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Abstract
In this paper, we first establish Hyers-Ulam and Hyers-Ulam-Rassias stability for the fractional order

Caputo nonlocal thermistor problem. Secondly, we prove the accompanying equation is Mittag-Leffl er-
Hyers-Ulam and Mittag-Leffl er-Hyers-Ulam-Rassias stable.

1 Introduction

The stability theory for functional equations started with a problem related to the stability of group homo-
morphism that was considered by Ulam in 1940 ([23]). The first answer to the question of Ulam was given
by Hyers in 1941 in the case of Banach spaces in [4]. Thereafter, this type of stability is called the Hyers-
Ulam stability. In 1978, Th. M. Rassias [18] generalized the Hyers Theorem by considering the stability
problem with unbounded Cauchy differences. In fact, he introduced a new type of stability which is called
the Hyers-Ulam-Rassias stability.
Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of a differential equation

[1]. Recently some authors ([5], [6], [22], [25] and [26]) extended the Ulam stability problem from an integer-
order differential equation to a fractional-order differential equation.
Fractional differential and integral equations can serve as an excellent tool for the description of mathe-

matical modeling of systems and processes in the fields of economics, physics, chemistry, aerodynamics, and
polymerrheology. It also serves as an excellent tool for the description of hereditary properties of various
materials and processes. For more details on the fractional calculus theory, one can see the monographs of
Kilbas et al. [7], Miller and Ross [16], Podlubny [17].
Thermistor is a thermo-electric device constructed from a ceramic material whose electrical conductivity

depends strongly on the temperature. This makes thermistor problems highly nonlinear [20]. They can be
used as a switching device in many electronic circuits. A broad application spectrum of thermistor problems
in heating processes and current flow can be found in several areas of electronics and its related industries [21].
Generally, there are two kinds of thermistors: the first have an electrical conductivity that decreases with
the increasing of temperature; the second have an electrical conductivity that increases with the increasing
of temperature [8, 15]. Here we consider a prototype of electrical conductivity that depends strongly in both
time and temperature. The global existence of solutions for a fractional Caputo nonlocal thermistor problem
was proved in [19]. Here, precisely we consider the following fractional order initial value problem:

CD2α
0,tu(t) =

λf(t, u(t))(∫ t
0
f(x, u(x))dx

)2 , t ∈ (0,∞),

u(t)|t=0 = u0,

(1)

where CD2α
0,t is the fractional Caputo derivative operator of order 2α with 0 < α < 1

2 a real parameter and
f : R+ × R+ → R+ is a continuous function. The function u denotes the temperature and λ is a positive
real.
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Choosing λ such that

0 < λ <

(
Lfh

2α

(C2
1Γ(2α+ 1)

+
2C2

2Lfh
2α

C4
1Γ(2α+ 1)

)−1

is discussed in section 3.
It is seen that the equation (1) is equivalent to the following equation:

u(t) = u0 +
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, u(s))(∫ t
0
f(x, u(x))dx

)2 ds. (2)

D. Vivek, K. Kanagarajan and Seenith Sivasundaram [24] studied dynamic and stability results for Hilfer
fractional type thermistor problem. In [2], the authors by defining all types of Mittag-Leffl er-Hyers-Ulam
stability of a fractional integral equation proved that every mapping of this type can be somehow approxi-
mated by an exact solution of the considered equation. In this paper we present similar definitions to that
of [2] and prove the stability results for equation (1).
The paper is organized as follows. In section 2, basic deffi nitions, notations and lemmas are given. In

section 3, the Hyers-Ulam and Hyers-Ulam-Rassias stability of fractional order initial value problem (1)
are proven. Section 4 is devoted to the Mittag-Leffl er-Hyers-Ulam and Mittag-Leffl er-Hyers-Ulam-Rassias
stability of problem (1).

2 Preliminaries

In this section, we introduce notations, definitions and theorems which are used throughout this paper from
the references [7, 9, 10, 11, 13, 16]. Let C[a, b] be the Banach space of all real valued continuous functions
on [a, b] endowed with the norm ‖x‖[a,b] := maxt∈[a,b] |x(t)|.

Definition 1 The Mittag-Leffl er function of one parameter is denoted by Eα(z) where z, α ∈ C, Re(α) > 0,
and defined by,

Eα(z) =

∞∑
k=o

zk

Γ(αk + 1)

where the Euler Gamma function Γ : (0,∞)→ R is defined by

Γ(α) =

∫ ∞
0

sα−1 exp(−s)ds.

Definition 2 The Riemann-Liouville integral of a function g with order α > 0 is defined by

RLI
α
0,tg(t) =

1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t > 0,

where Γ(.) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞
0

tξ−1e−tdt, ξ > 0.

Definition 3 The Riemann-Lioville fractional derivative of order α > 0 of a function g is defined by

RLD
α
0,tg(s) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1g(s)ds, t > 0,

where n− 1 < α < n ∈ Z+.
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Definition 4 The Caputo fractional derivative of order α ∈ (0, 1] of a function h ∈ L1{R+} is defined by

(cDα
0,tg(t) =

1

Γ(n− α)

∫ t

0

(t− s)α−1g(n)(s)ds,

where n− 1 < α < n ∈ Z+.

Lemma 1 ([12]) Let M be a subset of C([0, T ]). Then M is precompact if and only if the following condi-
tions hold:

(i) {u(t) : u ∈M} is uniformly bounded,

(ii) {u(t) : u ∈M} is equicontinuous on [0, T ].

Theorem 1 (Schauder fixed point theorem [12]) Let U be closed, convex and nonempty subset of a
Banach space X. Let T : U → U be a continuous mapping such that T (U) is relatively compact subset of X.
Then, T has at least one fixed point in U .

Lemma 2 (Generalized Gronwall inequality [3]) Let v : [0, b] → [0,+∞) be a real function and w(.)
be a nonnegative, locally integrable function on [0, b]. Suppose that there exist a > 1 and 0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)α ds.

Then, there exists a constant K = K(α) such that

v(t) ≤ w(t) +Ka

∫ t

0

w(s)

(t− s)α ds

for all t ∈ [0, b].

3 Hyers-Ulam Stability and Hyers-Ulam-Rassias Stability

Consider the following fractional order initial value problem

CD2α
0,tu(t) =

λf(t, u(t))(∫ t
0
f(x, u(x))dx

)2 , t > 0, (3)

and the following fractional inequalities:∣∣∣∣∣∣∣CD2α
0,tz(t)−

λf(t, z(t))(∫ t
0
f(x, z(x))dx

)2

∣∣∣∣∣∣∣ ≤ ε, t > 0, (4)

∣∣∣∣∣∣∣CD2α
0,tz(t)−

λf(t, z(t))(∫ t
0
f(x, z(x))dx

)2

∣∣∣∣∣∣∣ ≤ εϕ(t), t > 0, (5)

∣∣∣∣∣∣∣CD2α
0,tz(t)−

λf(t, z(t))(∫ t
0
f(x, z(x))dx

)2

∣∣∣∣∣∣∣ ≤ ϕ(t), t > 0. (6)
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Definition 5 Equation (3) is Hyers-Ulam stable if there exists a real number c > 0 such that for each ε > 0
and for each solution z ∈ C [0, h] of inequality (4), there exists a solution u ∈ C [0, h] of equation (3) with

|z(t)− u(t)| ≤ cε, t > 0.

Definition 6 Equation (3) is generalized Hyers-Ulam stable if there exists θ ∈ C([0,∞) , [0,∞)), θ(0) = 0
such that, for each solution z ∈ C [0, h] of inequality (4), there exists a solution u ∈ C [0, h] of equation (3)
with

|z(t)− u(t)| ≤ θ(ε), t > 0.

Definition 7 Equation (3) is Hyers-Ulam-Rassias stable if there exists a real number cϕ > 0 such that
for each ε > 0 and for each solution z ∈ C [0, h] of inequality (5), there exists a solution u ∈ C [0, h] of
equation(4) with

|z(t)− u(t)| ≤ cϕεϕ(t), t > 0.

Definition 8 Equation (3) is generalized Hyers-Ulam-Rassias stable if there exists a real number cϕ > 0
such that for each solution z ∈ C [0, h] of inequality (6), there exists a solution u ∈ C [0, h] of equation (3)
with

|z(t)− u(t)| ≤ cϕϕ(t), t > 0.

Remark 1 A function z ∈ C [0, h] is a solution of inequality (4) if and only if there exists a function
g ∈ C [0, h] (which depends on solution z) such that

1. |g(t)| ≤ ε, t > 0.

2. CD2α
0,tz(t) =

λf(t, z(t))

(
∫ t

0
f(x, z(x))dx)2

+ g(t), t > 0.

We consider the following hypotheses:

(H1) f : R+ × R+ → R+ is a Lipschitz continuous function with Lipschitz constant Lf with respect to the
second variable such that c1 ≤ f(s, u) ≤ c2 with c1 and c2 two positive constants;

(H2) there exists a positive constant M such that f(s, u) ≤Ms2;

(H3) |f(s, u) − f(s, v)| ≤ s2|u − v| or, in a more general manner, there exists a constant w ≥ 2 such that
|f(s, u)− f(s, v)| ≤ sw|u− v|;

(H4) There exists an increasing function ϕ ∈ C [0, h] and there exists λϕ > 0 such that for any t > 0,
CI2α

0,tϕ(t) ≤ λϕϕ(t).

Lemma 3 Suppose that assumptions (H1)—(H3) are satisfied. Then the initial value problem (1) is equivalent
to the integral equation (2) .

Proof. It is a simple exercise to see that u is a solution of the integral equation (2) if and if only it is also
a solution of the IVP (1).

Theorem 2 ([19]) Suppose that conditions (H1)—(H3) are verified. Then (1) has at least one solution
u ∈ C [0, h] for some T ≥ h > 0.

Lemma 4 (Uniqueness). Assume that the assumptions (H1)—(H3) are satisfied. If

λh2αLf
c21Γ(2α+ 1)

+
2λc22h

2αLf
c41Γ(2α+ 1)

< 1, (7)

and

0 < λ <

(
Lfh

2α

(C2
1Γ(2α+ 1)

+
2C2

2Lfh
2α

C4
1Γ(2α+ 1)

)−1

,

then the problem (1) has a unique solution.
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Proof. Consider the operator A : C [0, h]→ C [0, h]

(Au)(t) = u0 +
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, u(s))(∫ t
0
f(x, u(x))dx

)2 ds. (8)

It is clear that the fixed points of A are solutions of problem (1). Let u, v ∈ C [0, h] and t > 0. Then we have

|(Av)(t)− (Au)(t)| ≤ λ

Γ(2α)

∫ t

0

(t− s)2α−1

∣∣∣∣∣∣∣
f(s, v(s))(∫ t

0
f(x, v(x))dx

)2 −
f(s, u(s))(∫ t

0
f(x, u(x))dx

)2

∣∣∣∣∣∣∣ ds
≤
(

λh2αLf
(c1)2Γ(2α+ 1)

+
2λc22h

2αLf
(c1)4Γ(2α+ 1)

)
‖v − u‖C[0,h].

Then

‖Av −Au‖C[0,h] ≤
(

λh2αLf
(c1)2Γ(2α+ 1)

+
2λc22h

2αLf
(c1)4Γ(2α+ 1)

)
‖v − u‖C[0,h].

Choosing λ such that

0 < λ <

(
Lfh

2α

(C2
1Γ(2α+ 1)

+
2C2

2Lfh
2α

C4
1Γ(2α+ 1)

)−1

,

the map A : C [0, h]→ C [0, h] is a contraction. From (7), it follows that A has a unique fixed point, which
is a solution of problem (1).

Theorem 3 If assumptions (H1)—(H3) and the equation (7) are satisfied, then the problem (1) is Hyers-
Ulam stable.

Proof. Let ε > 0 and z ∈ C [0, h] be a function that satisfies inequality in the inequality (4) and let
u ∈ C [0, h] be a unique solution of the problem

CD2α
0,tu(t) =

λf(t, u(t))(∫ t
0
f(x, u(x))dx

)2 , t > 0,

u(t)|t=0 = z(t)|t=0 = u0,

where 0 < α < 1
2 . From Lemma 3, we have

u(t) = u0 +
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, u(s))(∫ t
0
f(x, u(x))dx

)2 ds.

By using of (4), we get∣∣∣∣∣∣∣z(t)− u0 −
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, z(s))(∫ t
0
f(x, z(x))dx

)2 ds

∣∣∣∣∣∣∣ ≤
εh2α

Γ(2α+ 1)
(9)
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for all t > 0. So it follows that

|z(t)− u(t)| ≤
∣∣∣∣∣z(t)− u0 −

λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, u(s))

(
∫ t

0
f(x, u(x))dx)2

ds

∣∣∣∣∣
≤
∣∣∣∣∣z(t)− u0 −

λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

ds

∣∣∣∣∣
+

λ

Γ(2α)

∫ t

0

(t− s)2α−1

∣∣∣∣∣ f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

− f(s, u(s))

(
∫ t

0
f(x, u(x))dx)2

∣∣∣∣∣ ds
≤ εh2α

Γ(2α+ 1)
+

λ

Γ(2α)

∫ t

0

(t− s)2α−1 1

(
∫ t

0
f(x, z(x))dx)2

|f(s, z(s))− f(s, u(s))|ds

+
λ

Γ(2α)

∫ t

0

(t− s)2α−1|f(s, u(s))|
∣∣∣∣∣ 1

(
∫ t

0
f(x, z(x))dx)2

− 1

(
∫ t

0
f(x, u(x))dx)2

∣∣∣∣∣ ds.
We set

I1 =
λ

Γ(2α)

∫ t

0

(t− s)2α−1 1(∫ t
0
f(x, z(x))dx

)2 |f(s, z(s))− f(s, u(s))|ds,

I2 =
λ

Γ(2α)

∫ t

0

(t− s)2α−1|f(s, u(s))|

∣∣∣∣∣∣∣
1(∫ t

0
f(x, z(x))dx

)2 −
1(∫ t

0
f(x, u(x))dx

)2

∣∣∣∣∣∣∣ ds. (10)

Now, we estimate I1, I2 terms separately. We have

I1 ≤
λ

Γ(2α)

∫ t

0

(t− s)2α−1 1(∫ t
0
f(x, z(x))dx

)2 |f(s, z(s))− f(s, u(s))|ds

≤ λ

(c1t)2Γ(2α)

∫ t

0

(t− s)2α−1|f(s, z(s))− f(s, u(s))|ds

≤ λLf
c21Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds, (11)

and

I2 ≤
λ

Γ(2α)

∫ t

0

(t− s)2α−1|f(s, u(s))|

∣∣∣∣∣∣∣
1(∫ t

0
f(x, z(x))dx

)2 −
1(∫ t

0
f(x, u(x))dx

)2

∣∣∣∣∣∣∣
≤ λ

Γ(2α)

∫ t

0

(t− s)2α−1|f(s, u(s))|

∣∣∣∣(∫ t0 f(x, z(x))dx
)2

−
(∫ t

0
f(x, u(x))dx

)2
∣∣∣∣(∫ t

0
f(x, z(x))dx

)2 (∫ t
0
f(x, u(x))dx

)2 ds

≤ 2λc22t
4Lf

(c1t)4Γ(2α)
‖z − u‖C[0,h]

∫ t

0

(t− s)2α−1ds

≤ 2λc22Lf
c41Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds. (12)
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Substituting (11) and (12) into (10), we get

|z(t)− u(t)| ≤ εh2α

Γ(2α+ 1)
+

λLf
c21Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds

+
2λc22Lf
c41Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds

≤ εh2α

Γ(2α+ 1)
+

(
λLf
c21

+
2λc22Lf
c41

)
1

Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds.

By Lemma 2, we have

|z(t)− u(t)| ≤ h2α

Γ(2α+ 1)
[1 +

Kh2α

Γ(2α+ 1)
(
λLf
c21

+
2λc22Lf
c41

)]ε := cε,

where K = K(α) is a constant, which completes the proof of the theorem.

Theorem 4 If assumptions (H1)—(H4) and the equation (7) are satisfied, then the problem (1) is Hyers-
Ulam-Rassias stable.

Proof. Let z ∈ C [0, h] be a solution of inequality (5) and let u ∈ C [0, h] be a unique solution of the
following thermistor problem 

CD2α
0,tu(t) =

λf(t, u(t))(∫ t
0
f(x, u(x))dx

)2 , t > 0,

u(t)|t=0 = z(t)|t=0 = u0,

where 0 < α < 1
2 . From Lemma 3, we have

u(t) = u0 +
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, u(s))

(
∫ t

0
f(x, u(x))dx)2

ds.

By using of (5) and assumption (H4), we get∣∣∣∣∣z(t)− u0 −
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

ds

∣∣∣∣∣ ≤ ελϕϕ(t) (13)

for all t > 0. From above relations, it follows that:

|z(t)− u(t)| ≤
∣∣∣∣∣z(t)− u0 −

λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, u(s))

(
∫ t

0
f(x, u(x))dx)2

ds

∣∣∣∣∣
≤
∣∣∣∣∣z(t)− u0 −

λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

ds

∣∣∣∣∣
+

λ

Γ(2α)

∫ t

0

(t− s)2α−1

∣∣∣∣∣ f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

− f(s, u(s))

(
∫ t

0
f(x, u(x))dx)2

∣∣∣∣∣ ds
≤ ελϕϕ(t) +

λ

Γ(2α)

∫ t

0

(t− s)2α−1 1

(
∫ t

0
f(x, z(x))dx)2

|f(s, z(s))− f(s, u(s))|ds

+
λ

Γ(2α)

∫ t

0

(t− s)2α−1|f(s, u(s))|
∣∣∣∣∣ 1

(
∫ t

0
f(x, z(x))dx)2

− 1

(
∫ t

0
f(x, u(x))dx)2

∣∣∣∣∣ ds. (14)
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Substituting (11) and (12) into (14), we get

|z(t)− u(t)| ≤ ελϕϕ(t) +
λLf

c21Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds

+
2λc22Lf
c41Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds

≤ ελϕϕ(t) +

(
λLf
c21

+
2λc22Lf
c41

)
1

Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds.

By Lemma 2, we have

|z(t)− u(t)| ≤
[
(1 +K1λϕ(

λLf
c21

+
2λc22Lf
c41

))λϕ

]
εϕ(t) := cεϕ(t),

where K1 = K1(α) is a constant, which completes the proof of the theorem.

4 Mittag-Leffl er-Hyers-Ulam andMittag-Leffl er-Hyers-Ulam-Rassias
stability

In this section we study the Mittag-Leffl er-Hyers-Ulam and Mittag-Leffl er-Hyers-Ulam-Rassias stability for
thermistor problem.

Definition 9 Equation (3) is Mittag-Leffl er-Hyers-Ulam stable with respect to Eα if there exists a real
number c > 0 such that for each ε > 0 and for each solution z ∈ C [0, h] of inequality (4), there exists a
solution u ∈ C [0, h] of equation (3) with

|z(t)− u(t)| ≤ cεEα(t), t > 0.

Definition 10 Equation (3) is generalized Mittag-Leffl er-Hyers-Ulam stable with respect to Eα if there exists
θ ∈ C([0,∞) , [0,∞)), θ(0) = 0 such that, for each solution z ∈ C [0, h] of inequality (4), there exists a solution
u ∈ C [0, h] of equation (3) with

|z(t)− u(t)| ≤ θ(ε)Eα(t), t > 0.

Definition 11 Equation (3) is Mittag-Leffl er-Hyers-Ulam-Rassias stable with respect to ϕEα if there exists
a real number cϕ > 0 such that for each ε > 0 and for each solution z ∈ C [0, h] of inequality (5), there exists
a solution u ∈ C [0, h] of equation (3) with

|z(t)− u(t)| ≤ cϕεϕ(t)Eα(t), t > 0.

Definition 12 Equation (3) is generalized Mittag-Leffl er-Hyers-Ulam-Rassias stable with respect to ϕEα if
there exists a real number cϕ > 0 such that for each solution z ∈ C [0, h] of inequality (6), there exists a
solution u ∈ C [0, h] of equation (3) with

|z(t)− u(t)| ≤ cϕϕ(t)Eα(t), t > 0.

Theorem 5 ([14]) For any t ∈ [0, b), if

u(t) ≤ a(t) +

n∑
i=1

bi(t)

∫ t

0

(t− s)βi−1u(s)ds,

where all the functions are not negative and continuous and the constants βi > 0. bi(i = 1, 2, ..., n) are the
bounded and monotonic increasing functions on [0, b), then

u(t) ≤ a(t) +

∞∑
k=1

 n∑
1′ ,2′ ,...k′=1

∏k
i=1[bi′ (t)Γ(βi′ )]

Γ(
∑k
i=1 βi′ )

∫ t

0

(t− s)
∑k

i=1 βi−1a(s)ds

 .



524 Generalized Stability

Remark 2 If the constants b1 ≥ 0, β1 > 0, a(t) are nonnegative and locally integrable on 0 ≤ t < b and
u(t) is nonnegative and locally integrable on 0 ≤ t < b with

u(t) ≤ a(t) + b1

∫ t

0

(t− s)β1−1u(s)ds,

then we have

u(t) ≤ a(t) +

∞∑
k=1

[
(b1Γ(β1))k

Γ(kβ1)

∫ t

0

(t− s)kβ1−1a(s)ds

]
.

Remark 3 Under the hypotheses of Remark 2, let a(t) is a nondecreasing function on 0 ≤ t < b. We have

u(t) ≤ a(t)(Eβ1 [b1Γ(β1)tβ1 ]),

where Eα is the Mittag-Leffl er function [17] defined by Eα [z] =
∑∞
k=0

zk

Γ(kα+1) , z ∈ C.

Theorem 6 If assumptions (H1)—(H3) are satisfied and

λh2αLf
c21Γ(2α+ 1)

+
2λc22h

2αLf
c41Γ(2α+ 1)

< 1,

then the problem (1) is Mittag-Leffl er- Hyers-Ulam stable.

Proof. Let ε > 0 and let z ∈ C [0, h] be a function that satisfies inequality (4) and let u ∈ C [0, h] be a
unique solution of the following thermistor problem

CD2α
0,tu(t) =

λf(t, u(t))(∫ t
0
f(x, u(x))dx

)2 , t > 0,

u(t)|t=0 = z(t)|t=0 = u0,

where 0 < α < 1
2 . From Lemma 3, we have

u(t) = u0 +
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, u(s))(∫ t
0
f(x, u(x))dx

)2 ds.

By using of (4), we get∣∣∣∣∣∣∣z(t)− u0 −
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, z(s))(∫ t
0
f(x, z(x))dx

)2 ds

∣∣∣∣∣∣∣ ≤
εh2α

Γ(2α+ 1)

for all t > 0. From these relations, we have

|z(t)− u(t)| ≤
∣∣∣∣∣z(t)− u0 −

λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

ds

∣∣∣∣∣
+

λ

Γ(2α)

∫ t

0

(t− s)2α−1

∣∣∣∣∣ f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

− f(s, u(s))

(
∫ t

0
f(x, u(x))dx)2

∣∣∣∣∣ ds
≤ εh2α

Γ(2α+ 1)
+

λ

Γ(2α)

∫ t

0

(t− s)2α−1 1

(
∫ t

0
f(x, z(x))dx)2

|f(s, z(s))− f(s, u(s))|ds

+
λ

Γ(2α)

∫ t

0

(t− s)2α−1|f(s, u(s))|
∣∣∣∣∣ 1

(
∫ t

0
f(x, z(x))dx)2

− 1

(
∫ t

0
f(x, u(x))dx)2

∣∣∣∣∣ ds. (15)
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We get

|z(t)− u(t)| ≤ εh2α

Γ(2α+ 1)
+

λLf
c21Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds

+
2λc22Lf
c41Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds

≤ εh2α

Γ(2α+ 1)
+

(
λLf
c21

+
2λc22Lf
c41

)
1

Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds,

by using Remark 2 and Remark 3, we have

|z(t)− u(t)| ≤ εh2α

Γ(2α+ 1)

(
E2α((

λLf
c21

+
2λc22Lf
c41

)t2α)

)
:= cεEα(t).

Thus we obtain the Mittag-Leffl er-Hyers-Ulam Stability for the problem (1).

Theorem 7 With assumptions (H1)—(H4) and the inequality

λh2αLf
c21Γ(2α+ 1)

+
2λc22h

2αLf
c41Γ(2α+ 1)

< 1,

problem (1) is Mittag-Leffl er-Hyers-Ulam-Rassias stable.

Proof. Let z ∈ C [0, h] be a solution of inequality (5) and let u ∈ C [0, h] be a unique solution of the
following thermistor problem 

CD2α
0,tu(t) =

λf(t, u(t))(∫ t
0
f(x, u(x))dx

)2 , t > 0,

u(t)|t=0 = z(t)|t=0 = u0,

where 0 < α < 1
2 . From Lemma 3, we have

u(t) = u0 +
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, u(s))

(
∫ t

0
f(x, u(x))dx)2

ds.

By using of (5) and assumption (H4), we get∣∣∣∣∣z(t)− u0 −
λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

ds

∣∣∣∣∣ ≤ ελϕϕ(t) (16)

for all t > 0. From above relations, it follows that:

|z(t)− u(t)| ≤
∣∣∣∣∣z(t)− u0 −

λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, u(s))

(
∫ t

0
f(x, u(x))dx)2

ds

∣∣∣∣∣
≤
∣∣∣∣∣z(t)− u0 −

λ

Γ(2α)

∫ t

0

(t− s)2α−1 f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

ds

∣∣∣∣∣
+

λ

Γ(2α)

∫ t

0

(t− s)2α−1

∣∣∣∣∣ f(s, z(s))

(
∫ t

0
f(x, z(x))dx)2

− f(s, u(s))

(
∫ t

0
f(x, u(x))dx)2

∣∣∣∣∣ ds
≤ ελϕϕ(t) +

λ

Γ(2α)

∫ t

0

(t− s)2α−1 1

(
∫ t

0
f(x, z(x))dx)2

|f(s, z(s))− f(s, u(s))|ds

+
λ

Γ(2α)

∫ t

0

(t− s)2α−1|f(s, u(s))|
∣∣∣∣∣ 1

(
∫ t

0
f(x, z(x))dx)2

− 1

(
∫ t

0
f(x, u(x))dx)2

∣∣∣∣∣ ds. (17)
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Substituting (11) and (12) into (17), we get

|z(t)− u(t)| ≤ ελϕϕ(t) +
λLf

c21Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds

+
2λc22Lf
c41Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds

≤ ελϕϕ(t) + (
λLf
c21

+
2λc22Lf
c41

)
1

Γ(2α)

∫ t

0

(t− s)2α−1|z(s)− u(s)|ds.

By Remarks 2 and 3, we have

|z(t)− u(t)| ≤ ελϕϕ(t)

(
E2α((

λLf
c21

+
2λc22Lf
c41

)t2α)

)
:= cϕεϕ(t)Eα(t).

Thus the conclusion of our theorem holds.
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