A Remark On The Crux Problem 1052**

Robert Frontczak ${ }^{\dagger}$

Received 22 January 2020

Abstract

An interesting family of infinite series is evaluated exactly using standard methods from complex analysis.

1 Introduction and Results

The following problem was given to students in an examination paper at Trinity College, Cambridge, in June 1901: Prove that

$$
\begin{equation*}
\frac{1}{1^{2} \cdot 3^{3} \cdot 5^{2}}-\frac{1}{3^{2} \cdot 5^{3} \cdot 7^{2}}+\frac{1}{5^{2} \cdot 7^{3} \cdot 9^{2}}-\cdots=\frac{1}{9}-\frac{\pi}{2^{6}}-\frac{\pi^{3}}{2^{9}} \tag{1}
\end{equation*}
$$

The problem appeared as Problem 1052* in Crux [3]. Szekeres gave three proofs of the statement in [4]. In this note, we generalize the problem in the following way: For $k \in \mathbb{Z}$, we consider the family of infinite series given by

$$
\begin{equation*}
S(k)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-2 k+1)^{2}(2 n+1)^{3}(2 n+2 k+1)^{2}} . \tag{2}
\end{equation*}
$$

We derive a closed-form for the series. We recommend the article [2], its content is related to the present problem. It is obvious that $S(1)$ corresponds to the LHS of equation (1). Also, we have the symmetry relation $S(k)=S(-k)$. Finally, we mention that $S(0)$ can be evaluated using Dirichlet's beta function (or L-function) as follows:

$$
S(0)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)^{7}}=1-\beta(7)=1-\frac{61}{184320} \pi^{7}
$$

where $\beta(s)$ is given by (see [1] or [5])

$$
\beta(s)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{s}}, \quad \operatorname{Re}(s)>1
$$

and where we have used the relation between $\beta(s)$ and Euler numbers

$$
\beta(2 p+1)=\frac{(-1)^{p} E_{2 p} \pi^{2 p+1}}{4^{p+1}(2 p)!}, \quad p \in \mathbb{N} .
$$

Our main result is the following theorem.
Theorem 1 Let $k \in \mathbb{Z}$ and let $S(k)$ be defined as in (2). Then,

$$
S(k)= \begin{cases}\frac{1}{(2 k-1)^{2}(2 k+1)^{2}}-\frac{\pi^{3}}{2^{9} k^{4}}, & k \text { even } \\ \frac{1}{(2 k-1)^{2}(2 k+1)^{2}}-\frac{\pi}{2^{6} k^{6}}-\frac{\pi^{3}}{2^{9} k^{4}}, & k \text { odd } .\end{cases}
$$

[^0]The result in (1) is obtained from $S(1)$. We shall state two more special cases:

$$
S(2)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-3)^{2}(2 n+1)^{3}(2 n+5)^{2}}=\frac{1}{225}-\frac{\pi^{3}}{2^{13}}
$$

and

$$
S(3)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-5)^{2}(2 n+1)^{3}(2 n+7)^{2}}=\frac{1}{1225}-\frac{\pi}{6^{6}}-\frac{\pi^{3}}{3^{4} 2^{9}}
$$

2 The Proof

We will give a proof mainly based on the theory of residues, extending the arguments of Szekeres. To do so, the following technical lemma will be needed, which seems to be a familiar result. To keep this note self contained, we provide a proof below.

Lemma 1 Let $z \in \mathbb{C}$. Let further $N \in \mathbb{N}$ and C be the square in the complex plane with corners $(\pm N, \pm N)$. Then, $|\cos (\pi z)| \geq 1$ for all z on the square C.

Proof. Let $z=x+i y$. Then, from the definition of the complex cosine function,

$$
\cos (\pi z)=\cos (\pi x) \cosh (\pi y)-i \sin (\pi x) \sinh (\pi y)
$$

Using the half angle formulas

$$
\cos (2 z)=2 \cos ^{2}(z)-1 \quad \text { and } \quad \cosh (2 z)=2 \cosh ^{2}(z)-1
$$

we get

$$
|\cos (\pi z)|^{2}=\cos ^{2}(\pi x) \cosh ^{2}(\pi y)+\sin ^{2}(\pi x) \sinh ^{2}(\pi y)=\frac{\cos (2 \pi x)}{2}+\frac{\cosh (2 \pi y)}{2}
$$

On the vertical sides of $C, z= \pm N+i y$ and

$$
|\cos (\pi z)|^{2}=\frac{\cos (\pm 2 \pi N)}{2}+\frac{\cosh (2 \pi y)}{2}=\frac{1}{2}+\frac{\cosh (2 \pi y)}{2} \geq 1
$$

Finally, on the horizontal sides of C we have that $z=x \pm i N$ and

$$
|\cos (\pi z)|^{2}=1+\frac{1}{2} \sum_{n=1}^{\infty}\left((-1)^{n} x^{2 n}+N^{2 n}\right) \frac{(2 \pi)^{2 n}}{(2 n)!} \geq 1
$$

The proof of Theorem 1 follows.
Proof. We start with the observation that

$$
\begin{aligned}
S(k) & =\frac{1}{2}\left(S(k)+\sum_{n=-2}^{-\infty} \frac{(-1)^{n+1}}{(2 n-2 k+1)^{2}(2 n+1)^{3}(2 n+2 k+1)^{2}}\right) \\
& =\frac{1}{2}\left(\sum_{n=-\infty}^{\infty} \frac{(-1)^{n+1}}{(2 n-2 k+1)^{2}(2 n+1)^{3}(2 n+2 k+1)^{2}}+\frac{2}{(2 k-1)^{2}(2 k+1)^{2}}\right)
\end{aligned}
$$

To evaluate the sum, we consider for $k \in \mathbb{Z}$ the complex function

$$
f(z)=\frac{\pi}{(z-k)^{2} z^{3}(z+k)^{2} \cos (\pi z)}
$$

From Lemma 1, it follows that

$$
\lim _{N \rightarrow \infty} \int_{C} f(z) d z=0
$$

on each square C with corners $(\pm N, \pm N)$. This means that

$$
\sum_{j \geq 1} \operatorname{Res}\left(f ; z_{j}\right)=0
$$

where z_{j} are the poles of $f(z)$ inside C. The classification of the residues is easy: $f(z)$ has infinitely many poles of order one at $z=n+1 / 2, n$ an integer, a pole of order two at $z=k$, a pole of order two at $z=-k$, and a pole of order three at $z=0$. For each n, the residue of $f(z)$ at $z=n+1 / 2$ is

$$
\begin{aligned}
\operatorname{Res}(f ; z=n+1 / 2) & =\lim _{z \rightarrow n+1 / 2} \frac{\pi\left(z-n-\frac{1}{2}\right)}{(z-k)^{2} z^{3}(z+k)^{2} \cos (\pi z)} \\
& =\frac{128(-1)^{n+1}}{(2 n-2 k+1)^{2}(2 n+1)^{3}(2 n+2 k+1)^{2}}
\end{aligned}
$$

Next, the residue at $z=k$ is

$$
\operatorname{Res}(f ; z=k)=\lim _{z \rightarrow k} \frac{d}{d z} \frac{\pi}{z^{3}(z+k)^{2} \cos (\pi z)} .
$$

Since

$$
\frac{d}{d z} \frac{\pi}{z^{3}(z+k)^{2} \cos (\pi z)}=\frac{\pi^{2} \sin (\pi z)}{z^{3}(z+k)^{2} \cos ^{2}(\pi z)}-\frac{3 \pi}{z^{4}(z+k)^{2} \cos (\pi z)}-\frac{2 \pi}{z^{3}(z+k)^{3} \cos (\pi z)}
$$

we get

$$
\operatorname{Res}(f ; z=k)=(-1)^{k+1} \frac{\pi}{k^{6}} .
$$

In the same manner,

$$
\operatorname{Res}(f ; z=-k)=\lim _{z \rightarrow-k} \frac{d}{d z} \frac{\pi}{z^{3}(z-k)^{2} \cos (\pi z)}=(-1)^{k+1} \frac{\pi}{k^{6}}
$$

Finally,

$$
\operatorname{Res}(f ; z=0)=\lim _{z \rightarrow 0} \frac{1}{2} \frac{d^{2}}{d z^{2}} \frac{\pi}{(z-k)^{2}(z+k)^{2} \cos (\pi z)}
$$

The calculation of the second derivative is straightforward but lengthy. The result is

$$
\frac{d^{2}}{d z^{2}} \frac{\pi}{(z-k)^{2}(z+k)^{2} \cos (\pi z)}=\pi(A(z)+B(z)+C(z)+D(z))
$$

with

$$
\begin{gathered}
A(z)=\frac{2 \pi \sin (\pi z)\left(\left(\pi z^{2}-\pi k^{2}\right) \sin (\pi z)-4 z \cos (\pi z)\right)}{(z-k)^{3}(z+k)^{3} \cos ^{3}(\pi z)} \\
B(z)=-\frac{3\left(\left(\pi z^{2}-\pi k^{2}\right) \sin (\pi z)-4 z \cos (\pi z)\right)}{(z-k)^{4}(z+k)^{3} \cos ^{2}(\pi z)} \\
C(z)=-\frac{3\left(\left(\pi z^{2}-\pi k^{2}\right) \sin (\pi z)-4 z \cos (\pi z)\right)}{(z-k)^{3}(z+k)^{4} \cos ^{2}(\pi z)}
\end{gathered}
$$

and

$$
D(z)=\frac{\left.6 \pi z \sin (\pi z)+\pi\left(\pi z^{2}-\pi k^{2}\right) \cos (\pi z)-4 \cos (\pi z)\right)}{(z-k)^{3}(z+k)^{3} \cos ^{2}(\pi z)}
$$

Hence,

$$
\operatorname{Res}(f ; z=0)=\lim _{z \rightarrow 0} \frac{1}{2} \frac{d^{2}}{d z^{2}} \frac{\pi}{(z-k)^{2}(z+k)^{2} \cos (\pi z)}=\frac{\pi}{2} \cdot \frac{\pi^{2} k^{2}+4}{k^{6}}
$$

Gathering our results, we end with

$$
0=128 \sum_{n=-\infty}^{\infty} \frac{(-1)^{n+1}}{(2 n-2 k+1)^{2}(2 n+1)^{3}(2 n+2 k+1)^{2}}+(-1)^{k+1} \frac{2 \pi}{k^{6}}+\frac{\pi}{2} \cdot \frac{\pi^{2} k^{2}+4}{k^{6}}
$$

or equivalently

$$
\sum_{n=-\infty}^{\infty} \frac{(-1)^{n+1}}{(2 n-2 k+1)^{2}(2 n+1)^{3}(2 n+2 k+1)^{2}}=\frac{1}{128} \cdot \frac{\pi}{k^{6}}\left(2\left((-1)^{k}-1\right)-\frac{\pi^{2} k^{2}}{2}\right)
$$

and the proof is completed.
Acknowledgment. The author is thankful to the referees for their valuable comments. Disclaimer: Statements and conclusions made in this article are entirely those of the author. They do not necessarily reflect the views of LBBW.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New-York, 1972.
[2] H. Alzer and J. Choi, Four parametric linear Euler sums, J. Math. Anal. Appl., 484(2020), 123661, 22 pp.
[3] Problem 1052*, Problems and Solutions, Crux Mathematicorum, 11(1985), 187.
[4] G. Szekeres, Solution to Problem 1052*, Crux Mathematicorum, 12(1986), 255-261.
[5] Wolfram MathWorld Webside, http://mathworld.wolfram.com/DirichletBetaFunction.html.

[^0]: *Mathematics Subject Classifications: 40C15.
 †Landesbank Baden-Wrttemberg (LBBW), 70173 Stuttgart, Germany

