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Abstract

In this paper, we introduce the idea of Ka-convergence for double sequences. Then, we use this notion
to prove a Korovkin type approximation theorem and present an application that satisfies our new main
theorem but does not satisfy classical ones. Finally, we study the rate of convergence of positive linear
operators.

1 Introduction and Preliminaries

The following, now a classical result, was proved by P. P. Korovkin [11]: Let I be a compact subset of the
real numbers and (Ln) be a sequence of positive linear operators that maps C (I) , the space of all continuous
real valued functions on I, into itself. Suppose that the sequence (Ln (f)) converges to f uniformly on I for
the three special functions fi : x→ xi, where i = 0, 1, 2. Then this sequence converges to f uniformly on I for
every f ∈ C (I) . Because of its powerful applications, Korovkin’s result has been extended in many directions.
There is an extensive literature on Korovkin-type theorems (see for example [2, 3, 4, 5, 6, 7, 9, 10, 15]). In
this paper, we define the concept of K2

a-convergence that is a new convergence method and give an example
in support of our definition. Then, we use this notion to prove a Korovkin type approximation theorem and
present an application that satisfies our new main theorem but does not satisfy classical ones. Finally, we
study the rate of convergence of positive linear operators.
Now, we recall well known and important convergence methods; statistical and almost convergence for

double sequences.
A double sequence x = (xij) is said to be convergent in Pringsheim’s sense if, for every ε > 0, there

exists J = J(ε) ∈ N, the set of all natural numbers, such that |xij − L| < ε whenever i, j > J, where L
is called the P -limit of x and denoted by P − lim

i,j
xij = L (see [16]). We shall call such an x, briefly, “P -

convergent”. A double sequence is called bounded if there exists a positive number N such that |xij | ≤ N for
all (i, j) ∈ N2 = N×N. Note that in contrast to the case for single sequences, a convergent double sequence
need not to be bounded.
Statistical convergence of single sequences was introduced by Fast [8] and Steinhaus [17], independently

and studied by many authors. This concept was extended to the double sequences by Moricz [13]. If E ⊂ N2
is a two-dimensional subset of positive integers and |D| denotes the cardinality of D, then the double natural
density of E is given by

δ2(E) := P − lim
n,k

|{i ≤ n, j ≤ k : (i, j) ∈ E}|
nk

,

if it exists. The number sequence x = (xij) is statistically convergent to L provided that for every ε > 0,
the set

E := Enk(ε) := {i ≤ n, j ≤ k : |xij − L| ≥ ε}
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has natural density zero; in that case we write st2 − lim
i,j
xij = L. Clearly, a P -convergent double sequence is

statistically convergent to the same value but its converse is not always true. Also, note that a statistically
convergent double sequence may not be bounded.
The definition of almost convergence for double sequences was introduced by Moricz and Rhoades [14]

as follows.
A double sequence x = (xij) of real numbers is said to be almost convergent to a limit L if

P − lim
n,k

sup
p,q>0

∣∣∣∣∣∣ 1nk
p+n−1∑
i=p

q+k−1∑
j=q

xij − L

∣∣∣∣∣∣ = 0.
In this case L is called the F2-limit of x and denoted by F2 − lim

i,j
xij = L. Note that a convergent double

sequence need not be almost convergent. However every bounded convergent double sequence is almost
convergent and every almost convergent double sequence is bounded.
Lazic and Jovovic defined the Ka-convergence for single sequences in 1993 [12]. Now, we extend this idea

to double sequences. This new convergence method is associated to the four dimensional matrix

A =



 a11 0 0 .
0 0 0 .
. . . .

  a12 a11 0 .
0 0 0 .
. . . .

  a13 a12 a11 0 .
0 0 0 0 .
. . . . .

 ...
a12 0 0 .
a11 0 0 .
0 0 0 .
. . . .




a22 a21 0 .
a12 a11 0 .
0 0 0 .
. . . .




a23 a22 a21 0 .
a13 a12 a11 0 .
0 0 0 0 .
. . . . .

 ...

. . . ...

. . . ...


.

Let a = (ank) and x = (xnk) are double sequences, set K2
a (x) = y, where y = (ynk) and

ynk =

n∑
i=1

k∑
j=1

an−i+1k−j+1xij (n, k = 1, 2, 3, ...) .

Then it is said that y = (ynk) is the K2
a-transformation of the double sequence x = (xnk) .

Definition 1 The double sequence x = (xnk) of real numbers is K2
a-convergent to the number L if, its K

2
a-

transformation y = (ynk) converges to the number L in Pringsheim’s sense, i.e. P − lim
n,k
ynk = L, and we

denote this limit by K2
a − lim

n,k
xnk = L.

The proof of the following proposition can be easily established from the results concerning the general
matrix transformation for double sequences. So, we omit it.

Proposition 1 Let a = (ank) be a double sequence and assume that

P − lim
i,j

i∑
n=1

j∑
k=1

|ank| exists (1)

and
there exists a positive integer M such that

∑
(n,k)∈N2

|ank| < M. (2)
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(i) If x = (xnk) is P -convergent, P − lim
n,k
xnk = L and the conditions (1) and (2) are satisfied, then

K2
a − lim

n,k
xnk = L

∑
(n,k)∈N2

ank,

(ii) A convergence method K2
a is regular if and only if the conditions (1), (2) and∑

(n,k)∈N2
ank = 1 (3)

are valid.

Now, the question arises in the theory of double sequences, which concerns the relationship, if any,
between statistical convergence, almost convergence and Ka-convergence. Our answer is "these concepts
overlap, but none is implied by the other" and it is important to say that, for these three convergence
methods, if a double sequence is bounded convergent then it is statistical convergent, almost convergent
and Ka-convergent, too. The following double sequence x = (xnk) is K2

a-convergent, despite this, it is not
P -convergent and also, it is not statistical and almost convergent.

Example 1 Let a = (ank) given by (ank) =


−1 0 0 .
0 −1 0 .
0 0 0 .
. . . .

 and let x = (xnk) given by

(xnk) =


1
2

2
2

3
2

4
2

5
2

6
2 .

0 − 12 − 22 − 32 − 42 − 52 .
0 0 1

2
2
2

3
2

4
2 .

0 0 0 − 12 − 22 − 32 .
. . . . . . .

 .

Then

(ynk) =

 n∑
i=1

k∑
j=1

an−i+1k−j+1xij

 =


− 12 − 22 − 32 − 42 .
0 0 0 0 .
0 0 0 0 .
. . . . .

 .

Hence, we can write that K2
a−lim

n,k
xnk = 0. However, it can be easily seen that, x = (xnk) is not P -convergent.

Also, x is neither statistical convergent nor almost convergent.

2 Korovkin Type Theorem via K2
a-convergence

In this section we study a Korovkin type approximation theorem via K2
a-convergence of positive linear

operators.
Let I2 = I × I and I be a compact subset of the real numbers, C

(
I2
)
be the two-dimensional space

of all continuous real valued functions on I2 and ‖f‖C(I2) denote the usual supremum norm of f . Let L
be a linear operator from C

(
I2
)
into itself. Then, we say that L is positive linear operator on condition

that f ≥ 0 implies L (f) ≥ 0. Also, we mean the value of L (f) at a point (x, y) ∈ I2 by L(f(s, t);x, y) or
L(f ;x, y). Throughout the paper, we also use the following test functions

f0 (x, y) = 1, f1 (x, y) = x, f2 (x, y) = y, f3 (x, y) = x2 + y2.

Now, we begin with the following well-known Korovkin type theorems.
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Theorem 2 ([18]) Suppose that (Lnk) is a double sequence of positive linear operators from C
(
I2
)
into

itself, satisfying the following conditions:

P − lim
n,k
‖Lnk (fr)− fr‖C(I2) = 0, (r = 0, 1, 2, 3) .

Then, for all f ∈ C
(
I2
)
,

P − lim
n,k
‖Lnk (f)− f‖C(I2) = 0.

Theorem 3 ([6]) Assume that (Lnk) is a double sequence of positive linear operators acting from C
(
I2
)

into itself, satisfying the following conditions:

st2 − lim
n,k
‖Lnk (fr)− fr‖C(I2) = 0, (r = 0, 1, 2, 3) .

Then, for all f ∈ C
(
I2
)
,

st2 − lim
n,k
‖Lnk (f)− f‖C(I2) = 0.

Theorem 4 ([1]) Suppose that (Lnk) is a double sequence of positive linear operators from C
(
I2
)
into

itself, satisfying the following conditions:

F2 − lim
n,k
‖Lnk (fr)− fr‖C(I2) = 0, (r = 0, 1, 2, 3) .

Then, for all f ∈ C
(
I2
)
,

F2 − lim
n,k
‖Lnk (f)− f‖C(I2) = 0.

Now we give the following Korovkin type approximation theorem for method K2
a that is our main result.

Theorem 5 Let a = (ank) be a double sequence and the conditions (1) and (2) are satisfied. Suppose that
(Lnk) is a double sequence of positive linear operators acting from C

(
I2
)
into itself, satisfying the following

conditions:

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (fr)− fr

∥∥∥∥∥∥
C(I2)

= 0, (r = 0, 1, 2, 3) . (4)

Then, for all f ∈ C
(
I2
)
, we have

K2
a − lim

n,k
‖Lnk (f)− f‖C(I2) = 0, i.e.,

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

an−i+1k−j+1Lij (f)− f

∥∥∥∥∥∥
C(I2)

= 0.

Proof. Let f ∈ C
(
I2
)
and (x, y) ∈ I2 be fixed. By the continuity of f on I2, we can write

|f (x, y)| ≤Mf . (5)

Therefore
|f (s, t)− f (x, y)| ≤ 2Mf .

Also, since f is continuous on I2, we write that for every ε > 0, there exists a number δ > 0 such that
|f (s, t)− f (x, y)| < ε holds for all (s, t) ∈ I2 satisfying |s− x| < δ and |t− y| < δ. Hence, we get

|f (s, t)− f (x, y)| < ε+
2Mf

δ2

{
(s− x)2 + (t− y)2

}
. (6)
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This means

−ε− 2Mf

δ2

{
(s− x)2 + (t− y)2

}
< f (s, t)− f (x, y) < ε+

2Mf

δ2

{
(s− x)2 + (t− y)2

}
.

Using the linearity and the positivity of the operators Lnk and the inequality (6), we get∣∣∣∣∣∣
n∑
i=1

k∑
j=1

an−i+1k−j+1Lij (f ;x, y)− f (x, y)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n∑
i=1

k∑
j=1

an−i+1k−j+1 (Lij (f (s, t) ;x, y)

−Lij (f (x, y) ;x, y) + Lij (f (x, y) ;x, y))− f (x, y)|

≤
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (|f (s, t)− f (x, y)| ;x, y)

+ |f (x, y)|

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
≤ ε+

(
ε+Mf +

2Mf ‖f3‖C(I2)
δ2

)∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
+
4Mf ‖f1‖C(I2)

δ2

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f1;x, y)− f1 (x, y)

∣∣∣∣∣∣
+
4Mf ‖f2‖C(I2)

δ2

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f2;x, y)− f2 (x, y)

∣∣∣∣∣∣
+
2Mf

δ2

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f3;x, y)− f3 (x, y)

∣∣∣∣∣∣ .
Then taking supremum over (x, y) ∈ I2, we have

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

an−i+1k−j+1Lij (f)− f

∥∥∥∥∥∥
C(I2)

≤ ε+K


3∑
r=0

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (fr)− fr

∥∥∥∥∥∥
C(I2)


where

K := max

{
ε+Mf +

2Mf ‖f3‖C(I2)
δ2

,
4Mf ‖f1‖C(I2)

δ2
,
4Mf ‖f1‖C(I2)

δ2
,
2Mf

δ2

}
.

Then using the hypothesis (4), we get

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

an−i+1k−j+1Lij (f)− f

∥∥∥∥∥∥
C(I2)

= 0.

The proof is complete.
We now present an example of a sequence of positive linear operators that satisfies the conditions of

Theorem 5 but does not satisfy the conditions of Theorem 2, Theorem 3 and Theorem 4.
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Example 2 Let a = (ank) given by (ank) =


−1 0 0 .
0 −1 0 .
0 0 0 .
. . . .

 and x = (xnk) given by

(xnk) =



1
2

1
2 1 1 1 1 1 .

1 1
2

1
2 0 0 0 0 .

1 0 1
2

1
2 1 1 1 .

1 0 1 1
2

1
2 0 0 .

1 0 1 0 1
2

1
2 1 .

. . . . . . . .

 .

Observe now that,
∑

(n,k)∈N2
|ank| = 2 and

∑
(n,k)∈N2

ank = −2. Then, we consider the double Bernstein operators:

Bnk (f ;x, y) =

n∑
i=0

k∑
j=0

f

(
i

n
,
j

k

)(
n

i

)(
k

j

)
xiyj (1− x)n−i (1− y)k−j

where (x, y) ∈ I2 = [0, 1]2 = [0, 1] × [0, 1] , f ∈ C
(
I2
)
and n, k ∈ N. Using these polynomials, we introduce

the following positive linear operators on C
(
I2
)
:

Tnk (f ;x, y) = xnkBnk (f ;x, y) , (x, y) ∈ I2, f ∈ C
(
I2
)
. (7)

We now claim that

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Tij (fr)− fr

∥∥∥∥∥∥
C(I2)

= 0 , (8)

for each r = 0, 1, 2, 3. Indeed, we first observe that

Tnk (f0;x, y) = xnkf0 (x, y) ,

Tnk (f1;x, y) = xnkf1 (x, y) ,

Tnk (f2;x, y) = xnkf2 (x, y) ,

Tnk (f3;x, y) = xnk

[
f3 (x, y) +

x− x2
n

+
y − y2
k

]
.

Hence, ∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Tij (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|xnk − 1

∣∣∣∣∣∣ .
Then we get the following double sequence

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|xnk − 1

∣∣∣∣∣∣
 =


1
2

1
2 0 .

0 0 0 .
0 0 0 .
. . . .

 . (9)

We get

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Tij (f0)− f0

∥∥∥∥∥∥
C(I2)

= 0,
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which guarantees that (8) holds true for r = 0. Also, since∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Tij (f1;x, y)− f1 (x, y)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|xxnk − x

∣∣∣∣∣∣
= |x|

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|xnk − 1

∣∣∣∣∣∣ ,
then ∥∥∥∥∥∥

n∑
i=1

k∑
j=1

|an−i+1k−j+1|Tij (f1)− f1

∥∥∥∥∥∥
C(I2)

=

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|xnk − 1

∣∣∣∣∣∣ .
By (9), we have

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Tij (f1)− f1

∥∥∥∥∥∥
C(I2)

= 0.

Similary, we have

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Tij (f2)− f2

∥∥∥∥∥∥
C(I2)

= 0.

Hence (8) is valid for r = 1, 2. Finally, we get∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Tij (f3)− f3

∥∥∥∥∥∥
C(I2)

≤ 2

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|xnk − 1

∣∣∣∣∣∣
+
1

4


n∑
i=1

k∑
j=1

|an−i+1k−j+1|
xnk
n
+

n∑
i=1

k∑
j=1

|an−i+1k−j+1|
xnk
k

 , (10)

(xnk
n

)
=



1
2

1
2 1 1 1 1 1 .

1
2

1
4

1
4 0 0 0 0 .

1
3 0 1

6
1
6

1
3

1
3

1
3 .

1
4 0 1

4
1
8

1
8 0 0 .

1
5 0 1

5 0 1
10

1
10

1
5 .

. . . . . . . .

 ,

P − lim
n,k

xnk
n = 0 and similary P − lim

n,k

xnk
k = 0. Then, from Proposition 1, we obtain

K2
a − lim

n,k

xnk
n
= 0 and K2

a − lim
n,k

xnk
k
= 0. (11)

From the inequality (10) and using (9), (11), we have

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Tij (f3)− f3

∥∥∥∥∥∥
C(I2)

= 0.

So, our claim (8) holds true for each r = 0, 1, 2, 3. Now, from (8), we can say that our sequence (Tnk) defined
by (7) satisfies all assumptions of Theorem 5. Using these facts, we conclude that

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

an−i+1k−j+1Tij (f)− f

∥∥∥∥∥∥
C(I2)

= 0
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holds for any f ∈ C
(
I2
)
. However, since ‖Tnk (f0)− f0‖C(I2) = |xnk − 1| and a double sequence

(
‖Tnk (f0)− f0‖C(I2)

)
does not converge in Pringsheim’s sense, Theorem 2 (the classical Korovkin theorem for double sequences)
does not work for the sequence (Tnk) . The double sequence x = (xnk) can be also given as follows:

xnk =


1
2 , if k = n or k = n+ 1,
1, if k > n+ 1 and n is odd ,
0, if k > n+ 1 and n is even,
1, if k < n and k is odd,
0, if k < n and k is even,

n, k = 1, 2, 3, .... Hence, we get that the double sequence
(
‖Tnk (f0)− f0‖C(I2)

)
is not statistically convergent

and Theorem 3 (the statistical Korovkin theorem) does not work for the sequence (Tnk) . Also, since

P − lim
n,k

∥∥∥∥∥∥ 1nk
p+n−1∑
i=p

q+k−1∑
j=q

Tij (f0)− f0

∥∥∥∥∥∥
C(I2)

6= 0, (p, q ∈ N) ,

Theorem 4 does not work for the sequence (Tnk) , too.

3 Rate of Convergence

The main aim of this section is to study the rate ofK2
a−convergence with the aid of the modulus of continuity

that is defined by

ω(f, δ) = sup√
(s−x)2+(t−y)2≤δ

|f(s, t)− f(x, y)| (δ > 0), f ∈ C(I2).

It is readily seen that, for any λ > 0 and for all f ∈ C(I2)

ω(f, λδ) ≤ (1 + [λ])ω(f, δ)

where [λ] is defined to be the greatest integer less than or equal to λ. Then the result is stated as follows.

Theorem 6 Let a = (ank) be a double sequence and the conditions (1) and (2) are satisfied. Assume that
(Lnk) be a double sequence of positive linear operators acting from C

(
I2
)
into itself, satisfying the following

conditions:

(i) P − lim
n,k

∥∥∥∥∥ n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0)− f0

∥∥∥∥∥
C(I2)

= 0,

(ii) P − lim
n,k
ω (f ;αn,k) = 0,

where

αn,k :=

√√√√√
∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij
(
(s− .)2 + (t− .)2

)∥∥∥∥∥∥
C(I2)

.

Then for all f ∈ C
(
I2
)
,

K2
a − lim

n,k
‖Lnk (f)− f‖C(I2) = 0.
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Proof. Let f ∈ C
(
I2
)
and (x, y) ∈ I2 be fixed. Using (5), the properties of ω, and the positivity and

monotonicity of Lnk, we get that∣∣∣∣∣∣
n∑
i=1

k∑
j=1

an−i+1k−j+1Lij (f ;x, y)− f (x, y)

∣∣∣∣∣∣ ≤
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (|f (s, t)− f (x, y)| ;x, y)

+Mf

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
≤

n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij

ω
f ; δ

√
(s− x)2 + (t− y)2

δ

 ;x, y


+Mf

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
≤ ω (f ; δ)

n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij

(
1 +

(s− x)2 + (t− y)2

δ2
;x, y

)

+Mf

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣
≤ ω (f ; δ)

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣+ ω (f ; δ)
+
ω (f ; δ)

δ2

n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij
(
(s− x)2 + (t− y)2 ;x

)

+Mf

∣∣∣∣∣∣
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0;x, y)− f0 (x, y)

∣∣∣∣∣∣ .
Then taking supremum over (x, y) ∈ I2, we have∥∥∥∥∥∥

n∑
i=1

k∑
j=1

an−i+1k−j+1Lij (f)− f

∥∥∥∥∥∥
C(I2)

≤ ω (f ; δ)

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0)− f0

∥∥∥∥∥∥+ 2ω (f ; δ) +Mf

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij (f0)− f0

∥∥∥∥∥∥
where

δ := αn,k :=

√√√√√
∥∥∥∥∥∥
n∑
i=1

k∑
j=1

|an−i+1k−j+1|Lij
(
(s− .)2 + (t− .)2

)∥∥∥∥∥∥
C(I2)

.

Then, from the hypotheses, we conclude that

P − lim
n,k

∥∥∥∥∥∥
n∑
i=1

k∑
j=1

an−i+1k−j+1Lij (f)− f

∥∥∥∥∥∥
C(I2)

= 0,
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we obtain the assertion.
Acknowledgment. We would like to thank the referee(s) for reading carefully and making valuable

suggestions.
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