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Abstract

In this paper, a Laurent type hypergeometric generating relation is derived by using series rearrange-
ment technique. Some special cases are obtained as generating functions of the Bessel functions of
different kinds. Finally explicit forms of these Bessel functions are obtained as applications.

1 Introduction and Preliminaries

Korsch et al. [4, p.14948, Eq. (2)] have discussed the general properties of two-dimensional generalized
Bessel functions J?'(u,v). They have given the following generating function for the two-dimensional Bessel

functions: -
Ufp 1 via_L1Y|_ P,q n
exp [2 (t m + 5 t )| = Z JEA (u,v) ", (1)

n=-—o00
where (p, ¢) being relatively prime positive integers and u,v € R.

pP,q n
Ju'(u,v), for } €Z

TP (u, 0) = { ' (2)

0, else,
p#0,1.

The two-dimensional Bessel functions J2-9(u, v) have the following bounds:

1
JE Y (u,v)| <1 and |JE(u,v)| < —= for n # 0.
|5 (u, )] < |J54( )|_\/§ #

Miller introduced a new class of Bessel functions J¥*? (x) with generating function [5, p. 497, Eq. (19)]:
1T >
exp | — (P +t7¢ ] = J,SP’Q) x)t", 3
S| = ¥ apow ®)

n=—oo

where (p, ¢) being relatively prime positive integers.

Also, the two variable Bessel functions D,(f’m) (x,y) possess the generating function [1, p. 116, Eq. (2.15)]:

(o)
exp {xtp - t%] = Z DP™ (2, )", 0<|t| <oo, z,y€R, (4)

n—=—oo

where (p,m) being relatively prime positive integers.
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The DP™ (z,y) is given by the following series:

() =, (1))
D (z,y) =Y (5)
r—o I’ (Lrme + 1) rl

The following special cases of the D ’m)(z, y) are as follows:

Ly (£ TY :

D, (2, 2) Jn(z) (Bessel functions) (6)

’DS’I) (g, —g) = I,(z) (Modified Bessel functions) (7)
DS’U (1,y) = Ci(y) (Bessel Clifford or Tricomi functions) (8)
D™ (1,y) W™ (y) (Wright functions). (9)

A natural generalization of the Gaussian hypergeometric series o F[a, 8;7; 2], is accomplished by intro-
ducing any arbitrary number of numerator and denominator parameters. Thus, the resulting series

(p); 1,00, ..., 0p; 00

F, z | =, F, 2 :Z (al)n(a2)n...(ap)n%7: "o

q

p -p

(,Bq); 61)62""’ﬁq§ n=0 (ﬁl)n(ﬂz)n(ﬂq)n

is known as the generalized hypergeometric series, or simply, the generalized hypergeometric function [10].
Here p and ¢ are positive integers or zero and we assume that the variable z, the numerator parameters

a1, Qa,. .., ap and the denominator parameters 31, f,, ..., 3, take on complex values, provided that
B; #0,-1,-2,...; j=12,...,q.
In contracted notation, the sequence of p numerator parameters a;, as,. .., o, is denoted by (o) with

similar interpretation for others throughout this paper.
Supposing that none of numerator parameters is zero or a negative integer and for 8; # 0, —1, —=2,..;
j=1,2,..., q, we note that the ,F; series defined by equation (10):

(i) converges for |z| < oo, if p < g,
(ii) converges for |z| < 1,if p=¢g+1 and
(iii) diverges for all z, 2 # 0, if p > g + 1.

A multivariable hypergeometric function provides an interesting and useful unification of the generalized
hypergeometric function ,Fy of one variable (with p numerator and ¢ denominator parameters).

The following generalization of the hypergeometric function in several variables has been given by Srivas-
tava and Daoust [11], which is referred to in the literature as the generalized Lauricella function of several
variables:

R (OF 0,0" ™M (V) ) () ") e [ e™);
C:.D’?’D”W 21,22, 5 Zn
[(d/) . 5/]; [(d//) . 5//]; . [(d(n)) . (5(n)];
_ = Z{nl 2312 zZpm
= Z Q(my, ma, ..., my,) Tl (11)

where



58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

m

78

79

80

81

82

3

3

84

85

86

M. I. Qureshi and M. Ali 495

A B’ B B(n)
Hj:1(aj)mlglj+m29;/+...+mn9§"> Hj:l(bg')m1¢; Hj:l(b;'/)m2¢;' Hj:l (b;n))mnqb;"ﬂ

C D’ D D(n) ( )
Hj:1(Cj)ml1/)3.+’m2’l/);-/+'“+7nn'¢;n) szl(d;)ml‘S; szl(d./j/)m25;, Hj:1 (djn )7an§§.n’)

and the coeflicients
a_gk)7] = 1727"'714; ¢_§k))] = 1)27aB(k)v wgk)a] = 1327""0; 5§k)a] = 1323"'5D(k);

for all k € {1,2,...,n} are real and positive, (a) abbreviates the array of A parameters ai, as, ...,a, (b))
abbreviates the array of B*) parameters bg-k),j =1,2,...,B®: for all k € {1,2,...,n} with similar interpre-
tations for (c) and (d®), k=1,2,...,n; et cetera.

A significant progress has been made in the study of generalized Bessel functions. Notably, fractional
integral operators involving generalized Bessel functions are obtained in [6]. In [3], differential subordinations
and superordinations for generalized Bessel functions are given. In [9], the inclusion properties of new
subclasses of analytic functions are established by using the generalized Bessel functions of the first kind. The
computation of image formulas of generalized fractional hypergeometric operators, involving the product of
multivariable Srivastava polynomial and multi-index Bessel function is a recent investigation, see for example
[2].

Recently, Qureshi et al. 7, 8] have obtained explicit expressions of some hybrid special functions related to
the Bessel and Tricomi functions. In this article, our main motive is to derive a Laurent type hypergeometric
generating relation. In Section 2, a general series identity is derived. Using the general series identity, a
Laurent type hypergeometric generating relation is obtained. In Section 3, some special cases of the obtained
results are presented in terms of the generating relations of the Bessel functions.

2 Main Results

In this section, we derive a general series identity in the form of the following lemma:

Lemma 1 Let {(€)}, {Q200)}, {Q3(0)} and {u(0)}; € € {1,2,3,---} are four bounded sequences of
arbitrary complex numbers and ;(0) #£0 (i =1,2,3,4). Then

k
. (at?): (9) (£) (&)
Z Q1(4)Q2(5)$23 (k)2 (€) il 4! k(' K!)

f““ Z o (”‘U;M) Qa(5)23(k)24(0)

L) () (),

<1+g) 4! k! £ ’
P/ rpyze—4j

where (p,r), (p,s), (g,7), (q,s) being relatively prime positive integers and each of the multiple series involved
is absolutely convergent.

(12)

Proof. Suppose the Lh.s. of equation (12) is denoted by A. Then, we have

- . . ai )‘j ﬂk /J“e pitqj—rk—st
A= 30 n@RGBEXUO =S : (13)
i,k £=0 e
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in equation (13), we get

Putting pi + qj — rk — st = n or i = 2=kl

n—qj+rk4st

> © — a1 ( D ) J koL
A=Y Y o (ﬂwr“sf) O (1) (K 2 (0)—— AT
p F(%””S‘H) kLA

n=—o0 j,k,£=0
On simplification, we get Lemma 1. m
Theorem 2 The following Laurent type hypergeometric generating relation holds true:

(aa) ; (cc) (9c) (vv)
AFp at? | ¢Fp At | gFr £ | vFw =

(bp) (dp) (he) (ww)

N et
v 1wy (14 5)
|:(G'A)+H _%7%75} [(CC) ]-] s
FB—&-?DC}?I;:“//V
() + g =ts] [1esi-trs] o @)
(9e): 1 5 [v):l) 5 é
Aa" P, Bar, uar ", t#£0,
((he) 1] 5 [(ww) 1]

(14)

(15)

where (p,r), (p,s), (¢,7), (q,s) being relatively prime positive integers and each of the multiple series involved

is absolutely convergent.

Proof. Taking

A C G v
[1 (am)i [1 (em); [T (gm)k [T (vm)e
Ql(l) = m;177 QQ(]) = WLD:liy QS(k) = L’ Q4<£) = m;1 ’
mnzl(bm)l mlll(dm)j n];:[l(hM)k n];:[l(wm)e

in general series identity (12), applying some algebraic properties of Pochhammer symbols and after simpli-

fication, we obtain:

(aa) ; (cc) (9¢) (ov)
aFp at? | ¢Fp At o Fy 5 vFw &
(bp) ; (dp) ; (ha) (ww)
A C G 1%
o0 % 0o H (am)w H (Cm)j H (QM)k H (Um)ﬁ
_ Z [0 Z m=1 P m=1 m=1 m=1
nzfoor(l‘i‘ﬂ) L B | D H w
p) 3kAL=0 Hl(bm) "—(147-;Tk+54 Hl(dm)j Hl(h’m)k Hl(wm)e
L \d N RY
1 Gr) (ef) (we?)
n il k! il
(1 + P>_%j+§k+§z ’

—
/N

C
am+% —qjtrk+tst H (Cm)j
P

M2
|

(b 3) e [ 0,

,}
3
Il
—
S
3
Il
—
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! ( )J (ﬁa%)k (W%)Z t. (16)

n 1 | il
1+ ,L) J! k! !
( P/_Sjirpyse

On using the definition of the Srivastava-Daoust hypergeometric functions (11) in the r.h.s. of equation (16),
we obtain assertion (15). m

Q
S \n‘y

3 Applications

. TakihngA=B=C=D=G=H=V=W=0,a=45,A=5,8=—-5,7=p, p=—5,s=qin
Theorem 2, we get
U 1 v 1
— tp_i — tq_i
o3 (7-5) 5 (77
B I
e T (14 2)
v u_% u? v u% n
X P00 5() 7, - —3(3%) " (17)

On comparison of equations (17) and (1), the two-dimensional Bessel functions J2'9(u,v) have the
following explicit representation

(& 0
JP(y,v) = —2—— X
r(1+z)
— — 5 =5 =
<F03 R 15k

II. TakingA=B=C=D=G=H=V=W=0,a=2,A=0,8=—y, r=m, 4 =0 in Theorem 2,

we get
n+7n k k

exp [xtp } Z Z LA (18)

B o (”+mk n 1) k!

On comparison of equations (18) and (4), we get the explicit representation of the two-variable Bessel

functions D%p’m)(x, y) defined by equation (5). In view of equations (6)—(9), we can find the explicit

representations of the special cases of the two-variable Bessel functions ’Dy(lp

tutions of the variable and indices in equation (18).

™) (z,y) by suitable substi-

II. Taking A=B=C=D=G=H=V=W=0,a=
2, we get

A=0,8="

r =q, p = 0 in Theorem

p+q ’ p+q !

24 (142 )k
o0 oo
(p+q)

exp[pifq(thrt q} SN

T (”+qk + 1) k!

. (19)
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On comparison of equations (19) and (3), the Bessel functions I ’Q)(z) have the following explicit
representation:

. (L) (5

J}Lpﬂ) _ p+q .
) kz—or(”fﬂ) k!

4 Conclusion

We conclude our present investigation by observing that several other Laurent type hypergeometric gener-
ating relations for the complex special functions can also be deduced in an analogous manner.
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