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Abstract

An interesting family of infinite series is evaluated exactly using standard methods from complex
analysis.

1 Introduction and Results

The following problem was given to students in an examination paper at Trinity College, Cambridge, in June

1901: Prove that
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The problem appeared as Problem 1052* in Crux [3]. Szekeres gave three proofs of the statement in [4]. In
this note, we generalize the problem in the following way: For k € Z, we consider the family of infinite series
given by
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We derive a closed-form for the series. We recommend the article [2], its content is related to the present
problem. It is obvious that S(1) corresponds to the LHS of equation (1). Also, we have the symmetry
relation S(k) = S(—k). Finally, we mention that S(0) can be evaluated using Dirichlet’s beta function (or
L-function) as follows:

o~ (=) 61 -

=1-B() =1= gm0

5(0) = (2n+1)7

n=1

where ((s) is given by (see [1] or [5])
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and where we have used the relation between /3(s) and Euler numbers
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Our main result is the following theorem.
Theorem 1 Let k € Z and let S(k) be defined as in (2). Then,
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The result in (1) is obtained from S(1). We shall state two more special cases:
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and
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2 The Proof

We will give a proof mainly based on the theory of residues, extending the arguments of Szekeres. To do
so, the following technical lemma will be needed, which seems to be a familiar result. To keep this note self
contained, we provide a proof below.

Lemma 1 Let z € C. Let further N € N and C be the square in the complex plane with corners (=N, £N).
Then, |cos(mz)| > 1 for all z on the square C.

Proof. Let z = x + 4y. Then, from the definition of the complex cosine function,
cos(mz) = cos(mx) cosh(my) — isin(mx) sinh(my).
Using the half angle formulas
cos(2z) = 2cos?(z) — 1 and cosh(2z) = 2 cosh?(z) — 1,

we get
2 h(2
| cos(2)[2 = cos?(nz) cosh2(7ry) + sin?(rz) sinhQ(wy) _ cos(27rw) n CoS é wy)'

On the vertical sides of C, z = £N + iy and

cos(ra)p = 2N cohlomy) 1, cotmy)

1.

Finally, on the horizontal sides of C' we have that z = x + N and
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The proof of Theorem 1 follows.
Proof. We start with the observation that
1 — 0 (_1)n+1
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To evaluate the sum, we consider for k € Z the complex function

™

f(z) = (z — k)223(2 + k)2 cos(mz)
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From Lemma 1, it follows that

lim /Cf(z)dz:()

N—oo

on each square C' with corners (£N,£N). This means that

ZRes(f;zj) =0,

Jj=1

where z; are the poles of f(z) inside C. The classification of the residues is easy: f(z) has infinitely many
poles of order one at z = n+ 1/2, n an integer, a pole of order two at z = k, a pole of order two at z = —k,
and a pole of order three at z = 0. For each n, the residue of f(z) at z =n+1/2 is

. m(z—n-—3)
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Res(f;z=n+1/2) =

Next, the residue at z = k is

d s
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Since
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we get

Res(f;z=k) = (—1)’“‘1%.

In the same manner,
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Finally,
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The calculation of the second derivative is straightforward but lengthy. The result is

e .
dz? (z — k)2(z + k)2 cos(nz)

= n(A(z) + B(2) + C(2) + D(2))

with
_ 2msin(nz)((n2? — wk?) sin(nz) — 4z cos(7z))
Alz) = (2 — k)3(z + k)3 cos®(mz) ’
~ 3((wz? — wk?) sin(wz) — 4z cos(7z))
Bz) = - (z — k)*(z + k)3 cos?(nz) ’
~ 3((w2? — mk?) sin(mz) — 4z cos(nz))
&) = == T + By cos2(n2)
and

 6mzsin(rz) 4 w(7z? — wk?) cos(wz) — 4 cos(nz))
D(z) = (2 — k)3(z + k)3 cos(n2)
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Hence,

1 d2 s ™ 772k2 + 4
es(f;z=0) 209 422 (z —k)2(z+ k)?cos(mz) 2 kS

Gathering our results, we end with

0=128 i (="t + (- )k+12i m w
T 4 (20— 2k +1)2(2n + 1)3(2n + 2k + 1)2 9 R

or equivalently

i (—=1)ntt _ b l(g((_l)k - 7r2k2)
L (2n—2k+1)22n+ 1320+ 2k+1)2 128 kS 5 )
and the proof is completed. m
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