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Abstract

In this paper, we derive the exact expressions as well as recurrence relations for single and prod-
uct moment of generalized record values from NH distribution. These relations generalize the results
given by MirMostafee et al. (2016). Further, we characterize the given distribution through conditional
expectation, recurrence relations and truncated moments.

1 Introduction

A generalization of the exponential distribution was introduced by Nadarajah and Haghighi (2011), which can
be used as an alternative to the gamma, Weibull and exponentiated exponential distributions. The attractive
feature of this distribution is always having the zero mode and yet allowing for increasing, decreasing and
constant hazard rate functions. Lemonte (2013) called this distribution defined by Nadarajah and Haghighi
(2011) also as the NH distribution.
A random variale X is said to have a NH distribution, if its probability density function (pdf) is of the

form
f(x) = θ(1 + x)θ−1exp{1− (1 + x)θ}, x > 0, θ > 0 (1)

and the corresponding distribution function (df) is

F (x) = 1− exp{1− (1 + x)θ}, x > 0, θ > 0. (2)

Note that for NH distribution defined in (1)

(1 + x)f(x) = θ[1− ln F̄ (x)]F̄ (x), (3)

where
F̄ (x) = 1− F (x).

The exponential distribution arises when θ = 1.
The concept of record values was introduced by Chandler (1952). An observation is called a record if

its value is greater (or less) than all the previous observations. Record values are used in a wide variety
of practical situations, such as industrial stress testing, meteorological analysis, hydrology, seismology, oil,
mining surveys, sports and athletic events. For a survey on important results in this area one may refer to
Ahsanullah (1995), Kamps (1995), Arnold et al. (1998) and Ahsanullah and Nevzorov (2015). Dziubdziela
and Kopcoiński (1976) have generalized the concept of record values of Chandler (1952) by random variables
of a more generalized nature and called them the k-th record values. Later, Minimol and Thomas (2013)
called the record values defined by Dziubdziela and Kopcoiński (1976) also as the generalized record values,
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since the r-th member of the sequence of the ordinary record values is also known as the r-th record value.
By setting k = 1, we obtain ordinary record statistics.

Kamps (1995) and Danielak and Raqab (2004) pointed out in reliability theory that in some situations
record values themselves are viewed as outliers, then the second or third largest values are of special interest.
For statistical inference based on ordinary records, serious diffi culties arise if expected values of inter arrival
time of records is infinite and occurrences of records are very rare in practice. This problem is avoided once
we consider the model of generalized record values.
Let {Xn, n ≥ 1} be a sequence of independent and identical distributed (iid) continuous random variables

with df F (x) and pdf f(x). Then for a fixed positive integer k ≥ 1, the sequence of k-th upper record times
{U (k)

n , n ≥ 1} is defined as Nevzorov (2001):

U
(k)
1 = k

and for n ≥ 1,

U
(k)
n+1 = min

{
j : j > U (k)

n , Xj > X
U
(k)
n −k+1:U

(k)
n

}
.

The sequence {Y (k)
n , n ≥ 1}, where Y (k)

n = X
U
(k)
n
is called the sequence of generalized upper record values

(k-th upper record values) of {Xn, n ≥ 1}. Note that for k = 1, we have Y (1)
n = XUn , n ≥ 1, which are the

record values of {Xn, n ≥ 1} as defined in Ahsanullah (1995).
The pdf of Y (k)

n and the joint pdf of Y (k)
m and Y (k)

n are given by (Dziubdziela and Kopcoiński (1976),
Grudziaeń (1982))

f
Y
(k)
n

(x) =
kn

(n− 1)!
[− ln F̄ (x)]n−1[F̄ (x)]k−1f(x), n ≥ 1, (4)

f
Y
(k)
m ,Y

(k)
n

(x, y) =
kn

(m− 1)! (n−m− 1)!
[− ln F̄ (x)]m−1 f(x)

F̄ (x)

×[ln F̄ (x)− ln F̄ (y)]n−m−1[F̄ (y)]k−1f(y), x < y, 1 ≤ m < n, (5)

and the conditional pdf of Y (k)
n given Y (k)

m = x, is

f
Y
(k)
n |Y (k)

m
(y|x) =

kn−m

(n−m− 1)!
[ln F̄ (x)− ln F̄ (y)]n−m−1

[ F̄ (y)

F̄ (x)

]k−1 f(y)

F̄ (x)
, x < y. (6)

Properties of the k-th upper record values of {Xn, n ≥ 1} have been extensively studied in the literature,
see for instance Dziubdziela and Kopcoiński (1976), Deheuvels (1982, 1988), Grudzień (1982), Grudzień and
Szynal (1997). For some recent developments on generalized record values with special reference to those
arising from exponential, Gumble, Pareto, generalized Pareto, Burr, Weibull, Makeham, Gompertz, modified-
Weibull, exponential-Weibull, additive Weibull and Kumaraswamy log-logistic distributions carried out by
Grudzień and Szynal (1983, 1997), Pawlas and Szynal (1998, 1999, 2000), Paul and Thomas (2015, 2016),
Minimol and Thomas (2013, 2014), Khan and Khan (2016), Khan et al. (2015, 2017) and Singh et al. (2019a,b)
respectively.
In this paper we mainly focus on the study of generalized upper record values arising from NH distribution

and discussed exact explicit expressions as well as several recurrence relations satisfied by single and product
moments. In addition, conditional expectations and recurrence relations for single moments of generalized
record values and truncated moment are used to characterize this distribution.

2 Relations for Single Moments

In this section, we derive the exact expressions for single moments of generalized upper record values and
recurrence relations in the following theorems.
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Theorem 1 For the distribution given in (2), fix a positive integer k ≥ 1, for n ≥ 1 and j = 0, 1, . . .

E
(
Y (k)
n

)j
=

ek kn

(n− 1)!

n−1∑
u=0

j∑
v=0

(−1)n+j−u−v−1

(
n− 1

u

)(
j

v

)
Γ[u+ ( vθ ) + 1, k]

ku+( vθ )+1
. (7)

Proof. In view of (4), we have

E
(
Y (k)
n

)j
=

kn

(n− 1)!

∫ ∞
0

xj [− ln F̄ (x)]n−1[F̄ (x)]k−1f(x)dx, n ≥ 1 .

Now using (2), we get

E
(
Y (k)
n

)j
=

kn

(n− 1)!

∫ ∞
0

[{1− ln F̄ (x)} 1θ − 1]j [− ln F̄ (x)]n−1[F̄ (x)]k−1f(x)dx. (8)

On applying binomial expansion in (8), we find that

E
(
Y (k)
n

)j
=

kn

(n− 1)!

j∑
v=0

(−1)j−v
(
j

v

)∫ ∞
0

[1− ln F̄ (x)]
v
θ [− ln F̄ (x)]n−1[F̄ (x)]k−1f(x)dx. (9)

After substituting t = [1− ln F̄ (x)] in (9), we get

E
(
Y (k)
n

)j
=

kn

(n− 1)!

j∑
v=0

(−1)j−v
(
j

v

)∫ ∞
1

t
v
θ (t− 1)n−1ek(1−t)dt

=
ek kn

(n− 1)!

n−1∑
u=0

j∑
v=0

(−1)n+j−u−v−1

(
n− 1

u

)(
j

v

)∫ ∞
1

tu+ v
θ e−ktdt.

In view of result on generalized incomplete gamma function obtained by Chaudhry and Zubair (1994), we
may obtain the result given in (7).

Remark 1 At θ = 1 in (8) and then substituting t = − ln F̄ (x) in the resulting expression, we have

E
(
Y (k)
n

)j
=

kn

(n− 1)!

∫ ∞
0

tj+n−1 e−ktdt =
Γ(j + n)

(n− 1)! kj
,

which verifies the result obtained by Kamps (1995) for exponential distribution.

Remark 2 Setting k = 1 in (7), we get the exact moments of upper records from NH distribution as obtained
by MirMostafaee et al. (2016), for n = s and j = r.

Theorem 2 For the distribution given in (2), fix a positive integer k ≥ 1, for n ≥ 1, n ≥ k and j = 0, 1, . . .

E(Y
(k)
n+1)j+1 = E(Y (k)

n )j+1 +
j + 1

nθ

[
E(Y (k)

n )j + E(Y (k)
n )j+1

]
− k

n

[
E(Y (k)

n )j+1 − E(Y
(k)
n−1)j+1

]
. (10)

Proof. From (4) and (3), for n ≥ 1 and j = 0, 1, . . . , we have

[E(Y (k)
n )j + E(Y (k)

n )j+1]

=
θ kn

(n− 1)!

∫ ∞
0

xj [− ln F̄ (x)]n−1[F̄ (x)]k[1− ln F̄ (x)]dx

=
θkn

(n− 1)!

{∫ ∞
0

xj [− ln F̄ (x)]n−1[F̄ (x)]kdx+

∫ ∞
0

xj [− ln F̄ (x)]n[F̄ (x)]kdx
}
. (11)
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Now, (10) can be seen by noting that in view of Khan et al. (2017)

[E(Y (k)
n )j − E(Y

(k)
n−1)j ] =

j kn−1

(n− 1)!

∫ β

α

xj−1[− ln F̄ (x)]n−1[F̄ (x)]kdx.

Remark 3 (i) Setting k = 1 and θ = 1 in (10), we deduce the recurrence relations for single moments of
upper records from exponential distribution as established by Pawlas and Szynal (1998).

(ii) Putting k = 1 in (10), we get the recurrence relations for single moments from standard NH distribution
as obtained by MirMostafaee et al. (2016).

3 Relations for Product Moments

In this section, we derive the recurrence relations for the product moments of generalized upper record values
in the following theorem.

Theorem 3 For the distribution given in (2) and m ≥ 1, m ≥ k and i, j = 0, 1, . . . ,

E[(Y (k)
m )i(Y

(k)
m+1)j ]

=
θ

i+ 1

{
mE(Y

(k)
m+1)i+j+1 + k E(Y (k)

m )i+j+1
}

− θ

i+ 1

{
k E[(Y

(k)
m−1)i+1(Y (k)

m )j ] +mE[(Y (k)
m )i+1(Y

(k)
m+1)j ]

}
− E[(Y (k)

m )i+1(Y
(k)
m+1)j ]. (12)

and for 1 ≤ m ≤ n− 2, and i, j = 0, 1, . . . ,

E[(Y (k)
m )i(Y (k)

n )j ]

=
θ

i+ 1

{
mE[(Y

(k)
m+1)i+1(Y (k)

n )j ] + k E[(Y (k)
m )i+1(Y

(k)
n−1)j ]

}
− θ

i+ 1

{
k E[(Y

(k)
m−1)i+1(Y

(k)
n−1)j ] +mE[(Y (k)

m )i+1(Y (k)
n )j ]

}
− E[(Y (k)

m )i+1(Y (k)
n )j ]. (13)

Proof. From (5) and (3), for m ≤ n− 1, we have

E[(Y (k)
m )i(Y (k)

n )j ] + E[(Y (k)
m )i+1(Y (k)

n )j ]

=
θ kn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ y

0

xi yj [− ln F̄ (x)]m−1

×[1− ln F̄ (x)][ln F̄ (x)− ln F̄ (y)]n−m−1[F̄ (y)]k−1f(y)dxdy

=
θ kn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ y

0

xi yj [− ln F̄ (x)]m−1[ln F̄ (x)− ln F̄ (y)]n−m−1

×[F̄ (y)]k−1f(y)dxdy +
θ kn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ y

0

xi yj [− ln F̄ (x)]m

×[ln F̄ (x)− ln F̄ (y)]n−m−1[F̄ (y)]k−1f(y)dxdy

=
θ kn

(m− 1)! (n−m− 1)!

∫ ∞
0

yj [F̄ (y)]k−1f(y)I1(y)dy

+
θ kn

(m− 1)! (n−m− 1)!

∫ ∞
0

yj [F̄ (y)]k−1f(y)I2(y)dy, (14)

where

I1(y) =

∫ y

0

xi[− ln F̄ (x)]m−1 [ln F̄ (x)− ln F̄ (y)]n−m−1dx.
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Integrating I1(y) by parts, we get

I1(y) =
(n−m− 1)

(i+ 1)

∫ y

0

xi+1 [− ln F̄ (x)]m−1[ln F̄ (x)− ln F̄ (y)]n−m−2 f(x)

[F̄ (x)]
d(x)

− (m− 1)

(i+ 1)

∫ y

0

xi+1 [− ln F̄ (x)]m−2[ln F̄ (x)− ln F̄ (y)]n−m−1 f(x)

[F̄ (x)]
d(x). (15)

Similarly

I2(y) =
(n−m− 1)

(i+ 1)

∫ y

0

xi+1 [− ln F̄ (x)]m[ln F̄ (x)− ln F̄ (y)]n−m−2 f(x)

[F̄ (x)]
d(x)

− m

(i+ 1)

∫ y

0

xi+1 [− ln F̄ (x)]m−1[ln F̄ (x)− ln F̄ (y)]n−m−1 f(x)

[F̄ (x)]
d(x). (16)

Substituting I1(y) and I2(y) in (14) and simplifying the resulting expression, yields the result given in (13).
Now putting n = m+1 in (13) and noting that E[(Y

(k)
m )i(Y

(k)
m )j ] = E[(Y

(k)
m )i+j ], the recurrence relations

given in (12) can be easily be established.

Remark 4 (i) Setting j = 0 in (13), we deduce the recurrence relations for single moments from NH
distribution as obtained in (10).

(ii) Setting k = 1 and θ = 1 in (13), we deduce the recurrence relations for product moments of upper record
values from exponential distribution as obtained by Pawlas and Szynal (1998).

(iii) Setting k = 1 in (13), we deduce the recurrence relations for product moments of upper record values
from NH distribution as obtained by MirMostafaee et al. (2016).

(iv) Setting k = 1 and j = 0 in (13), we get the recurrence relations for single moments of upper record
values from NH distribution as established by MirMostafaee et al. (2016).

4 Characterization

This section contains the characterizations of NH distribution, we start with the following result of Lin
(1986).

Proposition 4 Let n0 be any fixed non-negative integer, −∞ < a < b < ∞ and g(x) ≥ 0 an absolutely
continuous function with g

′
(x) 6= 0 a.e. on (a, b). Then the sequence of functions {(g(x))n e−g(x), n ≥ n0} is

complete in L(a, b) iff g(x) is strictly monotone on (a, b).

Theorem 5 Fix a positive integer k ≥ 1 and let j be a nonnegative integer. A necessary and suffi cient
condition for a random variable X to be distributed with pdf given by (1) is that

E(Y
(k)
n+1)j+1 = E(Y (k)

n )j+1 +
j + 1

nθ

[
E(Y (k)

n )j + E(Y (k)
n )j+1

]
− k

n

[
E(Y (k)

n )j+1 − E(Y
(k)
n−1)j+1

]
, (17)

for n = 1, 2, . . . and n ≥ k.

Proof. The necessary part follows from (10). On the other hand if the recuerrence relations (17) is satisfied,
then on rearranging the terms in (17) and using Khan et al. (2017), we have

kn

(n− 1)!

∫ ∞
0

xj(1 + x)[− ln F̄ (x)]n−1[F̄ (x)]k−1f(x)dx

=
θ kn

(n− 1)!

∫ ∞
0

xj [− ln F̄ (x)]n[F̄ (x)]kdx+
θ kn

(n− 1)!

∫ ∞
0

xj [− ln F̄ (x)]n−1[F̄ (x)]kdx
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which implies

θ kn

(n− 1)!

∫ ∞
0

xj [− ln F̄ (x)]n−1[F̄ (x)]k−1
{

(1 + x)f(x)− θ[− ln F̄ (x)][F̄ (x)]− θ[F̄ (x)]
}
dx = 0. (18)

It now follow from the above proposition with

g(x) = − ln F̄ (x)

that
(1 + x)f(x) = θ [1− ln F̄ (x)]F̄ (x)

which proves that f(x) has the form as given in (1).

Theorem 6 Let X be a non-negative random variable having an absolutely continuous df F (x) and F (0) = 0
and 0 ≤ F (x) ≤ 1 for all x > 0. Then

E[ξ(Y (k)
n )|(Y (k)

l ) = x] = exp{1− (1 + x)θ}
( k

k + 1

)n−l
, l = m, m+ 1, m ≥ k (19)

if and only if
F̄ (x) = exp{1− (1 + x)θ}, x > 0, θ > 0,

where
ξ(y) = exp{1− (1 + y)θ}.

Proof. From (6), we have

E[ξ(Y (k)
n )|(Y (k)

m ) = x]

=
kn−m

(n−m− 1)!

∫ ∞
x

exp{1− (1 + y)θ}[ln F̄ (x)− ln F̄ (y)]n−m−1
[ F̄ (y)

F̄ (x)

]k−1 f(y)

F̄ (x)
dy. (20)

By setting u = F̄ (y)
F̄ (x)

= exp{1−(1+y)θ}
exp{1−(1+x)θ} from (2) in (20), we have

E[ξ(Y (k)
n )|(Y (k)

m ) = x] =
kn−m

(n−m− 1)!
exp{1− (1 + x)θ}

∫ 1

0

uk [− lnu]n−m−1du. (21)

We have Gradshteyn and Ryzhik ((2007), p− 551)∫ 1

0

[− lnx]µ−1 xν−1dx =
Γ(µ)

νµ
, µ > 0, ν > 0. (22)

On using (22) in (21), we have the result given in (19).
To prove suffi cient part, we have

kn−m

(n−m− 1)!

∫ ∞
x

exp{1− (1 + y)θ}[− ln F̄ (y) + ln F̄ (x)]n−m−1[F̄ (y)]k−1f(y)dy = [F̄ (x)]k gn|m(x), (23)

where

gn|m(x) = [exp{1− (1 + x)θ}]
( k

k + 1

)n−m
.

Differentiating (23) both sides with respect to x, we get

− kn−m

(n−m− 2)!

f(x)

F̄ (x)

∫ ∞
x

exp{1− (1 + y)θ}[− ln F̄ (y) + ln F̄ (x)]n−m−2[F̄ (y)]k−1f(y)dy

= g
′

n|m(x)[F̄ (x)]k − k gn|m(x) [F̄ (x)]k−1f(x)
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or
−k gn|m+1(x)[F̄ (x)]k−1 = g

′

n|m(x)[F̄ (x)]k − k gn|m(x) [F̄ (x)]k−1f(x).

Therefore,

f(x)

F̄ (x)
= −

g
′

n|m(x)

k[gn|m+1(x)− gn|m(x)]
= θ(1 + x)θ−1, (24)

where

g
′

n|m(x) = −θ(1 + x)θ−1 exp{1− (1 + x)θ}
( k

k + 1

)n−m
,

gn|m+1(x)− gn|m(x) =
1

k
exp{1− (1 + x)θ}

( k

k + 1

)n−m
.

Integrating both the sides (24) with respect to x over (0, y), the suffi ciency part is proved.

Theorem 7 Suppose an absolutely continuous (with respect to Lebesque measure) random variable X has
the df F (x) and the pdf f(x) for 0 < x <∞, such that f ′(x) and E(X|X ≤ x) exist for all x. Then

E(X|X ≤ x) = g(x)η(x), (25)

where

η(x) =
f(x)

F (x)

and

g(x) = − x

θ(1 + x)θ−1
+

∫ x
0
exp{1− (1 + t)θ}dt

θ(1 + x)θ−1 exp{1− (1 + x)θ}
if and only if

f(x) = θ(1 + x)θ−1exp{1− (1 + x)θ}, x > 0, θ > 0.

Proof. From (1), we have

E(X|X ≤ x) =
θ

F (x)

∫ x

0

t (1 + t)θ−1exp{1− (1 + t)θ}dt. (26)

Integrating (26) by parts treating ′θ−1exp{1− (1 + t)θ}′ for integration and rest of the integrand for differ-
entiation, we get

E(X|X ≤ x) =
1

F (x)

[
x {1− exp(1− (1 + x)θ)} −

∫ x

0

{1− exp(1− (1 + t)θ)}dt
]
. (27)

After multiplying and dividing by f(x) in (27), we have the result given in (25).
To prove the suffi cient part, we have from (25)∫ x

0

tf(t)dt = g(x)f(x). (28)

Differentiating (28) on both the sides with respect to x, we find that

xf(x) = g′(x)f(x) + g(x)f ′(x).

Therefore,

f ′(x)

f(x)
=

x− g′(x)

g(x)
[Ahsanullah, et al. (2016)]

= (θ − 1)(1 + x)−1 − θ(1 + x)θ−1, (29)
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where
g′(x) = x− g(x)

[
(θ − 1)(1 + x)−1 − θ(1 + x)θ−1

]
.

Integrating both the sides in (29) with respect to x, we get

f(x) = c (1 + x)θ−1exp{1− (1 + x)θ}.

Now, using the condition
∫∞

0
f(x)dx = 1, we obtains

f(x) = θ(1 + x)θ−1exp{1− (1 + x)θ}, x > 0, θ > 0.
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