Extended Quasi b-Metric-Like Spaces And Some Fixed Point Theorems For Contractive Mappings*

Hüseyin Işık ${ }^{\dagger}$, Babak Mohammadi ${ }^{\ddagger}$, Vahid Parvaneh ${ }^{\S}$, Choonkil Park ${ }^{〔}$

Received 14 November 2019

Abstract

In this paper, we introduce the structure of extended quasi b-metric like spaces as a generalization of both quasi metric like spaces and quasi b-metric like spaces. Also, we present the notion of $J S R$ contractive mappings in the setup of extended quasi b-metric like spaces and investigate the existence of fixed point for such mappings. We also provide examples to illustrate the results presented herein.

1 Introduction

Because of the importance of the concept of a distance between two abstract objects of an underlying universe, there are several generalizations of the notion of a distance function defined on a nonempty set. Some of the most important generalizations of metric space are b-metric space in [3] (see also [4]), partial metric space in [9], metric-like space in [2], dislocated metric space in [5], b-metric-like space in [1] (see also [6]), etc.

An extended b-metric or p-metric was introduced by Parvaneh and Ghoncheh [10] which is an extension of the concept of a b-metric. Subsequently, Parvaneh and Kadelburg [11] extended this concept to a partial p-metric space. The notion of a p-metric-like space was then introduced in [12].

Introducing the concept of a quasi b-metric, Chen et al. [15] generalized the concepts of quasi b-metric and b-metric-like spaces. In this paper, we introduce the notion of a quasi p-metric-like space to generalize and unify all the concepts mentioned above. We also obtain the existence of fixed point of JSR-contractive type mappings in such spaces. Our results generalize and improve the main results in [12].

2 Mathematical Background

Let $\Upsilon=\left\{\Omega: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}: \Omega\right.$ is a strictly increasing continuous function satisfying $\left.\Omega^{-1}(t) \leq t \leq \Omega(t)\right\}$.
Definition 1 ([10]) Let Λ be a nonempty set. A function $\widetilde{d}: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$is said to be an extended b-metric or a p-metric if there exists $\Omega \in \Upsilon$ such that for any $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$, the following conditions hold:
$\left(p_{1}\right) \widetilde{d}\left(\eta_{1}, \eta_{2}\right)=0$ iff $\eta_{1}=\eta_{2}$,
$\left(p_{2}\right) \widetilde{d}\left(\eta_{1}, \eta_{2}\right)=\widetilde{d}\left(\eta_{2}, \eta_{1}\right)$,
$\left(p_{3}\right) \widetilde{d}\left(\eta_{1}, \eta_{3}\right) \leq \Omega\left(\widetilde{d}\left(\eta_{1}, \eta_{2}\right)+\widetilde{d}\left(\eta_{2}, \eta_{3}\right)\right)$.
The pair (Λ, \widetilde{d}) is called an extended b-metric space or a p-metric space.

[^0]Note that the class of p-metric spaces is considerably larger than the class of b-metric spaces. Indeed, if we define $\Omega(t)=s t, s \geq 1$, then a p-metric becomes a b-metric. Also, if $\Omega(t)=t$ then a p-metric is a metric.

Definition 2 ([11]) Let Λ be a nonempty set and $\Omega \in \Upsilon$. A function $p_{p}: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$is called an extended partial b-metric, or a partial p-metric if for any $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$, the following conditions are satisfied:
$\left(p_{p} 1\right) \eta_{1}=\eta_{2} \Longleftrightarrow p_{p}\left(\eta_{1}, \eta_{1}\right)=p_{p}\left(\eta_{1}, \eta_{2}\right)=p_{p}\left(\eta_{2}, \eta_{2}\right)$,
$\left(p_{p} 2\right) p_{p}\left(\eta_{1}, \eta_{1}\right) \leq p_{p}\left(\eta_{1}, \eta_{2}\right)$,
$\left(p_{p} 3\right) p_{p}\left(\eta_{1}, \eta_{2}\right)=p_{p}\left(\eta_{2}, \eta_{1}\right)$,
$\left(p_{p} 4\right) p_{p}\left(\eta_{1}, \eta_{2}\right)-p_{p}\left(\eta_{1}, \eta_{1}\right) \leq \Omega\left(p_{p}\left(\eta_{1}, \eta_{3}\right)+p_{p}\left(\eta_{3}, \eta_{2}\right)-p_{p}\left(\eta_{3}, \eta_{3}\right)-p_{p}\left(\eta_{1}, \eta_{1}\right)\right)$.
The pair $\left(\Lambda, p_{p}\right)$ is called a partial p-metric space, or an extended partial b-metric space.
Definition 3 ([2]) Let Λ be a nonempty set. A function $\sigma: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$is said to be a metric-like on Λ if for any $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$, the following conditions hold:
($\sigma 1$) $\sigma\left(\eta_{1}, \eta_{2}\right)=0$ implies $\eta_{1}=\eta_{2}$,
$(\sigma 2) \sigma\left(\eta_{1}, \eta_{2}\right)=\sigma\left(\eta_{2}, \eta_{1}\right)$,
$(\sigma 3) \sigma\left(\eta_{1}, \eta_{2}\right) \leq \sigma\left(\eta_{1}, \eta_{3}\right)+\sigma\left(\eta_{3}, \eta_{2}\right)$.
The pair (Λ, σ) is called a metric-like space.
Every metric space is a metric-like space. Following are some examples of metric-like spaces.
Example 1 ([14]) Let $b \in \Lambda=\mathbb{R}$ and $a \geq 0$. The mapping $\sigma_{i}: \Lambda \times \Lambda \longrightarrow \mathbb{R}_{0}^{+}$for each $i \in\{1,2,3\}$ defined by

$$
\begin{aligned}
\sigma_{1}\left(\eta_{1}, \eta_{2}\right) & =\left|\eta_{1}\right|+\left|\eta_{2}\right|+a, \\
\sigma_{2}\left(\eta_{1}, \eta_{2}\right) & =\left|\eta_{1}-b\right|+\left|\eta_{2}-b\right|, \\
\sigma_{3}\left(\eta_{1}, \eta_{2}\right) & =\eta_{1}^{2}+\eta_{2}^{2}
\end{aligned}
$$

are some examples of metric-like on Λ.
Definition 4 ([1]) Let Λ be a nonempty set and $s \geq 1$ be a given real number. A function $\sigma_{b}: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$ is said to be a b-metric-like if for any $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$, the following conditions are satisfied:
$\left(\sigma_{b} 1\right) \sigma_{b}\left(\eta_{1}, \eta_{2}\right)=0$ implies $\eta_{1}=\eta_{2}$,
$\left(\sigma_{b} 2\right) \sigma_{b}\left(\eta_{1}, \eta_{2}\right)=\sigma_{b}\left(\eta_{2}, \eta_{1}\right)$,
$\left(\sigma_{b} 3\right) \sigma_{b}\left(\eta_{1}, \eta_{2}\right) \leq s\left[\sigma_{b}\left(\eta_{1}, \eta_{3}\right)+\sigma_{b}\left(\eta_{3}, \eta_{2}\right)\right]$.
The pair $\left(\Lambda, \sigma_{b}\right)$ is called ab-metric-like space with parameter s.
Definition 5 ([15]) Let Λ be a nonempty set and $s \geq 1$ be a given real number. A function $\sigma_{q b}: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$ is called a quasi b-metric-like if for any $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$, the following conditions are satisfied:
$\left(\sigma_{q b} 1\right) \sigma_{q b}\left(\eta_{1}, \eta_{2}\right)=0$ implies $\eta_{1}=\eta_{2}$,
$\left(\sigma_{q b} 2\right) \sigma_{q b}\left(\eta_{1}, \eta_{2}\right) \leq s\left[\sigma_{q b}\left(\eta_{1}, \eta_{3}\right)+\sigma_{q b}\left(\eta_{3}, \eta_{2}\right)\right]$.
The pair $\left(\Lambda, \sigma_{q b}\right)$ is called a quasi b-metric-like space with parameter s.

Definition 6 ([12]) Let Λ be a nonempty set and $\Omega \in \Upsilon$. A function $\sigma_{p}: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$is called a p-metric-like if for any $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$, the following conditions are satisfied:
$\left(\sigma_{p} 1\right) \sigma_{p}\left(\eta_{1}, \eta_{2}\right)=0$ implies that $\eta_{1}=\eta_{2}$,
$\left(\sigma_{p} 2\right) \sigma_{p}\left(\eta_{1}, \eta_{2}\right)=\sigma_{p}\left(\eta_{2}, \eta_{1}\right)$,
$\left(\sigma_{p} 3\right) \sigma_{p}\left(\eta_{1}, \eta_{2}\right) \leq \Omega\left[\sigma_{p}\left(\eta_{1}, \eta_{3}\right)+\sigma_{p}\left(\eta_{3}, \eta_{2}\right)\right]$.
The pair $\left(\Lambda, \sigma_{p}\right)$ is called a p-metric-like space or an extended b-metric-like space.
Definition 7 Let Λ be a nonempty set and $\Omega \in \Upsilon$. A function $\sigma_{q p}: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$is called quasi p-metric-like if for any $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$, the following conditions are satisfied:
$\left(\sigma_{q p} 1\right) \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)=0$ implies $\eta_{1}=\eta_{2}$,
$\left(\sigma_{q p} 2\right) \sigma_{q p}\left(\eta_{1}, \eta_{2}\right) \leq \Omega\left[\sigma_{q p}\left(\eta_{1}, \eta_{3}\right)+\sigma_{q p}\left(\eta_{3}, \eta_{2}\right)\right]$.
The pair $\left(\Lambda, \sigma_{q p}\right)$ is called a quasi p-metric-like space.
Note that every metric-like space is a p-metric-like space, every p-metric space is also a p-metric-like space and every p-metric like space is also a quasi p-metric-like space. However, the reverse implications do not hold in general.

Definition 8 Let $\left(\Lambda, \sigma_{q p}\right)$ be a quasi p-metric-like space ($Q P M L S$) and $\eta \in \Lambda$. A sequence $\left\{\eta_{n}\right\}$ in Λ is said to be:
(i) $\sigma_{q p}$-convergent to η, if

$$
\lim _{n \rightarrow \infty} \sigma_{q p}\left(\eta_{n}, \eta\right)=\lim _{n \rightarrow \infty} \sigma_{q p}\left(\eta, \eta_{n}\right)=\sigma_{q p}(\eta, \eta)
$$

(ii) a right $\sigma_{q p^{-}}$Cauchy sequence in $\left(\Lambda, \sigma_{q p}\right)$ if $\lim _{n>m \rightarrow \infty} \sigma_{q p}\left(\eta_{m}, \eta_{n}\right)$ exists and is finite.
(iii) a left $\sigma_{q p^{-}}$Cauchy sequence in $\left(\Lambda, \sigma_{q p}\right)$ if $\lim _{m>n \rightarrow \infty} \sigma_{q p}\left(\eta_{m}, \eta_{n}\right)$ exists and is finite.

Definition 9 Let $\left(\Lambda, \sigma_{q p}\right)$ be a quasi p-metric-like space ($Q P M L S$) and $\alpha: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$. Then $\left(\Lambda, \sigma_{q p}\right)$ is said to be
(i) right α-complete quasi p-metric-like space if for every right $\sigma_{q p}$-Cauchy sequence $\left\{\eta_{n}\right\}$ in Λ with $\alpha\left(\eta_{n}, \eta_{n+1}\right) \geq 1$, there exists $\eta \in \Lambda$ such that

$$
\lim _{n>m \rightarrow \infty} \sigma_{p}\left(\eta_{m}, \eta_{n}\right)=\lim _{n \rightarrow \infty} \sigma_{p}\left(\eta_{n}, \eta\right)=\lim _{n \rightarrow \infty} \sigma_{p}\left(\eta, \eta_{n}\right)=\sigma_{p}(\eta, \eta)
$$

(ii) left α-complete quasi p-metric-like space if for every left $\sigma_{q p}$-Cauchy sequence $\left\{\eta_{n}\right\}$ in Λ with $\alpha\left(\eta_{n+1}, \eta_{n}\right) \geq$ 1 there exists $\eta \in \Lambda$ such that

$$
\lim _{m>n \rightarrow \infty} \sigma_{p}\left(\eta_{m}, \eta_{n}\right)=\lim _{n \rightarrow \infty} \sigma_{p}\left(\eta_{n}, \eta\right)=\lim _{n \rightarrow \infty} \sigma_{p}\left(\eta, \eta_{n}\right)=\sigma_{p}(\eta, \eta)
$$

Here, we present an example to show that a QPML is not QbML in general.
Example 2 Let $\left(\Lambda, \sigma_{q b}\right)$ be a $Q b M S$ (with parameter s) and $\rho\left(\eta_{1}, \eta_{2}\right)=\sinh \left[\sigma_{q b}\left(\eta_{1}, \eta_{2}\right)\right]$. We show that ρ is a QPML with $\Omega(t)=\sinh (s t)$ for all $t \geq 0$. Obviously, condition $\left(\sigma_{q p} 1\right)$ of Definition 7 is satisfied. For each $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$, we have

$$
\begin{aligned}
\rho\left(\eta_{1}, \eta_{2}\right) & =\sinh \left(\sigma_{q b}\left(\eta_{1}, \eta_{2}\right)\right) \leq \sinh \left(s \cdot \sinh \left(\sigma_{q b}\left(\eta_{1}, \eta_{2}\right)\right)+s \cdot \sinh \left(\sigma_{q b}\left(\eta_{1}, \eta_{2}\right)\right)\right) \\
& =\sinh \left(s \cdot \rho\left(\eta_{1}, \eta_{3}\right)+s \cdot \rho\left(\eta_{3}, \eta_{2}\right)\right) \\
& =\Omega\left(\rho\left(\eta_{1}, \eta_{3}\right)+\rho\left(\eta_{3}, \eta_{2}\right)\right)
\end{aligned}
$$

Thus, condition $\left(\sigma_{q p} 2\right)$ of Definition 7 is satisfied and hence ρ is a $Q P M L$. Note that $\sinh \left[\left|\eta_{1}-\eta_{2}\right|+\left|\eta_{1}\right|\right]$ is not a $Q M L$ on \mathbb{R}. Indeed

$$
\begin{aligned}
\sinh [|5-0|+5] & =11013.2328747 \\
& \nless 548.316123273+201.71315737 \\
& =\sinh [2+5]+\sinh [3+3] .
\end{aligned}
$$

Also,

$$
d\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1}-\eta_{2}\right)^{2}+\eta_{1}^{2}
$$

is a $Q b M L$ on \mathbb{R} with $s=2$. There is no $s \geq 1$ such that $\rho\left(\eta_{1}, \eta_{2}\right)=\sinh \left[\left(\eta_{1}-\eta_{2}\right)^{2}+\eta_{1}^{2}\right]$ is a QbML with parameter s. Indeed, for $y=0$ and $\eta_{3}=1$ (with arbitrary η_{1})

$$
\sinh 2 \eta_{1}^{2} \leq s\left(\sinh \left[\left(\eta_{1}-1\right)^{2}+\eta_{1}^{2}\right]+\sinh 2\right)
$$

which does not hold for any fixed s and η_{1} sufficiently large.
In general, we have the following proposition.
Proposition 1 Let $\left(\Lambda, \sigma_{q b}\right)$ be a QbML with coefficient $s \geq 1$ and $\rho\left(\eta_{1}, \eta_{2}\right)=\xi\left(d\left(\eta_{1}, \eta_{2}\right)\right)$, where $\xi: \mathbb{R}_{0}^{+} \rightarrow$ \mathbb{R}_{0}^{+}is a strictly increasing function with $\eta_{1} \leq \xi\left(\eta_{1}\right)$ and $0=\xi(0)$. We show that ρ is a QPML with $\Omega(t)=\xi(s \cdot t)$. For each $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$, we have

$$
\begin{aligned}
\rho\left(\eta_{1}, \eta_{2}\right) & =\xi\left(\sigma_{q b}\left(\eta_{1}, \eta_{2}\right)\right) \leq \xi\left(s\left[\sigma_{q b}\left(\eta_{1}, \eta_{3}\right)+\sigma_{q b}\left(\eta_{3}, \eta_{2}\right)\right]\right) \\
& \leq \xi\left(s\left[\xi\left(\sigma_{q b}\left(\eta_{1}, \eta_{3}\right)\right)+\xi\left(\sigma_{q b}\left(\eta_{3}, \eta_{2}\right)\right]\right)\right. \\
& =\Omega\left(s\left[\rho\left(\eta_{1}, \eta_{3}\right)+\rho\left(\eta_{3}, \eta_{2}\right)\right]\right) .
\end{aligned}
$$

So, ρ is a QPML.
With the help of the above proposition, we construct the following example:
Example 3 Let $\left(\Lambda, \sigma_{q b}\right)$ be a QbML and $\rho\left(\eta_{1}, \eta_{2}\right)=e^{\sigma_{q b}\left(\eta_{1}, \eta_{2}\right)} \sec ^{-1}\left(e^{\sigma_{q b}\left(\eta_{1}, \eta_{2}\right)}\right)$. Then ρ is a QPML with $\Omega(t)=e^{s \cdot t} \sec ^{-1}\left(e^{s \cdot t}\right)$, where s is the parameter of QbML space $\left(\Lambda, \sigma_{q b}\right)$.

The concept of α-admissible mapping was introduced by Samet et al. in 2012.
Definition 10 ([13]) Let Λ be a non-empty set and $\Gamma: \Lambda \rightarrow \Lambda$ and $\alpha: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$be given mappings. Γ is said to be α-admissible, if for all $\eta_{1}, \eta_{2} \in \Lambda, \alpha\left(\eta_{1}, \eta_{2}\right) \geq 1$ implies that $\alpha\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right) \geq 1$.

Definition 11 ([8]) A map $\Gamma: \Lambda \rightarrow \Lambda$ is said to be triangular α-admissible, if
(Г1) Γ is α-admissible,
(Г2) $\alpha\left(\eta_{1}, \eta_{2}\right) \geq 1$ and $\alpha\left(\eta_{2}, \eta_{3}\right) \geq 1$ imply $\alpha\left(\eta_{1}, \eta_{3}\right) \geq 1$ for all $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda$.

3 Main Results

Motivated by the work in [7], Δ_{θ} denotes the set of all functions $\theta: \mathbb{R}_{0}^{+} \rightarrow[1, \infty)$ satisfying the following conditions:
($\theta 1$) θ is strictly increasing;
$(\theta 2) \theta$ is continuous;
($\theta 3$) for each sequence $\left\{t_{n}\right\} \subseteq(0, \infty), \lim _{n \rightarrow \infty} \theta\left(t_{n}\right)=1$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0$.

Definition 12 Let $\left(\Lambda, \sigma_{q p}\right)$ be a quasi p-metric-like space ($Q P M L S$), and $\alpha: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$. A self mapping Γ on Λ is said to be a right Jleli-Samet-Reich (JSR) contraction, if for any $\eta_{1}, \eta_{2} \in \Lambda$ with $1 \leq \alpha\left(\eta_{1}, \eta_{2}\right)$ and $\Gamma \eta_{1} \neq \Gamma \eta_{2}$, we have

$$
\begin{equation*}
\theta\left(\Omega^{2}\left(\sigma_{q p}\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right)\right)\right) \leq\left[\theta\left(\lambda_{1} \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)+\lambda_{2} \sigma_{q p}\left(\eta_{1}, \Gamma \eta_{1}\right)+\lambda_{3} \sigma_{q p}\left(\eta_{2}, \Gamma \eta_{2}\right)\right]^{\lambda}\right. \tag{1}
\end{equation*}
$$

where $\theta \in \Delta_{\theta}, \lambda, \lambda_{i} \in[0,1)$ and $\lambda_{1}+\lambda_{2}+\lambda_{3}<1$.
Theorem 1 Let $\left(\Lambda, \sigma_{q p}\right)$ be a right α-complete $Q P M L S$. Suppose that $\Gamma: \Lambda \rightarrow \Lambda$ is continuous triangular α -admissible and a right JSR-contraction. If there exists $\eta_{0} \in \Lambda$ such that $\alpha\left(\eta_{0}, \Gamma \eta_{0}\right) \geq 1$, then Γ has a fixed point.

Proof. Let $\left\{\eta_{n}\right\}$ be the sequence generated by Picard iterative algorithm starting with a given point η_{0}, that is, $\eta_{n}=\Gamma^{n} \eta_{0}=\Gamma \eta_{n-1}$. Since Γ is an α-admissible mapping and $\alpha\left(\eta_{0}, \Gamma \eta_{0}\right)=\alpha\left(\eta_{0}, \eta_{1}\right) \geq 1$, therefore $\alpha\left(\Gamma \eta_{0}, \Gamma \eta_{1}\right)=\alpha\left(\eta_{1}, \eta_{2}\right) \geq 1$. Continuing this process, we have $\alpha\left(\eta_{n-1}, \eta_{n}\right) \geq 1$ for all $n \in \mathbb{N}$. If there exists $n_{0} \in \mathbb{N}$ such that $\eta_{n_{0}}=\eta_{n_{0}+1}$, then $\eta_{n_{0}}$ is a fixed point of Γ and hence the result has been obtained.

Now, we assume that $\eta_{n} \neq \eta_{n+1}$ for all $n \in \mathbb{N}$. Thus, $\sigma_{q p}\left(\Gamma \eta_{n-1}, \Gamma \eta_{n}\right)>0$ for all $n \in \mathbb{N}$. Since Γ is a right JSR-contraction, it follows that

$$
\begin{align*}
\theta\left(\sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)\right) & =\theta\left(\sigma_{q p}\left(\Gamma \eta_{n-1}, \Gamma \eta_{n}\right)\right) \\
& \leq \theta\left(\lambda_{1} \sigma_{q p}\left(\eta_{n-1}, \eta_{n}\right)+\lambda_{2} \sigma_{q p}\left(\eta_{n-1}, \Gamma \eta_{n-1}\right)+\lambda_{3} \sigma_{q p}\left(\eta_{n}, \Gamma \eta_{n}\right)\right)^{\lambda} \\
& \left.=\theta\left(\lambda_{1} \sigma_{q p}\left(\eta_{n-1}, \eta_{n}\right)+\lambda_{2} \sigma_{q p}\left(\eta_{n-1}, \eta_{n}\right)+\lambda_{3} \sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)\right)\right)^{\lambda} \tag{2}
\end{align*}
$$

As θ is strictly increasing and $\lambda<1$, we obtain that

$$
\sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right) \leq \lambda_{1} \sigma_{q p}\left(\eta_{n-1}, \eta_{n}\right)+\lambda_{2} \sigma_{q p}\left(\eta_{n-1}, \eta_{n}\right)+\lambda_{3} \sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)
$$

If there exists $n>0$ such that $\sigma_{q p}\left(\eta_{n}, \eta_{n-1}\right) \leq \sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)$, then

$$
\begin{aligned}
\sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right) & \leq \lambda_{1} \sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)+\lambda_{2} \sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)+\lambda_{3} \sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right) \\
\sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right) & >0 \text { and } \lambda_{1}+\lambda_{2}+\lambda_{3}<1
\end{aligned}
$$

imply that $\sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)<\sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)$, a contradiction. Thus, $\left\{\sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)\right\}$ is a decreasing and bounded below sequence. Consequently, there exists $r \geq 0$ such that $\lim _{n \rightarrow \infty} \sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)=r$. From (2), we have

$$
\theta\left(\sigma_{q p}\left(\eta_{n}, \eta_{n+1}\right)\right) \leq \theta\left(\sigma_{q p}\left(\eta_{n-1}, \eta_{n}\right)\right)^{\lambda} \leq \theta\left(\sigma_{q p}\left(\eta_{n-2}, \eta_{n-1}\right)\right)^{\lambda^{2}}
$$

Thus,

$$
\begin{equation*}
1 \leq \theta\left(\sigma_{q p}\left(\eta_{n-1}, \eta_{n}\right)\right)^{\lambda} \leq \theta\left(\sigma_{q p}\left(\eta_{n-2}, \eta_{n-1}\right)\right)^{\lambda^{2}} \leq \cdots \leq \theta\left(\sigma_{q p}\left(\eta_{0}, \eta_{1}\right)\right)^{\lambda^{n}} \tag{3}
\end{equation*}
$$

On taking limit as $n \rightarrow \infty$ on both sides of (3), we have

$$
\lim _{n \rightarrow \infty} \theta\left(\sigma_{q p}\left(\eta_{n-1}, \eta_{n}\right)\right)=1
$$

which further implies that

$$
\begin{equation*}
r=\lim _{n \rightarrow \infty} \sigma_{q p}\left(\eta_{n-1}, \eta_{n}\right)=0 \tag{4}
\end{equation*}
$$

Now, we show that $\left\{\eta_{n}\right\}$ is a right $\sigma_{q p}$-Cauchy sequence in Λ. That is, $\lim _{n>m \rightarrow \infty} \sigma_{q p}\left(\eta_{m}, \eta_{n}\right)=0$. If not, then there exists $\varepsilon>0$ such that we may find two subsequences $\left\{\eta_{m_{k}}\right\}$ and $\left\{\eta_{n_{k}}\right\}$ of $\left\{\eta_{n}\right\}$ with n_{k} the smallest index for which $n_{k}>m_{k}>k$ and

$$
\begin{equation*}
\sigma_{q p}\left(\eta_{m_{k}}, \eta_{n_{k}}\right) \geq \varepsilon \quad \text { and } \quad \sigma_{q p}\left(\eta_{m_{k}}, \eta_{n_{k-1}}\right)<\varepsilon \tag{5}
\end{equation*}
$$

From (5), we obtain that

$$
\varepsilon \leq \sigma_{q p}\left(\eta_{m_{k}}, \eta_{n_{k}}\right) \leq \Omega\left[\sigma_{q p}\left(\eta_{m_{k}}, \eta_{m_{k}+1}\right)+\sigma_{q p}\left(\eta_{m_{k}+1}, \eta_{n_{k}}\right)\right]
$$

On taking the upper limit as $k \rightarrow \infty$, we get

$$
\begin{equation*}
\Omega^{-1}(\varepsilon) \leq \limsup _{k \rightarrow \infty} \sigma_{q p}\left(\eta_{m_{k}+1}, \eta_{n_{k}}\right) \tag{6}
\end{equation*}
$$

Also,

$$
\sigma_{q p}\left(\eta_{m_{k}}, \eta_{n_{k}}\right) \leq \Omega\left[\sigma_{q p}\left(\eta_{m_{k}}, \eta_{n_{k}-1}\right)+\sigma_{q p}\left(\eta_{n_{k}-1}, \eta_{n_{k}}\right)\right] .
$$

From (4) and (5), we have

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sigma_{q p}\left(\eta_{m_{k}}, \eta_{n_{k}}\right) \leq \Omega(\varepsilon) \tag{7}
\end{equation*}
$$

As $\alpha\left(\eta_{m_{k}}, \eta_{n_{k}}\right) \geq 1$, so we have

$$
\begin{aligned}
& \theta\left(\Omega^{2}\left(\sigma_{q p}\left(\eta_{m_{k}+1}, \eta_{n_{k}}\right)\right)\right)=\theta\left(\Omega^{2}\left(\sigma_{q p}\left(\Gamma \eta_{m_{k}}, \Gamma \eta_{n_{k}-1}\right)\right)\right) \\
& \quad \leq \theta\left(\lambda_{1} \sigma_{q p}\left(\eta_{m_{k}}, \eta_{n_{k}-1}\right)+\lambda_{2} \sigma_{q p}\left(\eta_{m_{k}}, \eta_{m_{k}+1}\right)+\lambda_{3} \sigma_{q p}\left(\eta_{n_{k}-1}, \eta_{n_{k}}\right)\right)^{\lambda}
\end{aligned}
$$

On taking the upper limit as $k \rightarrow \infty$ on both sides of the above inequality, we have

$$
\begin{aligned}
1 & <\theta(\Omega(\varepsilon))=\theta\left(\Omega^{2}\left(\Omega^{-1}(\varepsilon)\right)\right. \\
& \leq \theta\left(\Omega^{2}\left(\limsup _{i \rightarrow \infty} \sigma_{q p}\left(\eta_{m_{k}+1}, \eta_{n_{k}}\right)\right)\right) \\
& \leq \theta\left(\limsup _{i \rightarrow \infty}\left[\lambda_{1} \sigma_{q p}\left(\eta_{m_{k}}, \eta_{n_{k}-1}\right)+\lambda_{2} \sigma_{q p}\left(\eta_{m_{k}}, \eta_{m_{k}+1}\right)+\lambda_{3} \sigma_{q p}\left(\eta_{n_{k}-1}, \eta_{n_{k}}\right)\right]\right)^{\lambda} \\
& \leq \theta\left(\lambda_{1} \Omega(\varepsilon)\right)^{\lambda} \\
& <\theta(\Omega(\varepsilon))^{\lambda}
\end{aligned}
$$

which is a contradiction. Hence, $\left\{\eta_{n}\right\}$ is a right $\sigma_{q p}$-Cauchy sequence in the (QPMLS) $\left(\Lambda, \sigma_{q p}\right)$. Since $\left(\Lambda, \sigma_{q p}\right)$ is right $\sigma_{q p}$-complete, the sequence $\left\{\eta_{n}\right\} \sigma_{q p}$-converges to some $\varrho \in \Lambda$, that is,

$$
\lim _{n>m \rightarrow \infty} \sigma_{q p}\left(\eta_{m}, \eta_{n}\right)=\lim _{n \rightarrow \infty} \sigma_{q p}\left(\eta_{n}, \varrho\right)=\lim _{n \rightarrow \infty} \sigma_{q p}\left(\varrho, \eta_{n}\right)=\sigma_{q p}(\varrho, \varrho)=0
$$

As Γ is continuous, $\eta_{n+1}=\Gamma \eta_{n} \rightarrow \Gamma \varrho$ when $n \rightarrow \infty$. Thus

$$
\sigma_{q p}(\varrho, \Gamma \varrho) \leq \Omega\left(\sigma_{q p}\left(\varrho, \Gamma \eta_{n}\right)+\sigma_{q p}\left(\Gamma \eta_{n}, \Gamma \varrho\right)\right)
$$

On taking limit as $n \rightarrow \infty$ on both sides of the above inequality, we obtain that

$$
\sigma_{q p}(\varrho, \Gamma \varrho) \leq \Omega\left(\lim _{n \rightarrow \infty} \sigma_{q p}\left(\varrho, \Gamma \eta_{n}\right)+\lim _{n \rightarrow \infty} \sigma_{q p}\left(\Gamma \eta_{n}, \Gamma \varrho\right)\right)=\Omega\left(\sigma_{q p}(\varrho, \varrho)+\sigma_{q p}(\Gamma \varrho, \Gamma \varrho)\right)
$$

From (1), we have

$$
\begin{aligned}
\theta\left(\sigma_{q p}(\varrho, \Gamma \varrho)\right) & \leq \theta\left(\Omega\left[\sigma_{q p}(\Gamma \varrho, \Gamma \varrho)\right]\right) \leq \theta\left(\Omega^{2}\left[\sigma_{p}(\Gamma \varrho, \Gamma \varrho)\right]\right) \\
& \leq \theta\left(\lambda_{1} \sigma_{q p}(\varrho, \varrho)+\lambda_{2} \sigma_{q p}(\varrho, \Gamma \varrho)+\lambda_{3} \sigma_{q p}(\varrho, \Gamma \varrho)\right) \\
& \leq \theta\left(\lambda_{2} \sigma_{q p}(\varrho, \Gamma \varrho)+\lambda_{3} \sigma_{q p}(\varrho, \Gamma \varrho)\right)^{\lambda} \\
& \leq \theta\left(\sigma_{q p}(\varrho, \Gamma \varrho)\right)^{\lambda},
\end{aligned}
$$

which is not impossible unless we have $\Gamma \varrho=\varrho$.
In the following theorem, we omit the continuity of the mapping Γ.

Theorem 2 Let $\left(\Lambda, \sigma_{q p}\right)$ be a right α-complete (QPMLS). Suppose that $\Gamma: \Lambda \rightarrow \Lambda$ is a triangular α admissible and a right JSR-contraction. If there exists $\eta_{0} \in \Lambda$ such that $\alpha\left(\eta_{0}, \Gamma \eta_{0}\right) \geq 1$, then, Γ has a fixed point provided that for any $\left\{\eta_{n}\right\}$ in Λ with $\alpha\left(\eta_{n}, \eta_{n+1}\right) \geq 1$ and $\eta_{n} \rightarrow \eta$ as $n \rightarrow \infty$, we have $1 \leq \alpha\left(\eta_{n}, \eta\right)$ for all $n \in \mathbb{N}$.

Proof. Following arguments similar to those in the proof of Theorem 1, we obtain a sequence $\left\{\eta_{n}\right\}$ such that

$$
\alpha\left(\eta_{n}, \eta_{n+1}\right) \geq 1 \quad \text { and } \quad \eta_{n} \rightarrow \varrho \quad \text { as } n \rightarrow \infty
$$

where $\eta_{n+1}=\Gamma \eta_{n}$ and $\sigma_{p}(\varrho, \varrho)=0$. By given assumption, we have $1 \leq \alpha\left(\eta_{n}, \varrho\right)$ for all $n \in \mathbb{N}$. Assume that $\sigma_{q p}(\varrho, \Gamma \varrho)>0$. Note that

$$
\Omega^{-1}\left(\sigma_{p}(\varrho, \Gamma \varrho)\right) \leq \limsup _{n \rightarrow \infty} \sigma_{q p}\left(\Gamma \eta_{n}, \Gamma \varrho\right)
$$

and

$$
\limsup _{n \rightarrow \infty} \sigma_{p}\left(\eta_{n}, \Gamma \varrho\right) \leq \Omega\left(\sigma_{q p}(\varrho, \Gamma \varrho)\right)
$$

Now, from (1), we have

$$
\begin{aligned}
\theta\left(\sigma_{q p}(\varrho, \Gamma \varrho)\right) & \leq \theta\left(\Omega\left(\Omega^{-1}\left(\sigma_{q p}(\varrho, \Gamma \varrho)\right)\right) \leq \theta\left(\Omega\left(\limsup _{n \rightarrow \infty} \sigma_{q p}\left(\Gamma \eta_{n}, \Gamma \varrho\right)\right)\right)\right. \\
& \leq\left[\limsup _{n \rightarrow \infty} \theta\left(\lambda_{1} \sigma_{q p}\left(\eta_{n}, \varrho\right)+\lambda_{2} \sigma_{q p}\left(\eta_{n}, \Gamma \eta_{n}\right)+\lambda_{3} \sigma_{q p}(\varrho, \Gamma \varrho)\right]^{\lambda}\right. \\
& \leq\left[\theta\left(\lambda_{3} \sigma_{q p}(\varrho, \Gamma \varrho)\right)\right]^{\lambda} \\
& <\left[\theta\left(\sigma_{q p}(\varrho, \Gamma \varrho)\right)\right]^{\lambda},
\end{aligned}
$$

a contradiction. Thus $\sigma_{q p}(\varrho, \Gamma \varrho)=0$.
Example 4 Let $\Lambda=[0,1]$. Define the mapping $\sigma_{q p}: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$by

$$
\sigma_{q p}\left(\eta_{1}, \eta_{2}\right)=e^{\left[\eta_{1}^{2}+\eta_{2}^{2}\right]^{2}+\eta_{1}^{2}}-1
$$

Define $\alpha: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$by

$$
\alpha\left(\eta_{1}, \eta_{2}\right)= \begin{cases}1, & \text { if } \eta_{1} \geq \eta_{2} \\ \frac{1}{9}, & \text { otherwise }\end{cases}
$$

Then $\left(\Lambda, \sigma_{q p}\right)$ is a right α-complete (QPMLS) with $\Omega(t)=e^{t}-1$. Let $\lambda=\frac{1}{\sqrt{2}}$ and $\theta(t)=e^{t e^{t}}$. Define $\Gamma: \Lambda \rightarrow \Lambda b y$

$$
\Gamma \eta_{1}=\ln \left(1+\frac{\eta_{1}}{16}\right)
$$

Note that Γ is an α-admissible and continuous self map on Λ and $\alpha(1, \Gamma 1) \geq 1$. Also, we have

$$
\begin{aligned}
\sigma_{q p}\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right) & =e^{\left[\left(\Gamma \eta_{1}\right)^{2}+\left(\Gamma \eta_{2}\right)^{2}\right]^{2}+\left(\Gamma \eta_{1}\right)^{2}}-1 \\
& =e^{\left[\left(\ln \left(1+\frac{\eta_{1}}{16}\right)\right)^{2}+\left(\ln \left(1+\frac{\eta_{2}}{16}\right)\right)^{2}\right]^{2}+\left(\ln \left(1+\frac{\eta_{1}}{16}\right)\right)^{2}}-1 \\
& \leq e^{\left[\left(\frac{\eta_{1}}{16}\right)^{2}+\left(\frac{\eta_{2}}{16}\right)^{2}\right]^{2}+\left(\frac{\eta_{1}}{16}\right)^{2}}-1 \\
& \leq e^{\frac{1}{256}\left(\left[\eta_{1}^{2}+\eta_{2}^{2}\right]^{2}+\eta_{1}^{2}\right)}-1 \\
& \leq \frac{1}{256} \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)
\end{aligned}
$$

Hence,

$$
\Omega^{2}\left[\sigma_{q p}\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right)\right]=e^{e^{\left[\left(\left[\Gamma \eta_{1}\right)^{2}+\left(\Gamma \eta_{2}\right)^{2}\right]^{2}+\left(\Gamma \eta_{1}\right)^{2}\right)}-1}-1 \leq e^{\frac{1}{256} \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)}-1 \leq \frac{1}{256} \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)
$$

and so

$$
\begin{aligned}
\theta\left(\Omega^{2}\left[\sigma_{q p}\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right)\right]\right) & =e^{\Omega^{2}\left[\sigma_{q p}\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right)\right] e^{\Omega^{2}\left[\sigma_{q p}\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right)\right]}} \\
& \leq e^{\frac{1}{256} \sigma_{q p}\left(\eta_{1}, \eta_{2}\right) e^{\frac{1}{256} \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)}} \\
& \leq\left[e^{\frac{1}{16} \sigma_{p}\left(\eta_{1}, \eta_{2}\right) e^{\frac{1}{16}} \sigma_{p}\left(\eta_{1}, \eta_{2}\right)}\right]^{\frac{1}{\sqrt{2}}} \\
& =\left[\theta\left(\frac{1}{16} \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)\right)\right]^{\frac{1}{\sqrt{2}}} \\
& \leq\left[\theta\left(\lambda_{1} \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)+\lambda_{2} \sigma_{q p}\left(\eta_{1}, \Gamma \eta_{1}\right)+\lambda_{3} \Omega^{-1} \sigma_{q p}\left(\eta_{2}, \Gamma \eta_{2}\right)\right]^{\frac{1}{\sqrt{2}}}\right.
\end{aligned}
$$

Thus, (1) is satisfied with $\lambda_{1}=\frac{1}{16}$ and $\lambda_{i}=0$ for $i \in\{2,3\}$. Moreover, 0 is a fixed point of Γ.
Now, we have the following definition.
Definition 13 Let $\left(\Lambda, \sigma_{q p}\right)$ be a (QPMLS) and $\alpha: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$be a given mapping. A mapping $\Gamma: \Lambda \rightarrow \Lambda$ is called left Jleli-Samet-Reich (JSR) contraction, if for any $\eta_{1}, \eta_{2} \in \Lambda$ with $1 \leq \alpha\left(\eta_{1}, \eta_{2}\right)$ and $\Gamma \eta_{1} \neq \Gamma \eta_{2}$, we have

$$
\begin{equation*}
\theta\left(\Omega^{2}\left(\sigma_{q p}\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right)\right)\right) \leq\left[\theta\left(\lambda_{1} \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)+\lambda_{2} \sigma_{q p}\left(\Gamma \eta_{1}, \eta_{1}\right)+\lambda_{3} \sigma_{q p}\left(\Gamma \eta_{2}, \eta_{2}\right)\right)\right]^{\lambda} \tag{8}
\end{equation*}
$$

where $\theta \in \Delta_{\theta}, \lambda, \lambda_{i} \in[0,1)$ and $\lambda_{1}+\lambda_{2}+\lambda_{3}<1$.
Following arguments similar to those in Theorems 1 and 2, we have the following theorems.
Theorem 3 Let $\left(\Lambda, \sigma_{q p}\right)$ be a left α-complete ($Q P M L S$). Suppose that $\Gamma: \Lambda \rightarrow \Lambda$ is a continuous triangular α-admissible and a left JSR-contraction. If there exists $\eta_{0} \in \Lambda$ such that $\alpha\left(\eta_{0}, \Gamma \eta_{0}\right) \geq 1$, then Γ has a fixed point.

Theorem 4 Let $\left(\Lambda, \sigma_{q p}\right)$ be a left α-complete (QPMLS). Suppose that $\Gamma: \Lambda \rightarrow \Lambda$ is a triangular α-admissible and a left JSR-contraction. If there exists $\eta_{0} \in \Lambda$ such that $\alpha\left(\eta_{0}, \Gamma \eta_{0}\right) \geq 1$, then Γ has a fixed point provided that for any $\left\{\eta_{n}\right\}$ in Λ with $\alpha\left(\eta_{n+1}, \eta_{n}\right) \geq 1$ and $\eta_{n} \rightarrow \eta$ as $n \rightarrow \infty$, we have $1 \leq \alpha\left(\eta, \eta_{n}\right)$ for all $n \in \mathbb{N}$.

4 Existence of a Solution for an Integral Equation

Consider the following integral equation

$$
\begin{equation*}
\eta(t)=\int_{a}^{b} G(t, r) K(t, r, \eta(r)) d r, \quad t \in \mathcal{J}=[a, b], \tag{9}
\end{equation*}
$$

where $K: \mathcal{J} \times \mathcal{J} \times \mathbb{R} \rightarrow \mathbb{R}$ and $G(t, r)$ is the Green function. The purpose of this section is to present an existence theorem for a solution to (9) that belongs to $\Lambda:=\mathcal{C}(\mathcal{J}, \mathbb{R})$ (the set of continuous real functions defined on \mathcal{J}), by using the obtained result in Theorem 2.

Let $\Gamma: \Lambda \rightarrow \Lambda$ be the mapping defined by

$$
\begin{equation*}
\Gamma \eta(t)=\int_{a}^{b} G(t, r) K(t, r, \eta(r)) d r \tag{10}
\end{equation*}
$$

for all $\eta \in \Lambda$ and $t \in \mathcal{J}$. Then the existence of a solution to (9) is equivalent to the existence of a fixed point of Γ.

Define $\sigma_{q p}: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$by

$$
\sigma_{q p}\left(\eta_{1}, \eta_{2}\right)=\xi\left(\sigma\left(\eta_{1}, \eta_{2}\right)\right) \text { for all } \eta_{1}, \eta_{2} \in \Lambda
$$

where $\xi: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$is a strictly increasing function with $t \leq \xi(t)$ and $\xi(0)=0$, and

$$
\sigma\left(\eta_{1}, \eta_{2}\right)=\max _{t \in \mathcal{J}}\left[\left|\eta_{1}(t)-\eta_{2}(t)\right|^{p}+\left|\eta_{1}(t)\right|^{p}\right]
$$

Then $\left(\Lambda, \sigma_{q p}\right)$ is a complete quasi p-metric-like space.
Now, we will prove the following result.
Theorem 5 Suppose that the following hypotheses hold:
(A) $K: \mathcal{J} \times \mathcal{J} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous;
(B) there exists a function $\mu: \Lambda \times \Lambda \rightarrow \mathbb{R}$ such that if $\mu\left(\eta_{1}, \eta_{2}\right) \geq 0$ for all $\eta_{1}, \eta_{2} \in \Lambda$, then we have

$$
\begin{aligned}
& \xi^{2}\left(\int_{a}^{b}\left[\left|K_{1}\left(t, r, \eta_{1}(r)\right)-K_{2}\left(t, r, \eta_{2}(r)\right)\right|+\left|K_{1}\left(t, r, \eta_{1}(r)\right)\right|\right]^{p} d r\right) \\
& \quad \leq \frac{1}{\zeta}\left[\alpha\left[\left|\eta_{1}(r)-\eta_{2}(r)\right|^{p}+\left|\eta_{1}(r)\right|^{p}\right]+\beta\left[\left|\eta_{1}(r)-\Gamma \eta_{1}(r)\right|^{p}+\left|\eta_{1}(r)\right|^{p}\right]\right. \\
& \left.\quad+\gamma\left[\left|\eta_{2}(r)-\Gamma \eta_{2}(r)\right|^{p}+\left|\eta_{2}(r)\right|^{p}\right]\right]
\end{aligned}
$$

where $\zeta>1$ and $\alpha, \beta, \gamma \in[0,1)$, with $\alpha+\beta+\gamma<1$;
(C) for all $t \in \mathcal{J}$, we have $\left(\int_{a}^{b}|G(t, r)|^{q} d r\right)^{\frac{1}{q}}<1$ (note that $\frac{1}{p}+\frac{1}{q}=1$);
(D) there exists $\eta_{0} \in \Lambda$ such that $\mu\left(\eta_{0}, \Gamma \eta_{0}\right) \geq 0$;
(E) for all $\eta_{1}, \eta_{2} \in \Lambda, \mu\left(\eta_{1}, \eta_{2}\right) \geq 0$ implies $\mu\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right) \geq 0$ and for all $\eta_{1}, \eta_{2}, \eta_{3} \in \Lambda, \mu\left(\eta_{1}, \eta_{2}\right) \geq 0$ and $\mu\left(\eta_{2}, \eta_{3}\right) \geq 0$ imply $\mu\left(\eta_{1}, \eta_{3}\right) \geq 0 ;$
(F) if $\left\{\eta_{n}\right\}$ is a sequence in Λ such that $\eta_{n} \rightarrow \eta \in \Lambda$ and $\mu\left(\eta_{n}, \eta_{n+1}\right) \geq 0$ for all n, then $\mu\left(\eta_{n}, \eta\right) \geq 0$ for all n.
Then, the integral equation (9) has a solution $\eta \in \Lambda$.
Proof. Let $\eta_{1}, \eta_{2} \in \Lambda$ such that $\mu\left(\eta_{1}(t), \eta_{2}(t)\right) \geq 0$ and $\Gamma \eta_{1}(t) \neq \Gamma \eta_{2}(t)$ for all $t \in \mathcal{J}$. Then since $\ln \theta(\lambda t) \leq \lambda \ln \theta(t)$, from (B), we deduce

$$
\begin{aligned}
\ln \theta & \left(\xi^{2}\left(\left|\Gamma \eta_{1}(t)-\Gamma \eta_{2}(t)\right|^{p}+\left|\Gamma \eta_{1}(t)\right|^{p}\right)\right) \\
\leq & \ln \theta\left[\xi^{2}\left(\int_{a}^{b}|G(t, r)|\left[\left|K_{1}\left(t, r, \eta_{1}(r)\right)-K_{2}\left(t, r, \eta_{2}(r)\right)\right|+\left|K_{1}\left(t, r, \eta_{1}(r)\right)\right|\right] d r\right)^{p}\right] \\
\leq & \left.\ln \theta\left[\xi^{2}\left(\int_{a}^{b}|G(t, r)|^{q} d r\right)^{\frac{1}{q}}\left(\int_{a}^{b}\left[\left|K_{1}\left(t, r, \eta_{1}(r)\right)-K_{2}\left(t, r, \eta_{2}(r)\right)\right|+\left|K_{1}\left(t, r, \eta_{1}(r)\right)\right|\right]^{p} d r\right)^{\frac{1}{p}}\right)^{p}\right] \\
\leq & \ln \theta\left[\xi^{2}\left(\int_{a}^{b}\left[\left|K_{1}\left(t, r, \eta_{1}(r)\right)-K_{2}\left(t, r, \eta_{2}(r)\right)\right|+\left|K_{1}\left(t, r, \eta_{1}(r)\right)\right|\right]^{p} d r\right)\right] \\
\leq & \ln \theta\left[\frac { 1 } { \zeta } \left(\alpha\left[\left|\eta_{1}(r)-\eta_{2}(r)\right|^{p}+\left|\eta_{1}(r)\right|^{p}\right]+\beta\left[\left|\eta_{1}(r)-\Gamma \eta_{1}(r)\right|^{p}+\left|\eta_{1}(r)\right|^{p}\right]\right.\right. \\
& \left.\left.+\gamma\left[\left|\eta_{2}(r)-\Gamma \eta_{2}(r)\right|^{p}+\left|\eta_{2}(r)\right|^{p}\right]\right)\right] \\
\leq & \left.\ln \left(\theta\left(\frac{M\left(\eta_{1}, \eta_{2}\right)}{\zeta}\right)\right)\right) \\
\leq & \frac{1}{\zeta}\left(\ln \left(\theta\left(M\left(\eta_{1}, \eta_{2}\right)\right)\right)\right)
\end{aligned}
$$

which implies

$$
\theta\left(\xi^{2}\left(\sigma_{q p}\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right)\right)\right) \leq\left[\theta\left(M\left(\eta_{1}, \eta_{2}\right)\right)\right]^{\frac{1}{\zeta}}
$$

for all $\eta_{1}, \eta_{2} \in \Lambda$ with $\mu\left(\eta_{1}, \eta_{2}\right) \geq 0$ and $\Gamma \eta_{1} \neq \Gamma \eta_{2}$, where

$$
M\left(\eta_{1}, \eta_{2}\right)=\alpha \sigma_{q p}\left(\eta_{1}, \eta_{2}\right)+\beta \sigma_{q p}\left(\eta_{1}, \Gamma \eta_{1}\right)+\gamma \sigma_{q p}\left(\eta_{2}, \Gamma \eta_{2}\right)
$$

Define the function $\alpha: \Lambda \times \Lambda \rightarrow \mathbb{R}_{0}^{+}$by

$$
\alpha\left(\eta_{1}, \eta_{2}\right)= \begin{cases}1, & \text { if } \mu\left(\eta_{1}(t), \eta_{2}(t)\right) \geq 0, t \in \mathcal{J} \\ 0, & \text { otherwise }\end{cases}
$$

Also, putting $\Omega=\xi$ and $\lambda=\frac{1}{\zeta}$, we get

$$
\theta\left(\Omega^{2}\left(\sigma_{q p}\left(\Gamma \eta_{1}, \Gamma \eta_{2}\right)\right)\right) \leq\left[\theta\left(M\left(\eta_{1}, \eta_{2}\right)\right)\right]^{\lambda},
$$

for all $\eta_{1}, \eta_{2} \in \Lambda$ with $\alpha\left(\eta_{1}, \eta_{2}\right) \geq 1$ and $\Gamma \eta_{1} \neq \Gamma \eta_{2}$.
It is easy to show that all the hypotheses of Theorem 2 are satisfied and hence the mapping Γ has a fixed point, that is, there exists a solution in $\Lambda=\mathcal{C}(\mathcal{J}, \mathbb{R})$ for the integral equation (9).

Acknowledgments. The authors are thankful to the learned referee and editor for their valuable remarks and suggestions to improve this work.

References

[1] M. A. Alghamdi, N. Hussain and P. Salimi, Fixed point and coupled fixed point theorems on b-metriclike spaces, Fixed Point Theory Appl., 2013, 2013:402.
[2] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012, 2012:204.
[3] I. A. Bakhtin, The contraction principle in quasimetric spaces, Func. An. Ulianowsk Gos. Ped. Ins., 30(1989), 26-37.
[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav., 1(1993), 5-11.
[5] P. Hitzler and A. K. Seda, Dislocated topologies, J. Electr. Eng., 51(2000), 3-7.
[6] N. Hussain, J. R. Roshan, V. Parvaneh and Z. Kadelburg, Fixed Points of Contractive Mappings In b-Metric-Like Spaces, The Sci. World Journal, 2014, Article ID 471827, 15 pages.
[7] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014, 2014:38.
[8] E. Karapinar, P. Kumam and P. Salimi, On $\alpha-\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013, 2013:94.
[9] S. G. Matthews, Partial metric topology, N. Y. Acad. Sci., 728(1994), 183-197.
[10] V. Parvaneh and S.J.H. Ghoncheh, Fixed points of $(\psi, \varphi)_{\Omega}$-contractive mappings in ordered p-metric spaces, Global Analysis and Discrete Mathematics, Volume 4, Issue 1, 2020, pp. 15-29.
[11] V. Parvaneh and Z. Kadelburg, Extended partial b-metric spaces and some fixed point results, Filomat, 32(2018), 2837-2850.
[12] V. Parvaneh and Z. Kadelburg, Fixed points of JSHR-contractive type mappings in extended b-metriclike spaces, Vietnam J. Math., 47(2019), 387-401.
[13] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal., 75(2012), 2154-2165.
[14] N. Shobkolaei, S. Sedghi, J. R. Roshan, and N. Hussain, Suzuki type fixed point results in metric-like spaces, J. Function Spaces Appl., 2013, Article ID 143686, 9 pages.
[15] C. Zhu, C. Chen and X. Zhang, Some results in quasi-b-metric-like space, J. Inequal. Appl., 2014, 2014:437.

[^0]: *Mathematics Subject Classifications: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 ${ }^{\dagger}$ Department of Mathematics, Muş Alparslan University, 49250 Muş, Turkey
 ${ }^{\ddagger}$ Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran
 §Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran
 ${ }^{\boldsymbol{T}}$ Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea

