ψ2(t) = ϕ2(t)− 1.

Then, we get ψ2(0) = −1 and ψ2(t) −→ ∞ as t −→ r−1 . Denote by R2 the minimal solution of equation
ψ2(t) = 0 in (0, r1). Suppose that equation

ω0(ϕ2(t)t) = 1 (2.8)

has a minimal positive solution r2. Set r = min{r1, r2}. Let q : [0, r) −→ [0,∞) be a continuous and
increasing function. Define functions ϕ3 and ψ3 on the interval [0, r) by

ϕ3(t) =

[∫ 1
0
ω((1− θ)ϕ2(t)t)dθ
1− ω0(ϕ2(t)t)

+ q(t)

∫ 1

0

v(θϕ2(t)t)dθ

]
ϕ2(t)

and
ψ3(t) = ϕ3(t)− 1.

We obtain again ψ3(0) = −1 and ψ3(t) −→ ∞ as t −→ r−. Denote by R3 the minimal solution of equation
ψ3(t) = 0 in the interval (0, r). Define a radius R by

R = min{Ri}, i = 1, 2, 3. (2.9)

We shall show that R is a radius of convergence for method (1.4). By these definitions the following items
hold for all t ∈ [0, R).

0 ≤ ω0(t) < 1, (2.10)

0 ≤ ω0(ϕ2(t)t) < 1, (2.11)

0 ≤ p(t) < 1, (2.12)

0 ≤ q(t) < 1, (2.13)

and
0 ≤ ϕi(t) < 1. (2.14)

We use the notation for a ball: U(h, ρ) = {x ∈ X : ‖x − h‖ < ρ}. Moreover, Ū(h, ρ) denotes the closure of
U(h, ρ).
Next, we provide the conditions (C) to be used for the local analysis of method (1.4).

(c1) F : D −→ Y is differentiable. There exists a simple x∗ ∈ D solving equation (1.1).

(c2) There exist function ω0 : [0,∞) −→ [0,∞) continuous and increasing satisfying ω0(0) = 0 and such
that for all x ∈ D

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ ω0(‖x− x∗‖).
Set D0 = D ∩ U(x∗, r0).

(c3) There exist functions ω : [0, r0) −→ [0,∞), continuous and increasing satisfying ω(0) = 0 such that for
all x, y ∈ D0

‖F ′(x∗)−1(F ′(y)− F ′(x))‖ ≤ ω(‖y − x‖)
and

‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖).
Set D1 = D ∩ U(x∗, r).
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(c4) There exists function q : [0, r) −→ [0,∞) continuous and increasing, H : D −→ L(X,Y ) such that for
all x, z ∈ D1

‖(F ′−1 −H(x)F ′−1)F ′(x∗)‖ ≤ q(‖x− x∗‖).

(c5) Ū(x∗, R) ⊆ D, where R is defined in (2.9), (2.6) holds, r0, rp, r2 exist and are given by (2.5), (2.7) and
(2.8), respectively.

(c6) There exists R̄ ≥ R such that ∫ 1

0

ω0(θR̄)dθ < 1.

Set D2 = D ∩ Ū(x∗, R̄).

Next, the local convergence analysis is given based on condition (C).

Theorem 1 Under the conditions (C) further assume x0 ∈ U(x∗, R)− {x∗}. Then the following assertions
hold

{xn} ⊂ U(x∗, R), (2.15)

lim
n−→∞

xn = x∗, (2.16)

‖yn − x∗‖ ≤ ϕ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < R, (2.17)

‖zn − x∗‖ ≤ ϕ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.18)

‖xn+1 − x∗‖ ≤ ϕ3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (2.19)

and x∗ solves equation (1.1) uniquely in D2 a set given in (c6).

Proof. Let us choose x ∈ U(x∗, R). Using (2.9), (2.10) and (c2), we get that

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ ω0(‖x0 − x∗‖) ≤ ω0(R) < 1, (2.20)

leading together with a Lemma on invertible operators due to Banach [16] that F ′(x) is invertible and

‖F ′−1F ′(x∗)‖ ≤
1

1− ω0(‖x0 − x∗‖)
. (2.21)

In view of (2.21), y0 exists by the first substep of method (1.4) if n = 0. We also have

F (x) = F (x)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x− x∗))(x− x∗)dθ,

so by (c3)

‖F ′(x∗)−1F (x)‖ ≤
∫ 1

0

v(θ‖x− x∗‖)dθ‖x− x∗‖. (2.22)

Then, by (2.9), (2.14) (for i = 1), (2.21), (2.22) and method (1.4) for n = 0, we obtain in turn that

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)−1F (x0) +
1

3
F ′(x0)

−1F (x0)‖

≤ ‖F ′(x0)−1F ′(x∗)‖
[∫ 1

0

‖F ′(x∗)−1[F ′(x0 + θ(x0 − x∗))

−F ′(x0))(x0 − x∗)dθ‖+
1

3
‖F ′(x∗)−1F (x0)‖

]
≤

∫ 1
0
ω((1− θ)‖x0 − x∗‖)dθ + 1

3

∫ 1
0
v(θ‖x0 − x∗‖)dθ

1− ω0(‖x0 − x∗‖)
‖x0 − x∗‖

≤ ϕ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < R, (2.23)
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showing y0 ∈ U(x∗, R) and the validity of (2.17) for n = 0.We must show that 3F ′(y0)−F ′(x0) is invertible.
Indeed, by (2.9), (2.12), (2.23) and (c2), we get that

‖(2F ′(x∗))−1(3(F ′(y0)− F ′(x∗)) + (F ′(x∗)− F ′(x0))‖

≤ 1

2
[3‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖+ ‖F ′(x∗)−1(F ′(x∗)− F ′(x0))‖]

≤ 1

3
(3ω0(‖y0 − x∗‖) + ω0(‖x0 − x∗‖))

≤ 1

3
(3(ω0(ϕ1(‖x0 − x∗‖)‖x0 − x∗‖) + ω0(‖x0 − x∗‖))

≤ p(‖x0 − x∗‖) ≤ p(R) < 1, (2.24)

so
‖(3F ′(y0)− F ′(x0))−1F ′(x∗)‖ ≤

1

2(1− p(‖x0 − x∗‖))
, (2.25)

and z0 exists by the second substep of method (1.4) for n = 0. Then, in view of (2.9), (2.14) (for i = 2),
(2.23), (2.25) and the second substep of method (1.4) for n = 0, we have in turn that

‖z0 − x∗‖
= ‖(x0 − x∗ − F ′(x0)−1F (x0))

+[I − 1

2
(3F ′(y0)− F ′(x0))−1(3F ′(y0) + F ′(x0))]F

′(x0)
−1F (x0)

= (x0 − x∗ − F ′(x0)−1F (x0)) +
3

2
(3F ′(y0)− F ′(x0))−1

×[(F ′(y0)− F ′(x∗)) + (F ′(x∗)− F ′(x0))]F ′(x0)−1F (x0)‖

≤
[
ϕ1(‖x0 − x∗‖) +

3

4

(ω0(‖y0 − x∗‖) + ω0(‖x0 − x∗‖))
∫ 1
0
v(θ‖x0 − x∗‖)dθ

(1− ω0(‖x0 − x∗‖))(1− p(‖x0 − x∗‖))

]
×‖x0 − x∗‖

≤ ϕ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < R, (2.26)

so z0 ∈ U(x∗, R) and (2.18) hold for n = 0. As in (2.21) for x = z0, we have

‖F ′(z0)−1F ′(x∗)‖ ≤
1

1− w0(‖z0 − x∗‖)

≤ 1

1− ω0(ϕ2(‖x0 − x∗‖)‖x0 − x∗‖)
, (2.27)

and x1 exists by the third substep of method (1.4) for n = 0. Moreover, using (2.9), (c4), (2.14) (for i = 3),
(2.22) (for x = z0) and (2.27), we have in turn that

‖x1 − x∗‖ ≤ ‖(z0 − x∗ − F ′(z0)−1F (z0))‖
+‖(F ′(z0)−1 −H(x0)F

′(x0)
−1)F ′(x∗)‖‖F ′(x∗)−1F (z0)‖

≤
[∫ 1

0
ω((1− θ)‖z0 − x∗‖)dθ
1− ω0(‖z0 − x∗‖)

q(‖x0 − x∗‖)
∫ 1

0

v(θ‖z0 − x∗‖)dθ
]
‖z0 − x∗‖

≤ ϕ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (2.28)

so x1 ∈ U(x∗, R) and (2.19) holds for n = 0. The induction for (2.17)—(2.19) is terminated if x0, y0, z0, x1
are switched with xk, yk, zk, xk+1, respectively in the above estimates. Then, by the estimate

‖xk+1 − x∗‖ ≤ ρ‖xn − x∗‖ ≤ R, (2.29)



94 Extended Convergence of Jarratt Type Methods

where ρ = ϕ3(‖x0−x∗‖) ∈ [0, 1), we conclude that limk−→∞ xk = x∗ and xk+1 ∈ U(x∗, R). The uniqueness of
the solution x∗ is shown by considering y∗ ∈ D2 so that F (y∗) = 0 and setting Q =

∫ 1
0
F ′(x∗+θ(y∗−x∗))dθ.

Then, by (c6), we have

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤
∫ 1

0

ω0(θ‖y∗ − x∗‖)dθ ≤
∫ 1

0

ω0(θR̄)dθ < 1,

so Q is invertible. Finally, x∗ = y∗ by the identity

0 = F (y∗)− F (x∗) = Q(y∗ − x∗).

Remark 1 1. We can compute the computational order of convergence (COC) [24] defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence without resorting to the computation of higher
order derivatives appearing in the method or in the suffi cient convergence criteria usually appearing in
the Taylor expansions for the proofs of those results.

2. Let us consider a choice for H that will also be used on all examples:

H(xn) = I.

Then, we get in turn

‖(F ′(zn)−1 −H(xn)F ′(xn)−1)F ′(x∗)‖
= ‖(F ′(zn)−1 − F ′(xn)−1)F ′(x∗)‖
= ‖F ′(zn)−1(F ′(xn)− F ′(zn))F ′(xn)−1F ′(x∗)‖
≤ ‖F ′(zn)−1F ′(x∗)‖[‖F ′(x∗)−1(F ′(xn)− F ′(x∗))‖

+‖F ′(x∗)−1(F ′(z0)− F ′(x∗))‖||F ′(x∗)−1F ′(xn)‖

≤ ω0(‖xn − x∗‖) + ω0(‖z0 − x∗‖)
(1− ω0(‖z0 − x∗‖))(1− ω0(‖xn − x∗‖))

≤ ω0(‖xn − x∗‖) + ω0(ϕ1(‖x0 − x∗‖)‖xn − x∗‖)
(1− ω0(ϕ1(‖x0 − x∗‖)‖x0 − x∗‖)(1− ω0(‖xn − x∗‖))

.

Therefore, we can choose

q(t) =
ω0(t) + ω0(ϕ1(t)t)

(1− ω0(ϕ1(t)t))(1− ω0(t))
.

3 Numerical Examples

Example 1 Let us consider a system of differential equations governing the motion of an object and given
by

F ′1(x) = ex, F ′2(y) = (e− 1)y + 1, F ′3(z) = 1
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with initial conditions F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F,F3). Let B1 = B2 = R3, D = Ū(0, 1), p =
(0, 0, 0)T . Define function F on D for w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

The Fréchet-derivative is defined by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that using the (A) conditions, we get for α = 1, w0(t) = (e− 1)t, w(t) = e

1
e−1 t, v(t) = e

1
e−1 . The radii

are
R1 = 0.154407, R2 = 0.0555405, R3 = 0.0853234 and R = R2.

Example 2 Let B1 = B2 = C[0, 1], the space of continuous functions defined on [0, 1] be equipped with the
max norm. Let D = U(0, 1). Define function F on D by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (3.30)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, so w0(t) = 7.5t, w(t) = 15t and v(t) = 2. Then the radii are

R1 = 0.02222, R2 = 0.00886359, R3 = 0.0154587 and R = R2.

Example 3 Returning back to the motivational example at the introduction of this study, we have w0(t) =
w(t) = 96.6629073t and v1(t) = 2. The parameters for method (1.2) are

R1 = 0.002229894, R2 = 0.000765558, R3 = 0.00294163 and R = R2.
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[18] A. A. Magreńãn, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput.,
248(2014), 29—38.
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