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Abstract

In this paper, we introduce the structure of extended quasi b-metric like spaces as a generalization
of both quasi metric like spaces and quasi b-metric like spaces. Also, we present the notion of JSR-
contractive mappings in the setup of extended quasi b-metric like spaces and investigate the existence of
fixed point for such mappings. We also provide examples to illustrate the results presented herein.

1 Introduction

Because of the importance of the concept of a distance between two abstract objects of an underlying
universe, there are several generalizations of the notion of a distance function defined on a nonempty set.
Some of the most important generalizations of metric space are b-metric space in [3] (see also [4]), partial
metric space in [9], metric-like space in [2], dislocated metric space in [5], b-metric-like space in [1] (see also
[6]), etc.

An extended b-metric or p-metric was introduced by Parvaneh and Ghoncheh [10] which is an extension
of the concept of a b-metric. Subsequently, Parvaneh and Kadelburg [11] extended this concept to a partial
p-metric space. The notion of a p-metric-like space was then introduced in [12].

Introducing the concept of a quasi b-metric, Chen et al. [15] generalized the concepts of quasi b-metric
and b-metric-like spaces. In this paper, we introduce the notion of a quasi p-metric-like space to generalize
and unify all the concepts mentioned above. We also obtain the existence of fixed point of JSR-contractive
type mappings in such spaces. Our results generalize and improve the main results in [12].

2 Mathematical Background
Let T = {Q: R — RI: Q is a strictly increasing continuous function satisfying Q~1(¢) <t < Q(¢)}.

Definition 1 ([10]) Let A be a nonempty set. A function d : A x A — Ry is said to be an extended b-metric
or a p-metric if there exists Q2 € Y such that for any n,,m5,m5 € A, the following conditions hold:

(p1) C,iv(771,772) =0 iff n; =9,

(p2) 5(7717772) = g(’lzﬂh),

(p3) d(n1,m3) < Qd(n1,m2) +d(n3,m3))-

The pair (A,d) is called an extended b-metric space or a p-metric space.
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Note that the class of p-metric spaces is considerably larger than the class of b-metric spaces. Indeed, if
we define Q(t) = st, s > 1, then a p-metric becomes a b-metric. Also, if Q(¢) = ¢ then a p-metric is a metric.

Definition 2 ([11]) Let A be a nonempty set and Q2 € Y. A function p, : Ax A — R is called an extended
partial b -metric, or a partial p-metric if for any ny,m4,m5 € A, the following conditions are satisfied:

ppl) M1 =Ny = pp(N1,m) = Pp(115m2) = Pp(12,72),

Pp3) Pp(M1,m2) = Pp(N2,M1),

(

(Pp2) Pp(n1:m1) < Pp(n1,m2),

(pp3)

(Ppd) Pp(n1:m2) — Pp(N1:m1) < QUpp(n1,n3) + Pp(M3,M2) — Pp(M3,M3) — Pp(M1,11))-

The pair (A, pp) is called a partial p-metric space, or an extended partial b-metric space.

Definition 3 ([2]) Let A be a nonempty set. A function o : A x A — R is said to be a metric-like on A if
for any ny,my,m3 € A, the following conditions hold:

(01) a(n1,m2) = 0 implies 1, = 1,
(02) o(n1,m2) = o(Ng:m1),
(03) a(n1,m2) < o (n1,m3) + 0 (n3,75)-
The pair (A, o) is called a metric-like space.
Every metric space is a metric-like space. Following are some examples of metric-like spaces.

Example 1 ([14]) Let b€ A =R and a > 0. The mapping o; : A x A — R for each i € {1,2,3} defined
by

a1(n1,m2) = |m| + 02| +a,
o2(n1,m2) = |y — bl + |ng — bl
a3(n1,1m9) = 07 + 5,

are some examples of metric-like on A.

Definition 4 ([1]) Let A be a nonempty set and s > 1 be a given real number. A function oy : A x A — R
is said to be a b-metric-like if for any ny,n4,13 € A, the following conditions are satisfied:

(051) ob(n1,m2) = 0 implies 0y = 15,

(062) ob(11,72) = Tb(112,71)

(063) o5(n1,m2) < slow(n1,13) + 06(n3,72)]-

The pair (A, op) is called a b-metric-like space with parameter s.

Definition 5 ([15]) Let A be a nonempty set and s > 1 be a given real number. A function ogp : AxA — RY
is called a quasi b-metric-like if for any ny,n4,n3 € A, the following conditions are satisfied:

(Uqbl) Uqb(771a772) = 0 implies 9, = ns,
(Uqb2) Uqb(nla"]z) < S[Uqb(nlans) + Uqb(7737772)}-

The pair (A, oq) is called a quasi b-metric-like space with parameter s.
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Definition 6 ([12]) Let A be a nonempty set and Q € Y. A function o, : A x A — R is called a
p-metric-like if for any ny,m,,n3 € A, the following conditions are satisfied:

(0p1) op(ny,my) = 0 implies that n; = 1,

(UpQ) Up(771a N2) Up(772a M1)s

(0p3) ap(n1:n2) < Qop(n1,m3) + 0p(n3,m2)]-
The pair (A, op) is called o p-metric-like space or an extended b-metric-like space.

Definition 7 Let A be a nonempty set and Q € Y. A function o4 : Ax A — R is called quasi p-metric-like
if for any ny,m9,m5 € A, the following conditions are satisfied:

(0gp1) 0gp(n1,m2) = 0 implies ny = ns,,
(04p2) Tap(M1:M2) < Qogp(n1,m3) + Tgp(ns:M2)]-
The pair (A, o4p) is called a quasi p-metric-like space.

Note that every metric-like space is a p-metric-like space, every p-metric space is also a p-metric-like
space and every p-metric like space is also a quasi p-metric-like space. However, the reverse implications do
not hold in general.

Definition 8 Let (A, 0,) be a quasi p-metric-like space (QPMLS) andn € A. A sequence {n,} in A is said
to be:
(1) o4p-convergent to n, if

lim qu(ﬁmn) = nlggo qu(na Nn) = qu(mn)-

n—oo

(i1) a right o4p-Cauchy sequence in (A, o4p,) if >lim Cap(Mn» My,) €Tists and is finite.
n>m-—oo

(i11) @ left 04,-Cauchy sequence in (A, 0qp) if Um  o0gp(n,,,7,) exists and is finite.
m

1
>n—00
Definition 9 Let (A, 0,,) be a quasi p-metric-like space (QPMLS) and o : A x A — R{. Then (A, 0,,) is

satd to be

i) Tight a-complete quasi p-metric-like space if for every right o,,-Cauchy sequence {n in A with
qp n
(N, Mpa1) = 1, there exists n € A such that

lim 0y (17,,,1,) = im0y (n,,m) = lim op(n,7m,) = op(n,7),

n>m-—oo

(i) left a-complete quasi p-metric-like space if for every left o 4p,-Cauchy sequence {n,, } in A with a(n,,,1,1,) >
1 there exists n € A such that

im0y (1, 7,) = im0y (,,m) = im0y (0,7,) = 0p(1,7)-

Here, we present an example to show that a QPML is not QbML in general.

Example 2 Let (A,04) be a QOMS (with parameter s) and p(n;,n,) = sinhlog(n1,72)]. We show that p
is a QPML with Q(t) = sinh(st) for all t > 0. Obviously, condition (c4,1) of Definition 7 is satisfied. For
each 11,19,m3 € A, we have

p(N1,1M2) = sinh(ogp(n1,m5)) < sinh(s - sinh(o46(71,72)) + s - sinh(o46(71,72)))
= sinh(s- p(n1,m3) + s p(N3,M3))
= Qp(n1,m3) + p(N35M2))-
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Thus, condition (04,2) of Definition 7 is satisfied and hence p is a QPML. Note that sinh[|n; — ny| + |11]]
is not a QML on R. Indeed

sinh[|5 — 0] + 5] 11013.2328747
548.316123273 + 201.71315737

sinh[2 + 5] + sinh[3 + 3].

Al

Also,
d(ny,ma) = (m —ma)* + 1}

is a QbML on R with s = 2. There is no s > 1 such that p(n,,m5) = sinh[(n; — n5)% +n3] is a QOML with
parameter s. Indeed, for y =0 and ny =1 (with arbitrary n,)

sinh 27 < s(sinh[(n; — 1)* + 7] + sinh 2)
which does not hold for any fized s and ny sufficiently large.
In general, we have the following proposition.

Proposition 1 Let (A,04) be a QVML with coefficient s > 1 and p(ny,m5) = £(d(n1,75)), where € : R —
Ry is a strictly increasing function with n; < £(n;) and 0 = £(0). We show that p is a QPML with
Q(t) =&(s-t). For each ny,m5,m3 € A, we have

P(M1:M2) = &(0qb(M1,m2)) < E(s[ogn(11,13) + 0gb(n3,m2)])
< E&(s[€(agb(n1:m3)) + E(Tgn(n35m2)])
= Q(s[p(n1,m3) + p(n3:72)])-

So, p is a QPML.
With the help of the above proposition, we construct the following example:

Example 3 Let (A,0,) be a QOML and p(n,,ny) = e“av(1m2) sec™ (e7a(M:m2)) - Then p is a QPML with
Q(t) = e*sec™!(e*"?), where s is the parameter of QbML space (A, o q).

The concept of a-admissible mapping was introduced by Samet et al. in 2012.

Definition 10 ([13]) Let A be a non-empty set and ' : A — A and a: A x A — R be given mappings. T
is said to be a-admissible, if for all ny,ny € A, a(ny,m,) > 1 implies that a(I'ny,I'ny) > 1.

Definition 11 ([8]) A map I': A — A is said to be triangular a-admissible, if
(T'1) T is a-admissible,

(I'2) a(ny,n) > 1 and a(ny,n3) > 1 imply a(ny,m3) > 1 for all ny,n9,n3 € A.

3 Main Results

Motivated by the work in [7], Ay denotes the set of all functions 6 : Rj — [1, 00) satisfying the following
conditions:

(01) 6 is strictly increasing;
(62) 6 is continuous;

(03) for each sequence {t,} C (0,00), lim, o 0(t,) = 1 if and only if lim,,_, t, = 0.
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Definition 12 Let (A, 0,,) be a quasi p-metric-like space (QPMLS), and o : A x A — R . A self mapping
T on A is said to be a right Jleli-Samet-Reich (JSR) contraction, if for any ny,ny € A with 1 < a(ny,ns)
and I'n; # I'ny, we have

0(Q%(04p(Tn1,T02))) < [0(A10gp(n1,m2) + A20gp(n1,T01) + A30gp (12, T0y)], (1)
where 6 € Ag, A\, \; €10,1) and A; + Ao+ A3 < 1.

Theorem 1 Let (A,04y) be a right a-complete QPMLS. Suppose that T’ : A — A is continuous triangular o
-admissible and a right JSR-contraction. If there exists ng € A such that a(ny,I'ng) > 1, then T' has a fized
point.

Proof. Let {7, } be the sequence generated by Picard iterative algorithm starting with a given point n,,
that is, ,, = I'™ny = I'n,,_;. Since I is an a-admissible mapping and o(ny,I'ng) = a(ng,n,) > 1, therefore
a(T'ny, T'ny) = a(ny,ny) > 1. Continuing this process, we have a(n,,_1,m,,) > 1 for all n € N. If there exists
no € N such that n, =, ,q, then n, is a fixed point of I" and hence the result has been obtained.

Now, we assume that 7, # 7, for all n € N. Thus, o,,(I'n,,_;,I'n,) > 0 for all n € N. Since I is a
right JSR-contraction, it follows that

0 (OQP(nnvnn+1)) = Q(qu(an_l, an))
S 9()\10'(@(77”_1, nn) + /\Qqu(nn—lv an—l) + )\3qu(777” an)))\
A
= 9(/\10413(7771_1, 77n) + AZqu(Tln—la nn) =+ A3qu(77na 77n+1))) . (2)

As 6 is strictly increasing and A < 1, we obtain that

qu(ﬁm 77n+1) < >\10qp(77n717 Nn) + A2qu(77n—1v M) + A3qu(77n7 77n+1)‘

If there exists n > 0 such that o4, (1,,,7,_1) < 0¢p(My, Mpy1), then

Tap (M Mnt1) < A0gp(Myy M) + A204p (M, Mng1) + A30gp (M0 M),
qu(nmnn+1) > 0and A\ + X2+ A3 < 1,

imply that 04,1, Mm11) < Tgp(MysMny1), a contradiction. Thus, {ogp(n,,7,1)} is a decreasing and
bounded below sequence. Consequently, there exists 7 > 0 such that lim, o 04p(1,,7,11) = 7. From
(2), we have

G(qu(nmnnﬂ)) < G(qu(ﬁn—p??n))A < G(qu(nn—Zvnn—l)))\ .
Thus,
1< G(qu(nn_w?n))A < Q(qu(nn—zaﬁn—l))A <o < O(qu(no,m))A . (3)

On taking limit as n — oo on both sides of (3), we have
nlLH;o H(UQP(nn—l’ nn)) =1,

which further implies that
r= lim O-qp(nnflﬂ nn) =0. (4)

n—oo

Now, we show that {#,,} is a right o4,-Cauchy sequence in A . That is, >lim Tgp(NMmsMp) = 0. If not, then

there exists € > 0 such that we may find two subsequences {7,,, } and {7,, } of {n, } with n; the smallest
index for which n, > my > k and

O-qp(lrlmkannk) Z € and qu(nmk7nnk_1) <e. (5)
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From (5), we obtain that

e< qu(ﬁmk,nnk) < Q[qu(nmkmmHl) + O'qp(nmk+1a777lk)]~

On taking the upper limit as k — oo, we get

971(5) < lim sup qu(nmkﬂmnk)- (6)

k—o0

Also,
qu(nmk ) nnk) S Q[qu(nmk ) nnk—l) + qu(nnk—la nnk)]

From (4) and (5), we have
hm sup qu (T]mk ) nnk) S Q(E) (7)

k—o0

As (0,5 My,,) = 1, s0 we have

9<92(0qp(77mk+1»77nk))) = 9(92(0qp(1“77mk,1“77nk71)))
S Q(Alaqp(nmk ) nnkfl) + )‘Qoqp(nmk ’ nkarl) + )‘3Jql7(nnk71’ "77%))A
On taking the upper limit as kK — oo on both sides of the above inequality, we have
1 <9(Q )) =0(2%(Q7'(9))
(Q llmSUPqu(nmk+1a77nk)))

A
< 0(lim sup Aloqp(nmwnnk 1) + AQO’(IP(T]mkvnmk-ﬂ—l) =+ >‘3qu(77nk 15 nnk)])

e(AHOO )
<6(2e)’,

which is a contradiction. Hence, {7, } is a right o4,-Cauchy sequence in the (QPMLS) (A,04,). Since
(A, 04p) is right ogy-complete, the sequence {n,,} o4,-converges to some p € A, that is,

n;}ﬂﬁ(ﬂ Oap (M M) = nlgr;o Tap(Ty, 0) = nh—>ngo Oqp(0:Mn) = 0gp(0,0) = 0.
As I is continuous, 7,,,, = I'n,, — I'o when n — oco. Thus

agp(0,T0) < Uogp(0,I'n,) + 0gp(Tny,, L))
On taking limit as n — oo on both sides of the above inequality, we obtain that

ap(0,T'0) < QO lim_ogp(0,T'ny,) + lim 04y (I'n,,, T0)) = ogp(e, 0) +4p(L'0, T'0)).

From (1), we have

H(OQP 0,T'o) ) < Q(Q Ogp Ferg ]) < G(QZ[UP(F@FQ)D
< O(Algqp 0,0) + /\2qu(er@) + )\Squ(eré)))
< 9(>‘2qu 0,T'o) + )‘3qu(er9))
< 8(0p(0.T0)) ",

which is not impossible unless we have I'o = p. =
In the following theorem, we omit the continuity of the mapping I'.
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Theorem 2 Let (A,04,) be a right a-complete (QPMLS). Suppose that T' : A — A is a triangular a-
admissible and a right JSR-contraction. If there exists ny € A such that a(ng,I'ny) > 1, then, T has a fized
point provided that for any {n,} in A with a(n,,n,,,) > 1 and n, — 1 as n — oo, we have 1 < a(n,,,n)
for all m € N.

Proof. Following arguments similar to those in the proof of Theorem 1, we obtain a sequence {7,,} such
that

a(MpsMpyr) =1 and 1, =0 asn — oo,

where 7,, ., = I'n,, and 0, (0, 0) = 0. By given assumption, we have 1 < a(7,,, 0) for all n € N. Assume that
o4p(0,T0) > 0. Note that

Q' (0,(0.T0)) < limsup ogy(I'n,,To)

n—oo

and

limsup o (n,,, o) < Q(og,(0,T0)).

n—oo

Now, from (1), we have

0(cqgp(0,T0))

IA

0(QUQ ™ (ogp(0,T0))) < 9(9(117?:801? ogp(T'n,,T0)))

< [limsup 0(A10gp(n,, 0) + A20gp(1,,,T'n,) + Asogp(0,T0)]

n—oo

[9()‘3%1)(97 FQ))])\
[G(qu(g, FQ))} /\7

a contradiction. Thus o4,(0,T0) =0. =

IN

N

Example 4 Let A = [0,1]. Define the mapping ogp : A X A — RS‘ by

Tap(N1,M2) = elmi+mal™ni _ 1,

Define a: A x A — R by

L ifng = mg,
a(nq, = )
(n1,m2) {21)7 otherwise.

Then (A, 04p,) is a right a-complete (QPMLS) with Q(t) = €' — 1. Let A = % and 0(t) = et". Define
T':A—Aby

)

167"

Note that T is an a-admissible and continuous self map on A and a(1,T'1) > 1. Also, we have

'y, =In(1+

qu(F'ql,FUQ) = e[(F”1)2+(FW2)2]2+(F771)2 _ 1

o[(ma+ )"+ (ma+3)) ]+ (mas ) _
() () ]+ (3"

ks (3422 4n3) _ 1

1

T%qu(7717772)~

ININA
S

IN
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Hence,

[(Tn1)2+(Tn2)2124(Tn1)2) _q a1, 1
-1 < 256 ap(M1,M2) _ 1 < %qu(nlan2)7

of
QQ[qu(Fm, Iny)]=e
and so

ogp(Tny,Tna)]

215 221
H(Qz[aqp(rnl’rn2)}) — eQ [ qp(anFWz)]

1
5 356 @ap (M1:12)
< eﬁ"qp(mmz)e?% ap(n1,m2

Lo , 1
< [eﬁap(ﬂp?h)ew p(m,m)] V2

= (a0 2))

1
< [9()\1‘71117(7717 N) + )‘2qu(7717 Inq) + ASQ_qup(nza I'ny)] V2.

s

2

Thus, (1) is satisfied with \y = %6 and \; =0 fori € {2,3}. Moreover, 0 is a fized point of T'.
Now, we have the following definition.

Definition 13 Let (A,0,,) be a (QPMLS) and a: A x A — R be a given mapping. A mapping T : A — A
is called left Jleli-Samet-Reich (JSR) contraction, if for any ny,m, € A with 1 < a(ny,ny) and T'ny # T'ny,
we have

H(QQ(qu(Fnl, Fnz))) < [0(A1ogp(n15m2) + X204 (Tn1,m1) + A3ogp(I'na, 772))]/\7 (8)
where 6 € Ag, A\, \; € [0,1) and A1 + A2 + A3 < 1.

Following arguments similar to those in Theorems 1 and 2, we have the following theorems.

Theorem 3 Let (A, 04y) be a left a-complete (QPMLS). Suppose thatT' : A — A is a continuous triangular
a -admissible and a left JSR-contraction. If there exists ny € A such that a(ng,Tny) > 1, then T' has a fized
point.

Theorem 4 Let (A, 04,) be a left a-complete (QPMLS). Suppose thatT' : A — A is a triangular a-admissible
and a left JSR-contraction. If there exists ny € A such that a(ngy,Tng) > 1, then T' has a fized point provided
that for any {n,} in A with a(n,1,n,) > 1 andn, — 1 asn — oo, we have 1 < «(n,n,,) for alln € N.

4 Existence of a Solution for an Integral Equation

Consider the following integral equation

n(t) = / Gt ) K (b)) dr, te T =[ab], )

where K : 7 x J x R — R and G (t,7) is the Green function. The purpose of this section is to present an
existence theorem for a solution to (9) that belongs to A := C(J,R) (the set of continuous real functions
defined on J), by using the obtained result in Theorem 2.

Let I' : A — A be the mapping defined by

b
Ty(t) = / Gt 7K (¢, r,n(r) dr, (10)

for allm € A and ¢ € J. Then the existence of a solution to (9) is equivalent to the existence of a fixed point
of I.
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Define g : A X A — RS‘ by
Oap(M1,M2) = &£(0(n1,m)) for all ny,my € A,
where £ : Rf — R is a strictly increasing function with ¢ < £(¢) and £(0) = 0, and
o (1115712) = max(|ny (&) = ny (O + | ()17 ]

Then (A, 04p) is a complete quasi p-metric-like space.
Now, we will prove the following result.

Theorem 5 Suppose that the following hypotheses hold:
(A) K :J xJ xR — R is continuous;

(B) there exists a function p: A X A — R such that if u(ny,ny) >0 for all ny,my € A, then we have
b
52(/ (1K1t rymy (7)) = Ka(t,momg(r)| + [K(t,r,my (r))[]Pdr)

< %[a[lm(r) = 02()[” 4 [a () P] + Bl (r) = Ty () [P+ |72 (7))
+ 2 (r) = Ty (r)[” + [0y () 1P1],
where ¢ > 1 and a, 8,7 € [0,1), with a4+ B+~ < 1;
(C) for all t € J, we have ([ |G(t,r)|4dr)s <1 ( note that L+ 1 =1);
(D) there exists ng € A such that u(ng,I'ng) > 0;

(E) for all my,my € A, pu(ny,m2) > 0 implies pu (I'nq,Tny) > 0 and
for-all ny,m9,m3 € A, pu(ny,m3) > 0 and p(ny,n3) > 0 imply pu(n1,m3) > 0;

(F) if {n,} is a sequence in A such that n, — n € A and p(n,,M,,1) = 0 for all n, then u(n,,n) >0 for
all n.

Then, the integral equation (9) has a solution n € A.

Proof. Let ny,m7, € A such that u(n; (t),n5(t)) > 0 and I'ny(t) # I'ny(t) for all ¢ € J. Then since
In6(At) < Alnf(t), from (B), we deduce

6 (&2 (|Ty () — Ta ()] + [Ty (1)]7))

b
< 1n9[§2(/ G (7m0 (1) = Ko (87, m2(r) + K1 (E, 7,00 (r)) []dr)?]

ab 1 b 1
Sln@[ﬁz(/ IG(tyr)lda)E(/ (L (8 7m0 (7)) = Ko (87 ma (1) + [K1 (8, m,ma (7)) [1Pdr) 7))

b
< 1119[52(/ (1L (8, 7m0 (r) = Kot m,ma(r)| + [K1(E, 7y, (7)) [[Pdr)]
<In 9[%(@[\771(7“) = 0o (M)I” + [m (W) P] + Bllny (r) = Ty () [ + | (r) 7]
+lIna(r) = Tng ()7 + [n2(r)[7])]

< (oML

< = (In(0(M (11, 72)))),

i
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which implies

|-

0(¢%(04p(Tn1,T12))) < [0(M (m1,m2))]
for all ny,1, € A with u(ny,m5) > 0 and I'n; # I'n,, where
M(ny,m5) = aogp(n1,m2) + Bogp(n1,Tn1) + 7040, 'na).
Define the function o : A x A — R{ by

17 lf:u’(nl(t)vn2(t))zoat€jv
0, otherwise.

a(ny,m) = {
Also, putting Q@ = ¢ and A = %, we get

0(2%(04p(Tn1, Ty))) < [0(M (11, m))]

for all ny,m, € A with «(ny,m,) > 1 and I'ny # I'ns.
It is easy to show that all the hypotheses of Theorem 2 are satisfied and hence the mapping I' has a fixed
point, that is, there exists a solution in A = C(J,R) for the integral equation (9). m
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