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Abstract

An interesting family of infinite series is evaluated exactly using standard methods from complex
analysis.

1 Introduction and Results

The following problem was given to students in an examination paper at Trinity College, Cambridge, in June
1901: Prove that

1

12 · 33 · 52 −
1

32 · 53 · 72 +
1

52 · 73 · 92 − · · · =
1

9
− π

26
− π3

29
. (1)

The problem appeared as Problem 1052* in Crux [3]. Szekeres gave three proofs of the statement in [4]. In
this note, we generalize the problem in the following way: For k ∈ Z, we consider the family of infinite series
given by

S(k) =

∞∑
n=1

(−1)n+1
(2n− 2k + 1)2(2n+ 1)3(2n+ 2k + 1)2 . (2)

We derive a closed-form for the series. We recommend the article [2], its content is related to the present
problem. It is obvious that S(1) corresponds to the LHS of equation (1). Also, we have the symmetry
relation S(k) = S(−k). Finally, we mention that S(0) can be evaluated using Dirichlet’s beta function (or
L-function) as follows:

S(0) =

∞∑
n=1

(−1)n+1
(2n+ 1)7

= 1− β(7) = 1− 61

184320
π7,

where β(s) is given by (see [1] or [5])

β(s) =

∞∑
n=0

(−1)n
(2n+ 1)s

, Re(s) > 1,

and where we have used the relation between β(s) and Euler numbers

β(2p+ 1) =
(−1)pE2pπ2p+1
4p+1(2p)!

, p ∈ N.

Our main result is the following theorem.

Theorem 1 Let k ∈ Z and let S(k) be defined as in (2). Then,

S(k) =

{
1

(2k−1)2(2k+1)2 −
π3

29k4 , k even
1

(2k−1)2(2k+1)2 −
π

26k6 −
π3

29k4 , k odd.
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The result in (1) is obtained from S(1). We shall state two more special cases:

S(2) =

∞∑
n=1

(−1)n+1
(2n− 3)2(2n+ 1)3(2n+ 5)2 =

1

225
− π3

213

and

S(3) =

∞∑
n=1

(−1)n+1
(2n− 5)2(2n+ 1)3(2n+ 7)2 =

1

1225
− π

66
− π3

3429
.

2 The Proof

We will give a proof mainly based on the theory of residues, extending the arguments of Szekeres. To do
so, the following technical lemma will be needed, which seems to be a familiar result. To keep this note self
contained, we provide a proof below.

Lemma 1 Let z ∈ C. Let further N ∈ N and C be the square in the complex plane with corners (±N,±N).
Then, | cos(πz)| ≥ 1 for all z on the square C.

Proof. Let z = x+ iy. Then, from the definition of the complex cosine function,

cos(πz) = cos(πx) cosh(πy)− i sin(πx) sinh(πy).

Using the half angle formulas

cos(2z) = 2 cos2(z)− 1 and cosh(2z) = 2 cosh2(z)− 1,

we get

| cos(πz)|2 = cos2(πx) cosh2(πy) + sin2(πx) sinh2(πy) = cos(2πx)

2
+
cosh(2πy)

2
.

On the vertical sides of C, z = ±N + iy and

| cos(πz)|2 = cos(±2πN)
2

+
cosh(2πy)

2
=
1

2
+
cosh(2πy)

2
≥ 1.

Finally, on the horizontal sides of C we have that z = x± iN and

| cos(πz)|2 = 1 + 1
2

∞∑
n=1

((−1)nx2n +N2n)
(2π)2n

(2n)!
≥ 1.

The proof of Theorem 1 follows.

Proof. We start with the observation that

S(k) =
1

2

(
S(k) +

−∞∑
n=−2

(−1)n+1
(2n− 2k + 1)2(2n+ 1)3(2n+ 2k + 1)2

)

=
1

2

( ∞∑
n=−∞

(−1)n+1
(2n− 2k + 1)2(2n+ 1)3(2n+ 2k + 1)2 +

2

(2k − 1)2(2k + 1)2

)
.

To evaluate the sum, we consider for k ∈ Z the complex function

f(z) =
π

(z − k)2z3(z + k)2 cos(πz) .
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From Lemma 1, it follows that

lim
N→∞

∫
C

f(z)dz = 0

on each square C with corners (±N,±N). This means that∑
j≥1

Res(f ; zj) = 0,

where zj are the poles of f(z) inside C. The classification of the residues is easy: f(z) has infinitely many
poles of order one at z = n+ 1/2, n an integer, a pole of order two at z = k, a pole of order two at z = −k,
and a pole of order three at z = 0. For each n, the residue of f(z) at z = n+ 1/2 is

Res(f ; z = n+ 1/2) = lim
z→n+1/2

π(z − n− 1
2 )

(z − k)2z3(z + k)2 cos(πz)

=
128(−1)n+1

(2n− 2k + 1)2(2n+ 1)3(2n+ 2k + 1)2 .

Next, the residue at z = k is

Res(f ; z = k) = lim
z→k

d

dz

π

z3(z + k)2 cos(πz)
.

Since
d

dz

π

z3(z + k)2 cos(πz)
=

π2 sin(πz)

z3(z + k)2 cos2(πz)
− 3π

z4(z + k)2 cos(πz)
− 2π

z3(z + k)3 cos(πz)
,

we get
Res(f ; z = k) = (−1)k+1 π

k6
.

In the same manner,

Res(f ; z = −k) = lim
z→−k

d

dz

π

z3(z − k)2 cos(πz) = (−1)
k+1 π

k6
.

Finally,

Res(f ; z = 0) = lim
z→0

1

2

d2

dz2
π

(z − k)2(z + k)2 cos(πz) .

The calculation of the second derivative is straightforward but lengthy. The result is

d2

dz2
π

(z − k)2(z + k)2 cos(πz) = π
(
A(z) +B(z) + C(z) +D(z)

)
,

with

A(z) =
2π sin(πz)((πz2 − πk2) sin(πz)− 4z cos(πz))

(z − k)3(z + k)3 cos3(πz) ,

B(z) = −3((πz
2 − πk2) sin(πz)− 4z cos(πz))
(z − k)4(z + k)3 cos2(πz) ,

C(z) = −3((πz
2 − πk2) sin(πz)− 4z cos(πz))
(z − k)3(z + k)4 cos2(πz) ,

and

D(z) =
6πz sin(πz) + π(πz2 − πk2) cos(πz)− 4 cos(πz))

(z − k)3(z + k)3 cos2(πz) .
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Hence,

Res(f ; z = 0) = lim
z→0

1

2

d2

dz2
π

(z − k)2(z + k)2 cos(πz) =
π

2
· π

2k2 + 4

k6
.

Gathering our results, we end with

0 = 128

∞∑
n=−∞

(−1)n+1
(2n− 2k + 1)2(2n+ 1)3(2n+ 2k + 1)2 + (−1)

k+1 2π

k6
+
π

2
· π

2k2 + 4

k6
,

or equivalently

∞∑
n=−∞

(−1)n+1
(2n− 2k + 1)2(2n+ 1)3(2n+ 2k + 1)2 =

1

128
· π
k6

(
2((−1)k − 1)− π2k2

2

)
,

and the proof is completed.
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