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Abstract

By using the boundary Schwarz lemma of Osserman, certain inequalities for the derivatives of the
polynomials with restricted zeros are obtained. These estimates strengthen some well known inequalities
for polynomial due to Turán, Dubinin and others.

1 Introduction

Polynomials permeate mathematics, and much that is attractive in mathematics is related to polynomials.
Almost every branch of mathematics, from algebraic number theory and algebraic geometry to applied analy-
sis, Fourier analysis, numerical analysis and computer sciences, has its corpus of theory arising from study
of polynomials. Historically, the question relating to polynomials, for example, the solution of polynomial
equations and the approximation by polynomials, gave rise to some of the most important problems of the
day. The concept of best approximation was introduced in mathematical analysis mainly by the work of the
famous mathematician Chebyshev(1821-1894), who studied some properties of polynomial with least devia-
tion from given continuous function. He introduced the polynomial known today as Chebyshev polynomial
of first kind, which appear prominently in various extremal problems with polynomial. Extremal problems
of Markov and Bernstein (see[17]) for polynomial such as inequalities for the derivative of a polynomial are
very important in polynomial approximation theory. The first result in this area was connected with some
investigation of well-known Russain chemist Mendelveev [13]. In fact, Mendeleev’s problem was to know
how large is the modulus of the derivative of a polynomial on a given interval? A.A. Markov [12] provided
solution to this problem for polynomial of degree n. An analogue of Markov’s theorem for the unit disk in
the complex plane instead of the interval [-1,1] was formulated by Bernstein (see [14]). Inequalities of Markov
and Bernstein-type are fundamental for the proofs of many inverse theorems in polynomial approximation
theory (see Ivanov [9], Lorentz [10], Telyakovskii [19]). For instance, Telyakovskii [19] writes: Among those
that are fundamental in approximation theory are the extremal problems connected with inequalities for
the derivatives of polynomials. The use of inequalities of this kind is a fundamental method in proofs of
inverse problems of approximation theory (as can be seen in [6, p. 241]). As such further progress in inverse
theorems has depended on first obtaining a corresponding generalization or analog of Markov’s and Bern-
stein’s inequalities and therefore, it is of interest to obtain refinements and generalizations of polynomial
inequalities.

Let Pn denote the space of all algebraic polynomials of the form P (z) =
n∑
ν=0

aνz
ν of degree n and let

P ′(z) be the derivative of P (z). Then concerning the maximum of |P ′(z)| in terms of maximum of |P (z)|
on |z| = 1, Turán [20] showed that if P ∈ Pn and P (z) has all zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|. (1)
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Equality in (1) holds for those polynomials P ∈ Pn which have all their zeros on |z| = 1. As an extension of
(1), Govil [8] proved that if P ∈ Pn and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ n

1 + kn
max
|z|=1

|P (z)|. (2)

In literature, there exist several generalizations and extensions of (1) and (2) (see [1], [2], [4], [5], [18] ).
Dubinin [7] used the boundary Schwarz lemma due to Osserman [15] to obtain an interesting refinement of
(1), in fact, proved that if all the zeros of P ∈ Pn lie in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥ 1
2

(
n+
|an| − |a0|
|an|+ |a0|

)
max
|z|=1

|P (z)|. (3)

The polar derivative DαP (z) of P ∈ Pn with respect to the point α ∈ C is defined by

DαP (z) := nP (z) + (α− z)P ′(z).

The polynomial DαP (z) is of degree at most n− 1 and it generalizes the ordinary derivative P ′(z) of P (z)
in the sense that

lim
α→∞

DαP (z)

α
= P ′(z) (4)

uniformly for |z| ≤ R,R > 0.
A. Aziz [1], Aziz and Rather ([4], [5]) obtained several sharp estimates for maximum modulus of DαP (z)

on |z| = 1 and among other things they extended inequality (2) to the polar derivative of a polynomial by
showing that if P ∈ Pn and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then for every α ∈ C with |α| ≥ k

max
|z|=1

|DαP (z)| ≥
n(|α| − k)
1 + kn

max
|z|=1

|P (z)|. (5)

2 Lemmas

For the proof of theorems we require the following lemmas. The first Lemma is a simple deduction from
Maximum Modulus Principle (see [14] or [16]).

Lemma 1 If P ∈ Pn, then for R ≥ 1,

max
|z|=R

|P (z)| ≤ Rnmax
|z|=1

|P (z)| .

The next Lemma is due to Aziz [1].

Lemma 2 If P ∈ Pn has all its zeros in |z| ≤ k where k ≥ 1, then

max
|z|=k

|P (z)| ≥ 2kn

1 + kn
|P (z)| for |z| = 1.

From Lemma 2, we deduce:

Lemma 3 If P ∈ Pn has all its zeros in |z| ≤ k where k ≥ 1, then

max
|z|=k

|P (z)| ≥ 2kn

1 + kn
max
|z|=1

|P (z)|+ kn − 1
kn + 1

min
|z|=k

|P (z)|.
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Proof. Let m = min|z|=k |P (z)|. Then m ≤ |P (z)| for |z| = k. If m = 0, then the result follows from
Lemma 2 so we assume m > 0. By Rouche’s theorem, it follows that all the zeros of the polynomial
f(z) = P (z) + λm lie in |z| < k where k ≥ 1 for every λ with |λ| < 1. Applying Lemma 2 to the polynomial
f(z), we get

max
|z|=k

|P (z) + λm| ≥ 2kn

kn + 1
|P (z) + λm| for |z| = 1. (6)

Choosing argument of λ in the right hand side of (6) such that

|P (z) + λm| = |P (z)|+ |λ|m,

we obtain,

max
|z|=k

|P (z)|+ |λ|m ≥ 2kn

kn + 1
{|P (z)|+ |λ|m} for |z| = 1.

Hence,

max
|z|=k

|P (z)| ≥ 2kn

1 + kn
max
|z|=1

|P (z)|+
(
kn − 1
kn + 1

)
lm.

where m = min|z|=k |P (z)| and 0 ≤ l < 1. This proves Lemma.
The next lemma is special case of a result due to Aziz and Rather [3, 4].

Lemma 4 If P ∈ Pn and P (z) has its all zeros in |z| ≤ 1, then for |z| = 1,

|Q′(z)| ≤ |P ′(z)|

where Q(z) = znP
(
1/z
)
.

Lemma 5 If all the zeros of P ∈ Pn lie in a circular region C and w is any zero of DαP (z), the polar
derivative of P (z), then at most one of the points w and α may lie outside C.

The above lemma is due to Laguerre (see [11]). Finally we need the following lemma due to R.Osserman
[15], known as boundary Schwarz lemma.

Lemma 6 If

(a) T (z) is analytic for |z| < 1,

(b) |T (z)| < 1 for |z| < 1,

(c) T (0) = 0,

(d) for some b with |b| = 1, T (z) extends continuously to b, |T (b)| = 1 and T ′(b) exists.

Then
|T ′(b)| ≥ 2

1 + |T ′(0)| .

3 Main Results

In this paper we present certain refinements and generalizations of inequalities (1), (2), (3) and (5). We first
present the following result.

Theorem 7 If P ∈ Pn and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ 1

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=1

|P (z)|. (7)

The result is sharp and equality holds for P (z) = zn + kn.
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Proof. By hypothesis P ∈ Pn and P (z) has all zeros in |z| ≤ k, k ≥ 1. If f(z) = P (kz), then f ∈ Pn and
f(z) has all zeros in |z| ≤ 1 and hence all the zeros of znf(1/z) lie in |z| ≥ 1.
Now consider the function

G(z) =
f(z)

zn−1f(1/z)
,

which gives for |z| = 1,
zG′(z)

G(z)
= 1− n+ zf ′(z)

f(z)
+

(
zf ′(z)

f(z)

)
so that

Re

(
zG′(z)

G(z)

)
= 1− n+ 2Re

(
zf ′(z)

f(z)

)
. (8)

Using the fact that
zG′(z)

G(z)
= |G′(z)| for |z| = 1,

we get from (8), for points z on |z| = 1 with f(z) 6= 0,

1− n+ 2Re
(
zf ′(z)

f(z)

)
= |G′(z)|.

Applying lemma 6 to G(z) we obtain for all points on |z| = 1 with f(z) 6= 0,

1− n+ 2Re
(
zf ′(z)

f(z)

)
≥ 2

1 + |G′(0)| ,

that is, for |z| = 1 with f(z) 6= 0,

Re

(
zf ′(z)

f(z)

)
≥ 1
2

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
.

This implies ∣∣∣∣zf ′(z)f(z)

∣∣∣∣ ≥ 12
(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
and hence,

|f ′(z)| ≥ 1
2

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
|f(z)|

Replacing f(z) by P (kz), we get for |z| = 1,

k|P ′(kz)| ≥ 1
2

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
|P (kz)|,

or equivalently,

max
|z|=k

|P ′(z)| ≥ 1

2k

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=k

|P (z)|. (9)

Since P ′(z) is a polynomial of degree n− 1, by Lemma 1 with R = k ≥ 1, we have

max
|z|=k

|P ′(z)| ≤ kn−1max
|z|=1

|P ′(z)|.

Using this inequality and Lemma 2 in inequality (9), we get

max
|z|=1

|P ′(z)| ≥ 1

1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=1

|P (z)|.

This completes the proof of Theorem.
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Remark 1 Since all the zeros of P (z) lie in |z| ≤ k, therefore, |a0| ≤ kn|an| and hence (7) refines (2).

Example 1 Consider the polynomial P (z) = z3 + 6z2 + 11z + 6, clearly it satisfies all the conditions of
Theorem 7 with k = 3,max|z|=1 |P (z)| = 24 and max|z|=1 |P ′(z)| = 26. On substituting these one can easily
see that the conclusion of Theorem 7 holds.

Theorem 8 If all the zeros of P ∈ Pn lie in |z| ≤ k, k ≥ 1, then for 0 ≤ l < 1,

max
|z|=1

|P ′(z)| ≥ n

(1 + kn)

(
max
|z|=1

|P (z)|+ lm
)
+

1

kn(1 + kn)

(
kn|an| − lm− |a0|
kn|an| − lm+ |a0|

){
knmax
|z|=1

|P (z)|− lm
}
, (10)

where m = min|z|=k |P (z)|. The result is sharp and equality holds for P (z) = zn + kn.

Proof. By hypothesis P ∈ Pn and P (z) has all its zeros in |z| ≤ k, k ≥ 1. If P (z) has a zero on |z| = k,
then m = min|z|=k |P (z)| = 0 and result follows from theorem 7. Henceforth, we assume that P (z) has all
its zeros in |z| < k, k ≥ 1 so that m > 0. Now if f(z) = P (kz), then f ∈ Pn has all its zeros in |z| < 1 and
and m = min|z|=k |P (z)| = min|z|=1 |f(z)|. This implies, m ≤ |f(z)| for |z| = 1, hence for every λ ∈ C with
|λ| < 1, we have

|mλzn| < |f(z)| for |z| = 1.

By Rouche’s theorem it follows that g(z) = f(z)+λmzn has all its zeros in |z| < 1. Now proceeding similarly
as in the proof of Theorem 7 (with f(z) replacing by g(z)), we obtain

|g′(z)| ≥ 1
2

(
n+
|knan + λm| − |a0|
|knan + λm|+ |a0|

)
|g(z)| for |z| = 1.

Using the fact that the function t(x) = x−|a|
x+|a| is non-decreasing function of x and |k

nan+λm| ≥ kn|an|−|λm|,
we get for every λ ∈ C with |λ| < 1 and |z| = 1,

|g′(z)| ≥ 1
2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
|g(z)|. (11)

Equivalently for |z| = 1 and |λ| < 1,

|f ′(z) + nmλzn−1| ≥ 1
2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
(|f(z)| −m|λ|). (12)

Since all the zeros of g(z) = f(z)+λmzn lie in |z| < 1, by Guass Lucas Theorem it follows that all the zeros
of g′(z) = f ′(z) + λnmzn−1 lie in |z| < 1. This implies

|f ′(z)| ≥ nm for |z| ≥ 1. (13)

Choosing argument of λ in the left hand side of (12) such that

|f ′(z) + nmλzn−1| = |f ′(z)| − nm|λ| for |z| = 1,

which is possible by (13), we get

|f ′(z)| − nm|λ| ≥ 1
2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
(|f(z)| −m|λ|),

that is,

|f ′(z)| ≥ 1
2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
|f(z)|+ 1

2

(
n− kn|an| − |λm| − |a0|

kn|an| − |λm|+ |a0|

)
|λ|m.
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Replacing f(z) by P (kz), we get

kmax
|z|=k

|P ′(z)| ≥ 1
2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
max
|z|=k

|P (z)|+ 1
2

(
n− kn|an| − |λm| − |a0|

kn|an| − |λm|+ |a0|

)
|λ|m.

Using Lemma 1 with R = k ≥ 1 and Lemma 3, we obtain

knmax
|z|=1

|P ′(z)| ≥ 1

2

(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

){
2kn

1 + kn
max
|z|=1

|P (z)|+
(
kn − 1
kn + 1

)
|λ|m

}
+
1

2

(
n− kn|an| − |λm| − |a0|

kn|an| − |λm|+ |a0|

)
|λ|m,

which on simplification yields,

max
|z|=1

|P ′(z)| ≥ n

(1 + kn)

(
max
|z|=1

|P (z)|+ |λ|m
)
+

1

kn(1 + kn)

(
kn|an| − |λ|m− |a0|
kn|an| − |λ|m+ |a0|

){
knmax
|z|=1

|P (z)| − |λ|m
}
.

The above inequality is equivalent to (10) and thus completes the proof of Theorem.

Remark 2 For l = 0, Theorem 8 reduces to Theorem 7 and for k = 1, inequality (10) refines inequality (3).
Further as in the case of Remark 1, it can be easily seen that Theorem 8 is refinement of Theorem 7.

Example 2 Consider the polynomial P (z) = z2+4z+13, clearly it satisfies all the conditions of Theorem 8
with k = 4, max|z|=1 |P (z)| = 18, max|z|=1 |P ′(z)| = 6 and min|z|=4 |P (z)| = 13. On substituting these one
can easily see that the conclusion of Theorem 8 holds.

Next we shall extend Theorem 7 and Theorem 8 to the polar derivatives.

Theorem 9 If P ∈ Pn and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then for every α ∈ C with |α| ≥ k

max
|z|=1

|DαP (z)| ≥
|α| − k
1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=1

|P (z)|. (14)

In view of (4), the result is sharp in limiting case when |α| → ∞ as shown by polynomial P (z) = zn + kn.

Proof. Let f(z) = P (kz). Since P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≥ 1, therefore, f ∈ Pn
and f(z) has all its zeros in |z| ≤ 1. If Q(z) = znf(1/z), then it is easy to verify that

|Q′(z)| = |nf(z)− zf ′(z)| for |z| = 1. (15)

Combining (15) with Lemma 4, we get

|f ′(z)| ≥ |nf(z)− zf ′(z)| for |z| = 1. (16)

Now for every α ∈ C with |α| ≥ k, we have for |z| = 1,∣∣Dα/kf(z)
∣∣ = |nf(z) + (α/k − z)f ′(z)| ≥ |α/k||f ′(z)| − |nf(z)− zf ′(z)|,

which gives with the help of (16),

|Dα/kf(z)| ≥
(
|α| − k
k

)
|f ′(z)|, (17)

consequently,
max
|z|=k

|DαP (z)| ≥ (|α| − k) max
|z|=k

|P ′(z)|.
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Since DαP (z) is a polynomial of degree at most n− 1 and k ≥ 1, it follow from Lemma 1 that

kn−1max
|z|=1

|DαP (z)| ≥ (|α| − k) max
|z|=k

|P ′(z)|. (18)

Further since all the zeros of P (z) lie in |z| ≤ k, k ≥ 1, therefore, using (9) in (18), we get

kn−1max
|z|=1

|DαP (z)| ≥
(|α| − k)
2k

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=k

|P (z)|.

Using Lemma 2, we get for |z| = 1,

max
|z|=1

|DαP (z)| ≥
|α| − k
1 + kn

(
n+

kn|an| − |a0|
kn|an|+ |a0|

)
max
|z|=1

|P (z)|.

This completes the proof of Theorem.

Remark 3 As in the case of Remark 1, it can be easily seen that inequality (14) refines inequality (5).
Further, if we divide the two sides of (14) by |α| and let |α| → ∞, we get Theorem 7.

Example 3 Consider the polynomial P (z) = z2+ 3
2z+

1
2 , clearly it satisfies all the conditions of Theorem 9

with k = 1,max|z|=1 |P (z)| = 3 and max|z|=1 |DαP (z)| = 9.5 with α = 2. On substituting these one can
easily see that the conclusion of Theorem 9 holds.

Theorem 10 If all the zeros of P ∈ Pn lie in |z| ≤ k, k ≥ 1, then for every α ∈ C with |α| ≥ k , 0 ≤ l < 1,

max
|z|=1

|DαP (z)| ≥
n

1 + kn

{
(|α| − k) max

|z|=1
|P (z)|+ (|α|+ 1/kn−1)lm

}
+
(|α| − k)
kn(kn + 1)

(
kn|an| − lm− |a0|
kn|an| − lm+ |a0|

)(
knmax
|z|=1

|P (z)| − lm
)
, (19)

where m = min|z|=k |P (z)|. In view of (4), the result is sharp in limiting case when |α| → ∞ as shown by
polynomial P (z) = zn + kn.

Proof. By hypothesis P ∈ Pn and P (z) has all zeros in |z| ≤ k, k ≥ 1, therefore, proceeding similarly as in
the proof of Theorem 8, we conclude that the polynomial g(z) = f(z)− λmzn has all zeros in |z| < 1 where
f(z) = P (kz), m = min|z|=k |P (z)| = min|z|=1 |f(z)| and |λ| < 1. As before applying inequality (17) to the
polynomial g(z), it follows for |z| = 1 and |α| ≥ k,

|Dα/kg(z)| ≥
(
|α| − k
k

)
|g′(z)|.

Using inequality (11), we obtain

|Dα/kg(z)| ≥
1

2

(
|α| − k
k

)(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
|g(z)|.

for |z| = 1 and |α| ≥ k. Replacing g(z) by f(z)− λmzn, we get for |z| = 1 and |α| ≥ k,∣∣∣∣Dα/kf(z)−
nmαλ

k
zn−1

∣∣∣∣ ≥ 12
(
|α| − k
k

)(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)(
|f(z)− λm|

)
. (20)

Since all the zeros of f(z) − λmzn = g(z) lie in |z| < 1 and |α/k| ≥ 1, it follows by Lemma 5 that all the
zeros of

Dα/k(f(z)−mλzn) = Dα/kf(z)−
nmαλ

k
zn−1
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lie in |z| < 1. This implies that

∣∣Dα/kf(z)
∣∣ ≥ nm|α|

k
|z|n−1 for |z| ≥ 1.

In view of this inequality, choosing argument λ in the left hand side of inequality (20) such that∣∣∣∣Dα/kf(z)−
nmαλ

k
zn−1

∣∣∣∣ = ∣∣Dα/kf(z)
∣∣− nm|α||λ|

k
for |z| = 1,

we get for |z| = 1 and |α| ≥ k,

∣∣Dα/kf(z)
∣∣− nm|α||λ|

k
≥ 1
2

(
|α| − k
k

)(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)(
|f(z)| − |λ|m

)
,

which on simplification leads to

∣∣Dα/kf(z)
∣∣ ≥ 1

2

(
|α| − k
k

)(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
|f(z)|+ n

2

(
|α|+ k
k

)
|λ|m

−1
2

(
|α| − k
k

)(
kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
|λ|m.

This implies for |z| = 1 and |α| ≥ k,

max
|z|=k

|DαP (z)| ≥
1

2

(
|α| − k
k

)(
n+

kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
max
|z|=k

|P (z)|+ n

2

(
|α|+ k
k

)
|λ|m

−1
2

(
|α| − k
k

)(
kn|an| − |λm| − |a0|
kn|an| − |λm|+ |a0|

)
|λ|m.

As before, applying Lemma 1 and 3, we obtain for |z| = 1 and |α| ≥ k,

kn−1max
|z|=1

|DαP (z)| ≥
1

2

(
|α| − k
k

)(
n+

kn|an| − lm− |a0|
kn|an| − lm+ |a0|

)(
2kn

1 + kn
max
|z|=1

|P (z)|+ kn − 1
kn + 1

lm

)
−1
2

(
|α| − k
k

)(
kn|an| − lm− |a0|
kn|an| − lm+ |a0|

)
lm+

n

2

(
|α|+ k
k

)
lm,

equivalently, we have for |z| = 1 and |α| ≥ k,

max
|z|=1

|DαP (z)| ≥
n

1 + kn

{
(|α| − k

)
max
|z|=1

|P (z)|+ (|α|+ 1/kn−1)lm
}

+
(|α| − k)
kn(kn + 1)

(
kn|an| − lm− |a0|
kn|an| − lm+ |a0|

)(
knmax
|z|=1

|P (z)| − lm
)
.

This completes the proof of Theorem.

Remark 4 If we divide both sides of (19) by |α| and let |α| → ∞, we get Theorem 8.

Example 4 Consider the polynomial P (z) = z2 + 3z + 9
4 , clearly it satisfies all the conditions of Theorem

10 with k = 1.7,max|z|=1 |P (z)| = 6.25,min|z|=1.7 |P (z)| = 0.04 and max|z|=1 |DαP (z)| = 22.5 with α = 3.
On substituting these one can easily see that the conclusion of Theorem 10 holds.

Setting k = 1 in Theorem 10, we obtain:
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Corollary 11 If all the zeros of P ∈ Pn lie in |z| ≤ 1, then for every α ∈ C with |α| ≥ 1 , 0 ≤ l < 1,

max
|z|=1

|DαP (z)| ≥
n

2

{
(|α| − 1)max

|z|=1
|P (z)|+ (|α|+ 1)lm1

}
+
(|α| − 1)

2

(
|an| − lm1 − |a0|
|an| − lm1 + |a0|

)(
max
|z|=1

|P (z)|−lm1

)
.

(21)
where m1 = min|z|=1 |P (z)|. The result is sharp and equality holds for P (z) = (z + 1)n with real α ≥ 1.

Remark 5 If we divide both sides of (21) by |α| and let |α| → ∞, we get a sharp refinement inequality 3.

Lastly its worth mentioning that if we use Lemma 3 instead of lemma 2 in the proof of Theorem 7 and
Theorem 9, we get the following refined result.

Theorem 12 If P ∈ Pn and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then for 0 ≤ l < 1

max
|z|=1

|P ′(z)| ≥ 1
2

(
n+

kn|an| − |a0|
kn|an|+ |a0|

){
2

1 + kn
max
|z|=1

|P (z)|+ l kn − 1
kn(kn + 1)

min
|z|=1

|P (z)|
}

(22)

and for |α| ≥ 1,

max
|z|=1

|DαP (z)| ≥
|α| − k
2

(
n+

kn|an| − |a0|
kn|an|+ |a0|

){
2

1 + kn
max
|z|=1

|P (z)|+ l kn − 1
kn(kn + 1)

min
|z|=1

|P (z)|
}
.

Inequality (22) is sharp and equality in (22) holds for P (z) = zn + kn.
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