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Abstract

This paper is concerned with random impulsive integro-differential equations with nonlocal conditions.
At first, some suffi cient conditions which can guarantee existence and uniqueness of mild solution are
derived using Banach fixed point theorem. Secondly, combining with Banach fixed point theorem with
some inequality techniques, we give stability of the solution. Finally some examples are given to establish
the effectiveness of our results.

1 Introduction

The impulsive system has been considered to be one of the most important models in mathematical ecology,
and many perfect existence as well as stability results of its modified models have been obtained. For example,
in order to maintain the long-term sustainable development of fishery industry, the government puts a lot
of little fish into the sea in spring and allows the fishermen to catch the adult fish in autumn and winter,
which can be described by impulsive differential equations. Also we must choose the impulse perturbation
coeffi cients based on the actual situation, which may oscillate in some ranges or change irregularly.
There will be instantaneous and great changes of population density in the form of perturbations if we take

into account the disturbance of environmental factors at certain time moments, which cannot be neglected.
So naturally we can introduce impulsive effects into differential equations (see Bainov and Simeonov [4],
Lakshmikantham, Bainov and Simeonov [11] and Saker [17]).
Many authors [9, 22] have studied the existence of solutions of impulsive differential equations of the

form

x
′
(t) = f(t, x(t), S(t), T (t)), 0 < t < T0, t 6= ti, (1)

xt0 = x0, (2)

∆x(ti) = Ii(ti), i = 1, 2, . . . , p. (3)

Guo and Liu [9] also established the existence theorems of maximal and minimal solutions for (1)—(3) with
strong conditions provided f is uniformly continuous. Guo and Liu [12], Liu [10] also considered the case
when f does not contain integral operator S in (1) and obtained the same conclusion by using monotone
iterative technique. Again recently, Liu [10] considered the special case where (1)—(3) has no impulses and
Liu [10] obtained a unique solution by using monotone iterative technique with coupled upper and lower
quasi-solutions when f = f(t, x(t), S(t), T (t)). Liu [14] also obtained a similar conclusion. In [9, 12, 10] the
assumptions that f satisfies some compactness-type conditions is required. But it is diffi cult and inconvenient
to verify in abstract spaces. By using the successive approximations for the evolution equation with an
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unbounded operator A, Rogovchenko [16] studied the existence and uniqueness of the classical solutions.
That is equations of the form

x
′
(t) = Ax(t) + f(t, x(t)), t > 0, t 6= ti

with impulsive condition in (2) − (3), where A is sectorial operator with some conditions given on the
fractional operators Aα, α ≥ 0 . Liu [13] studied the existence of mild solutions of the impulsive evolution
equation

x
′
(t) = Ax(t) + f(t, x(t)), 0 < t < T0, t 6= ti

where A is the infinitesimal generator of C0 semigroup with the impulsive condition in (2) − (3) by using
semigroup theory.
Most of the published papers on impulsive differential systems deals with the problems related to fixed

time impulses. However, actual jumps do not always happen at fixed points but usually at random points.
Recently the properties of solutions to some differential equations with random impulses have been studied
[21, 2, 20, 3, 8, 1].
The existence of solution for non local differential equations have been extensively researched in recent

years taking into account the theoretical and practical significance. Byszewski initiated the nonlocal initial
conditions for evolution equations [5, 6]. There are many applications for nonlocal condition in physics and
it is more natural than the classical initial condition x(0) = x0. Recently, Sayooj Aby Jose and Venkatesh
Usha [19] extended the results of [5, 6] to random impulsive differential equations with non local initial
conditions and proved the existence of the solutions by a fixed point theorem.
There are several papers which include the study of impulsive integrodifferential equations involving

random impulses [18, 9, 7]. Random impulsive integro-differential equation with non local initial conditions
is studied in this paper, hoping that the results obtained will contribute to the area. And it is a well known
fact that, if we consider integro-differential equations, in some applications, we will be able to obtain better
descriptions of the phenomena under study. Thus, the main objective of this work is to present non local
random impulsive integro-differential equations.
This paper is summarized as follows: Section 2 includes some preliminaries. Some hypotheses are included

in Section 3. The existence and uniqueness of solution of random impulsive integro-differential equation with
nonlocal condition is investigated in section 4. And we have used Lipschitz condition for deriving the main
results, followed by stability results in section 5. In the last section two examples are discussed.

2 Preliminaries

Consider a real separable Hilbert space X and a non empty set Ω. Assume that τk is a random variable
defined from Ω to Dk, where Dk = (0, dk) for all k ∈ N (collection of natural numbers) and 0 < dk < +∞.
Also for i, j = 1, 2, . . . assume that if i 6= j then τ i and τ j are independent with each other. Let τ be a real
constant. Denote <τ = [τ , T ]. Next we consider the nonlocal random impulsive integro differential equations
of the form  x

′
(t) = Ax(t) + f(t, x(t)) +

∫ T
0
f1(η, x(t+ η))dη, t 6= ξk, t ≥ τ ,

x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, 3, . . . ,
xt0 + g(x) = x0,

(4)

where A is the infinitesimal generator of a strongly continuous semi group of bounded linear operator S(t)
in X, f, f1 : <τ ×X → X, bk : Dk → < for each k ∈ N, g : X → X is a given function; ξ0 = t0 ∈ [τ , T ] and
ξk = ξk−1 + τk for each k ∈ N, here t0 ∈ <τ is arbitrary real number. Obviously

t0 = ξ0 < ξ1 < ξ2 < ξ3 · · · < ξk < . . . ;x(ξk−) = lim
t↑ξk

x(t)

according to their path with the norm ‖x‖ = supτ≤η≤t |x(η)| for each t satisfying t ∈ [τ , T ].
Let {Bt, t ≥ 0} be the simple counting process generated by {ξn}, that implies {Bt ≥ t}, also denote

Ft as the notation for the σ-algebra generated by {Bt, t ≥ 0}. The (Ω, P, {Ft}) is a probability space. And
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the Hilbert space of all {Ft}-measurable square integrable random variables with values in X is denoted as
L2 = L2(Ω, {Ft}, X).
Let B denote Banach space B([τ , T ], L2), the family of all {Ft}-measurable random variable ψ with the

norm
‖ψ‖2 = sup

t∈[τ,T ]

E‖ψ‖2.

Definition 1 ([15]) Let A be the infinitesimal generator of a C0 semigroup S(t). Let u0 ∈ X and f ∈
L1(0, T ;X) with nonlocal condition g(u). Then the function u ∈ C([0, T ];X) is given by

u(t) = S(t)(u0 − g(u)) +

∫ t

0

S(t− s)f(s)ds, 0 ≤ t ≤ T

is the mild solution of the initial value problem{
u
′
(t) = Au(t) + f(t), 0 < t < T,

u(0) + g(x) = u0.
(5)

Definition 2 ([15]) A semigroup {S(t), 0 ≤ t <∞} of bounded linear operators on X is uniformly bounded
if there exists a constant K ≥ 1 such that

‖S(t)‖ ≤ K, for t ≥ 0.

Definition 3 For a given T ∈ (τ ,+∞), a stochastic process {x(t) ∈ B, τ ≤ t ≤ T} is called a mild solution
to equation (4) in (Ω, p, {Ft}), if

(i) x(t) ∈ X is Ft-adapted;

(ii)

x(t) =

+∞∑
k=0

[ k∏
i=1

bi(τ i)S(t− t0)(x0 − g(x)) +

k∑
i=1

k∏
j=i

bj(τ j)

∫ ξi

ξi−1

S(t− s)f(s, x(s))ds

+

∫ t

ξk

S(t− s)f(s, x(s))ds+

k∑
i=1

k∏
j=i

bj(τ j)

∫ ξi

ξi−1

S(t− s)
∫ T

0

f1(η, x(s+ η))dηds

+

∫ t

ξk

S(t− s)
∫ T

0

f1(η, x(s+ η))dηds

]
I[ξk,ξk+1)(t), t ∈ [τ , T ]

where
n∏

j=m

(.) = 1 as m > n,

k∏
j=i

bj(τ i) = bk(τk)bk−1(τk−1) . . . bi(τ i)

and IA(.) is the index function, i.e.,

IA(t) =

{
1, if t ∈ A,
0, if t /∈ A

3 Assumptions

In this section, we deals with some hypotheses which are used in our results.

(H1) The function f satisfies the Lipschitz condition. That is, for x, y ∈ X and τ ≤ t ≤ T there exist
constants L0,M0 ≥ 0 such that

E‖f(t, x)− f(t, y)‖2 ≤ L0E‖x− y‖2 and E‖f(t, 0)‖2 ≤M0.
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(H2) The function f1 satisfies the following condition. That is, for x, y ∈ X and τ ≤ t ≤ T there exist
constants L1,M1 ≥ 0 such that

E‖
∫ T

0

[
f1(η, x(t+ η))− f1(η, y(t+ η))

]
dη‖2 ≤ L1E‖x(t+ η)− y(t+ η)‖2,

E‖f1(η, 0)‖ ≤M1.

(H3) The condition maxi,k

{∏k
j=1 ‖bj(τ j)‖

}
is uniformly bounded if, there is a constant ϑ > 0 such that

max
i,k

{∏k
j=1 ‖bj(τ j)‖

}
≤ ϑ, for all τ j ∈ Dj , j = 1, 2, 3, . . . .

(H4) g : X → X satisfies the Lipschitz condition. That is, for x, y ∈ X and τ ≤ t ≤ T, there exists a
constant L∗ ≥ 0 such that

E‖g(x)− g(y)‖2 ≤ L∗‖x− y‖2.

(H5)

Γ = K2ϑ2 max{1, ϑ2}(T − τ)2

[
L0 + L1 +

L∗
(T − τ)2

]
< 1.

4 Existence and Uniqueness

We discuss the existence and uniqueness of the mild solution for the system (4).

Theorem 1 Assume that the hypothesis (H1)—(H5) hold. Then the system (4) has a unique mild solution
in B.

Proof. Let T be an arbitrary number T ≤ +∞ . First we define the nonlinear operator F : B → B as
follows

Fx(t) =

+∞∑
k=0

[ k∏
i=1

bi(τ i)S(t− t0)(x0 − g(x)) +

k∑
i=1

k∏
j=i

bj(τ j)

∫ ξi

ξi−1

S(t− s)f(s, x(s))ds

+

∫ t

ξk

S(t− s)f(s, x(s))ds+

k∑
i=1

k∏
j=i

bj(τ j)

∫ ξi

ξi−1

S(t− s)
{∫ T

0

f1(η, x(s+ η))dη

}
ds

+

∫ t

ξk

S(t− s)
{∫ T

0

f1(η, x(s+ η))dη

}
ds

]
I[ξk,ξk+1)(t), t ∈ [τ , T ].

We can prove the continuity of F easily. Next we will show that B is mapped into B under F .

‖Fx(t)‖2 ≤
[ +∞∑
k=0

[
‖

k∏
i=1

bi(τ i)‖‖S(t− t0)‖‖x0 − g(x)‖

+

k∑
i=1

‖
k∏
j=i

bj(τ j)‖
∫ ξi

ξi−1

‖S(t− s)f(s, x(s))‖ds

+

∫ t

ξk

‖S(t− s)f(s, x(s))‖ds+

k∑
i=1

‖
k∏
j=i

bj(τ j)‖
∫ ξi

ξi−1

S(t− s)
{∫ T

0

f1(η, x(s+ η))dη

}
‖ds

+

∫ t

ξk

‖S(t− s)
{∫ T

0

f1(η, x(s+ η))dη

}
‖ds
]
I[ξk,ξk+1)(t)

]2
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≤ 2

[ +∞∑
k=0

[
‖

k∏
i=1

bi(τ i)‖2‖S(t− t0)‖2‖x0 − g(x)‖2I[ξk,ξk+1)(t)

]

+

[ +∞∑
k=0

[ k∑
i=1

‖
k∏
j=i

bj(τ j)‖
∫ ξi

ξi−1

‖S(t− s)f(s, x(s))‖ds

+

∫ t

ξk

‖S(t− s)f(s, x(s))‖ds
]
I[ξk,ξk+1)(t)

]2]

+

[ +∞∑
k=0

[ k∑
i=1

‖
k∏
j=i

bj(τ j)‖
∫ ξi

ξi−1

‖S(t− s)
{∫ T

0

f1(η, x(s+ η))dη

}
‖ds

+

∫ t

ξk

‖S(t− s)
{∫ T

0

f1(η, x(s+ η))dη

}
‖ds
]
I[ξk,ξk+1)(t)

]2

≤ 2K2 max
k

{
‖

k∏
i=1

bi(τ i)‖2
}
‖x0 − g(x)‖2

+2K2

[
max
i,k

{
1, ‖

k∏
j=i

bi(τ j)‖2
}]2{∫ t

t0

‖f(s, x(s))‖dsI[ξk,ξk+1)(t)

}2

+2K2

[
max
i,k

{
1, ‖

k∏
j=i

bi(τ j)‖
}]2{∫ t

t0

‖
∫ T

0

f1(η, x(s+ η))dη‖dsI[ξk,ξk+1)(t)

}2

≤ 2K2ϑ2‖x0 − g(x)‖2 + 2K2 max{1, ϑ2}
{∫ t

t0

‖f(s, x(s))‖ds
}2

+2K2 max{1, ϑ2}
{∫ t

t0

∫ T

0

‖f1(η, x(s+ η))‖dηds
}2

≤ 2K2ϑ2‖x0 − g(x)‖2 + 2K2 max{1, ϑ2}(t− t0)

∫ t

t0

‖f(s, x(s))‖2ds

+2K2 max{1, ϑ2}(t− t0)

∫ t

t0

{
‖
∫ T

0

f1(η, x(s+ η))dη‖ds
}2

.

Thus we get

E‖Fx(t)‖2 ≤ 2K2ϑ2‖x0 − g(x)‖2 + 2K2 max{1, ϑ2}(T − τ)

∫ t

t0

E‖f(s, x(s))‖2ds

+2K2 max{1, ϑ2}(T − τ)

∫ t

t0

E‖
∫ T

0

f1(η, x(s+ η))‖2dηds

≤ 2K2ϑ2‖x0 − g(x)‖2 + 4K2 max{1, ϑ2}(T − τ)L0

∫ t

t0

E‖x(s)‖2ds

+4K2 max{1, ϑ2}(T − τ)2M0 + 4K2 max{1, ϑ2}(T − τ)2M1

+4K2 max{1, ϑ2}(T − τ)L1

∫ t

t0

E‖x(s+ η)‖2ds.

Therefore,

sup
t∈[τ,T ]

E‖Fx(t)‖2 ≤ 2K2ϑ2‖x0 − g(x)‖2 + 4K2 max{1, ϑ2}(T − τ)L0

∫ t

t0

sup
t∈[τ,T ]

E‖x(s)‖2ds

+4K2 max{1, ϑ2}(T − τ)2M0 + 4K2 max{1, ϑ2}(T − τ)2M1
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+4K2 max{1, ϑ2}(T − τ)L1

∫ t

t0

sup
t∈[τ,T ]

E‖x(s+ η)‖2ds

for every t, τ ≤ t ≤ T , Hence F maps B into B.
Next we will show that F is a contraction mapping:

‖Fx(t)− Fy(t)‖2

≤
[ +∞∑
k=0

k∏
i=1

‖bi(τ i)‖‖S(t− t0)‖‖(g(x)− g(y))‖I[ξk,ξk+1)(t)

]2

+

[ +∞∑
k=0

{ k∑
i=1

k∏
j=i

‖bi(τ j)‖
∫ ξi

ξi−1

‖S(t− s)‖‖f(s, x(s))− f(s, y(s))‖ds

+

∫ t

ξk

‖S(t− s)‖‖f(s, x(s))− f(s, y(s))‖ds
}
Iξk,ξk+1(t)

]2

+

[ +∞∑
k=0

[ k∑
i=1

k∏
j=i

‖bj(τ j)‖
∫ ξi

ξi−1

‖S(t− s)‖
∫ T

0

‖f1(η, x(s+ η))− f1(η, y(s+ η))dη‖ds

+

∫ t

ξk

‖S(t− s)‖‖
∫ T

0

f1(η, x(s+ η))− f1(η, y(s+ η))dη‖ds
]
I[ξk,ξk+1)(t)

]2

≤ K2

[
max
k

{ k∏
i=1

‖bi(τ i)‖2
}
‖g(x)− g(y)‖2

]

+K2

[
max
i,k

{
1,

k∏
j=i

‖bj(τ j)‖
}]2{∫ t

t0

‖f(s, x(s))− f(s, y(s))‖dsI[ξk,ξk+1)(t)

}2

+K2

[
max
i,k

{
1,

k∏
j=i

‖bj(τ j)‖
}]2{∫ t

t0

‖
∫ T

0

f1(η, x(s+ η))− f1(η, y(s+ η))dη‖dsI[ξk,ξk+1)(t)

}2

≤ K2ϑ2‖g(x)− g(y)‖2 +K2 max{1, ϑ2}(t− t0)

∫ t

t0

‖f(s, x(s))− f(s, y(s))‖2ds

+K2 max{1, ϑ2}(t− t0)

∫ t

t0

‖
∫ T

0

f1(η, x(s+ η))− f1(η, y(s+ η))dη‖2ds.

E‖Fx(t)− Fy(t)‖2 ≤ K2ϑ2E‖g(x)− g(y)‖2

+K2 max{1, ϑ2}(T − t0)

∫ t

t0

E‖f(s, x(s))− f(s, y(s))‖2ds

+K2 max{1, ϑ2}(T − t0)

∫ t

t0

E‖
∫ T

0

f1(η, x(s+ η))− f1(η, y(s+ η))dη‖2ds

≤ K2ϑ2E‖g(x)− g(y)‖2

+K2 max{1, ϑ2}(T − τ)L0

∫ t

t0

E‖x(s)− y(s)‖2ds

+K2 max{1, ϑ2}(T − τ)L1

∫ t

t0

E‖x(s+ η)− y(s+ η)‖2ds.

Taking supremum over t, it follows that

‖Fx− Fy‖2 ≤ K2ϑ2L∗‖x− y‖2 +K2 max{1, ϑ2}(T − τ)2L0‖x− y‖2



Jose et al. 487

+K2 max{1, ϑ2}(T − τ)2L1‖x− y‖2

≤
[
K2ϑ2 max{1, ϑ2}(T − τ)2L

]
‖x− y‖2

≤ Γ‖x− y‖2,

where Γ = K2ϑ2 max{1, ϑ2}(T − τ)2L and L = L0 +L1 +
L∗

(T − τ)2
. From H5 and 0 < Γ < 1, we get that F

is a contraction mapping. Thus using Banach fixed point theorem we get F has a unique fixed point on B.
Hence (4) has a unique mild solution.

Remark 1 Let f : <τ ×X → X , f1 : <τ ×X → X and g : X → X satisfy the assumptions (H1)—(H5).
Then there exists a unique, global, continuous solution x to (4) for any initial value (t0, x0) with t0 ≥ 0 and
x0 ∈ B.

Remark 2 The above theorem is an extension of [19, Theorem 3.1]. Theorem 1 gives existence and unique-
ness of random impulsive integro-differential equations with nonlocal condition. This solution is practically
more useful than the solution of random impulsive differential equations.

Remark 3 Assume that all hypotheses hold. Then the mild solution for the system (7) without existence of
nonlocal condition and the solution is

x(t) =

+∞∑
k=0

[ k∏
i=1

bi(τ i)S(t− t0)x0 +

k∑
i=1

k∏
j=i

bj(τ j)

∫ ξi

ξi−1

S(t− s)f(s, x(s))ds

+

∫ t

ξk

S(t− s)f(s, x(s))ds+

k∑
i=1

k∏
j=i

bj(τ j)

∫ ξi

ξi−1

S(t− s)
∫ T

0

f1(η, x(s+ η))dηds

+

∫ t

ξk

S(t− s)
∫ T

0

f1(η, x(s+ η))dηds

]
I[ξk,ξk+1)(t), t ∈ [τ , T ].

5 Stability

Theorem 2 Let x(t) and x̂(t) be solutions of the system (4) with initial value x0 − g(x) and x̂0 − g(x̂)
respectively. If the assumptions (H1)—(H4) of Theorem 1 are satisfied, then the system (4) is stable in the
mean square.

Proof. From assumptions, x(t) and x̂(t) are two solutions of the system (4) for every t ∈ [τ , T ]. Then

x(t)− x̂(t) =

+∞∑
k=0

[ k∏
i=1

bi(τ i)S(t− t0)(x0 − x̂0) +

+∞∑
k=0

[ k∏
i=1

bi(τ i)S(t− t0)(g(x)− g(x̂))

+

k∑
i=1

k∏
j=i

bj(τ j)

∫ ξi

ξi−1

S(t− s)
{
f(s, x(s))− f(s, x̂(s))

}
ds

+

∫ t

ξk

S(t− s)
[
f(s, x(s))− f(s, x̂(s))

]
ds

+

k∑
i=1

k∏
j=i

bj(τ j)

∫ ξi

ξi−1

S(t− s)
{∫ T

0

[
f1(η, x(s+ η))− f1(η, x̂(s+ η))

]
dη

}
ds

+

∫ t

ξk

S(t− s)
{∫ T

0

[
f1(η, x(s+ η))− f1(η, x̂(s+ η))

]
dη

}
ds

]]
I[ξk,ξk+1)(t).
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By using (H1)—(H4), we get

‖x(t)− x̂(t)‖2

≤ 2

+∞∑
k=0

[ k∏
i=1

‖bi(τ i)‖2‖S(t− t0)‖2E‖x0 − x̂0‖2I[ξk,ξk+1)(t)

]

+2

+∞∑
k=0

[ k∏
i=1

‖bi(τ i)‖2‖S(t− t0)‖2E‖g(x)− g(x̂)‖2I[ξk,ξk+1)(t)

]

+2E

[ +∞∑
k=0

[ k∑
i=1

k∏
j=i

‖bj(τ j)‖
∫ ξi

ξi−1

‖S(t− s)‖‖f(s, x(s))− f(s, x̂(s))‖ds

+

∫ t

ξk

‖S(t− s)‖‖f(s, x(s))− f(s, x̂(s))‖ds
]
I[ξk,ξk+1)(t)

]2

+2E

[ +∞∑
k=0

[ k∑
i=1

k∏
j=i

‖bj(τ j)‖
∫ ξi

ξi−1

‖S(t− s)‖‖
∫ T

0

[
f1(η, x(s+ η))− f1(η, x̂(s+ η))

]
dη‖ds

+

∫ t

ξk

‖S(t− s)‖‖
∫ T

0

[
f1(η, x(s+ η))− f1(η, x̂(s+ η))

]
dη‖ds

]
I[ξk,ξk+1)(t)

]2

≤ 2K2 max
k

{
‖

k∏
i=1

bi(τ i)‖2
}
E‖(x0 − x̂0)‖2 + 2K2 max

k

{
‖

k∏
i=1

bi(τ i)‖2
}
E‖g(x)− g(x̂)‖2

+2K2

[
max
i,k

{
1,

k∏
j=i

‖bj(τ j)‖
}]2

E

{∫ t

t0

‖f(s, x(s))− f(s, x̂(s))‖dsI[ξk,ξk+1)(t)

}2

+2K2

[
max
i,k

{
1,

k∏
j=i

‖bj(τ j)‖
}]2

E

{∫ t

t0

‖
∫ T

0

[
f1(η, x(s+ η))− f1(η, x̂(s+ η))

]
dη‖dsI[ξk,ξk+1)(t)

}2

.

Taking supremum over t, it follows that

sup
t∈[τ,T ]

‖x(t)− x̂(t)‖2 ≤ 2K2ϑ2E‖x0 − x̂0‖2 + 2K2ϑ2E‖g(x)− g(x̂)‖2

+2K2 max{1, ϑ2}(T − τ)L0

∫ t

t0

sup
s∈[τ,T ]

E‖x(t)− x̂(t)‖2dη

+2K2 max{1, ϑ2}(T − τ)L1

∫ t

t0

sup
t∈[τ,T ]

E‖x(t+ η)− x̂(t+ η)‖2dη.

Using Grownwall inequality, we get

sup
t∈[τ,T ]

‖x(t)− x̂(t)‖2 ≤ 2K2ϑ2E‖x0 − x̂0‖2 exp
[
2K2 max(1, ϑ2)(T − τ)2

]
L

≤ ΓE‖x0 − x̂0‖2.

where

Γ = 2K2ϑ2

[
exp

[
2K2 max(1, ϑ2)(T − τ)2

]
L

]
and

L = L0 + L1 +
L∗

(T − τ)2
.
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Now given ε > 0, choose δ = ε
Γ such that E‖x0 − x̂0‖2 < δ. Then

sup
t∈[τ,T ]

E‖x(t)− x̂(t)‖ ≤ ε.

Remark 4 Random impulsive integro-differential equation with local initial condition is a special case of
the system (7). So the random impulsive integro-differential equation with local initial condition is stable in
mean square.

6 Example 1

Consider partial random impulsive differential equations
zt(t, x) = zxx(t, x) + F1(t, z(t, x)), t 6= ξk, t ≥ τ ,
z(x, ξk) = q(k)τkz(x, ξ

−
k ), as x ∈ 4̂,

z(t, 0) = z(t, π) = 0,

z(t0, x) +
∑q
j=1 cjz(pj , x) = z0(x), 0 < p1 < p2 < · · · < pq < T, x ∈ ∂4̂.

(6)

Let 4̂ ⊂ <n be a bounded domain with smooth boundary ∂4̂, X = L2(4̂), τk be random variable defined
on Dk ≡ (0, dk) for k ∈ N, dk ∈ (0,+∞) . Also assume that τk follow Erlang distribution and if i 6= j then
τ i and τ j are independent with each other for i, j = 1, 2, . . . . Here q is a function of k, ξk = ξk−1 + τk for
k ∈ N, t0 ∈ <+.

Let A be an operator on X by Az =
∂2z

∂x2
with the domain

D(A) =

{
z ∈ X | z and ∂z

∂x
are absolutely continuous,

∂2z

∂x2
∈ X, z = 0, z = π on ∂4̂

}
.

Thus A generates a strongly continuous semigroup S(t) which is analytic, self adjoint and compact. Fur-
thermore the operator A can be represented as

Az =

∞∑
n=1

n2 < z, zn > zn, z ∈ D(A).

Here zn(ζ) =
√

2
πSin(nζ), n = 1, 2, . . . , forms the orthonormal set of eigenvectors of A. Also for every z ∈ X,

S(t)z =
∑∞
n=1 e

(−n2t) < z, zn > zn, which holds ‖S(t)‖ ≤ e(−π2(t−t0)), t ≥ t0. Therefore S(t) is a contraction
semigroup.
Consider the following assumptions:

(i) f : <τ ×X → X, is a continuous function defined by

f(t, z)(x) = F1(t, z(x)), τ ≤ t ≤ T, 0 ≤ x ≤ π

and also function f satisfies the Lipschitz condition.

(ii) g : X → X is a continuous function defined by

g(u)(t) = x0(t)−
q∑
j=1

cjz(pj , x) 0 < p1 < p2 < · · · < pq < b x ∈ [0, π]

where x(s)(t) = z(s, t), 0 ≤ t ≤ π.
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(iii) E
[

maxi,k
{∏k

j=i ‖q(j)(τ j)‖
}]

<∞.

Under the conditions, we can define the function bk by

bk = q(k)τk.

Assume that assumptions (i) and (ii) are satisfied, then the problem (6) becomes an abstract random
impulsive differential equation.

Proposition 1 Assume that (H1)—(H4) hold. Then there exists a unique mild solution of the system (6)
respectively, provided

K2ϑ2 max{1, ϑ2}(T − τ)2
[
L0 +

L∗
(T − τ)2

]
< 1

is satisfied.

Proposition 2 Assume that the conditions of Proposition 1 hold. Then the mild solution z of the system
(6) is stable in the mean square.

Example 2

Consider partial integro-random impulsive differential equations
zt(t, x) = zxx(t, x) + F1(t, z(t, x)) +

∫ T
0
F2(η, z(tsinη, x))dη, t 6= ξk, t ≥ τ ,

z(x, ξk) = q(k)τkz(x, ξ
−
k ), as x ∈ 4̂,

z(t, 0) = z(t, π) = 0,

z(t0, x) +
∑q
j=1 cj

3
√
z(pj , x) = z0(x), 0 < p1 < p2 < · · · < pq < T, x ∈ ∂4̂.

(7)

Let 4̂ ⊂ <n be a bounded domain with smooth boundary ∂4̂, X = L2(4̂), τk be random variable defined
on Dk ≡ (0, dk) for k ∈ N, dk ∈ (0,+∞) . Also assume that τk follow Erlang distribution and if i 6= j then
τ i and τ j are independent with each other for i, j = 1, 2, . . . . Here q is a function of k, ξk = ξk−1 + τk for
k ∈ N, t0 ∈ <+.

Let A be an operator on X by Az =
∂2z

∂x2
with the domain

D(A) =

{
z ∈ X | z and ∂z

∂x
are absolutely continuous,

∂2z

∂x2
∈ X, z = 0, z = π on ∂4̂

}
.

Thus A generates a strongly continuous semigroup S(t) which is analytic, self adjoint and compact. Fur-
thermore the operator A can be represented as

Az =

∞∑
n=1

n2 < z, zn > zn, z ∈ D(A).

Here zn(ζ) =
√

2
πSin(nζ), n = 1, 2, . . . , forms the orthonormal set of eigenvectors of A. Also for every z ∈ X,

S(t)z =
∑∞
n=1 e

(−n2t) < z, zn > zn, which holds ‖S(t)‖ ≤ e(−π2(t−t0)), t ≥ t0. Therefore S(t) is a contraction
semigroup.
Consider the following assumptions:

(i) f : <τ ×X → X, f1 : <τ ×X → X is a continuous function defined by

f(t, z)(x) = F1(t, z(x)), τ ≤ t ≤ T, 0 ≤ x ≤ π,

f1(η, x(t+ η))dη =

∫ T

0

F2(η, z(tsinη, x))dη,

and also function f and f1 satisfies the Lipschitz condition.
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(ii) g : X → X is a continuous function defined by

g(u)(t) = x0(t)−
q∑
j=1

cj
3

√
x(pj , t), 0 ≤ t ≤ π,

where x(s)(t) = z(s, t), 0 ≤ t ≤ π.

(iii) E
[

maxi,k
{∏k

j=i ‖q(j)(τ j)‖
}]

<∞.

Under the conditions, we can define the function f1, bk by

bk = q(k)τk and f1(η, x(t+ η))dη =

∫ T

0

F2(η, z(tsinη, x))dη.

Assume that assumptions (i) and (ii) are satisfied. Then the problem (7) becomes an abstract random
impulsive integro-differential equation (4).

Proposition 3 Assume that (H1)—(H4) hold. Then there exists a unique mild solution of the system (7)
respectively, provided

K2ϑ2 max{1, ϑ2}(T − τ)2
[
L0 + L1 +

L∗
(T − τ)2

]
< 1

is satisfied.

Proposition 4 Assume that the conditions of Proposition 3 hold. Then the mild solution z of the system
(7) is stable in the mean square.

7 Conclusion

We have investigated the existence, uniqueness and stability of an integro-differential system with nonlocal
conditions. Here we used contraction mapping principle for proving the existence and uniqueness. Finally
some examples are given to show the importance of random implusive differential equations as well as inegro-
differential equations with nonlocal conditions. In future we can extend this work to fractional differential
equation and the results derived in this paper can be used to analyse the variation in the behaviour of the
solution with respect to the variation in the complexity of the system of differential equation considered.

Acknowledgment. The authors would like to thank the anonymous referee for his valuable comments.
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