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Abstract

The aim of this short note is to provide the characterization of linear hazard rate distribution through
the recurrence relation of product moments, conditional moments of generalized upper record values and
truncated moment. Further, some important deductions are also discussed.

1 Introduction

Dziubdziela and Kopociński [1] have generalized the concept of record values of Chandler [2] by random
variables of a more generalized nature and called them the k-th record values. Later Minimol and Thomas
[3] called the record values defined by Dziubdziela and Kopociński [1] also as the generalized record values,
since the r-th member of the sequence of the ordinary record values is also known as the r-th record value.
Let {Xn, n ≥ 1} be a sequence of independent and identically distributed (iid) random variables with

distribution function(df) F (x) and the probability density function (pdf) f(x). For a fixed positive integer

k, Dziubdziela and Kopociński [1] defined the sequence
{
U
(k)
n , n ≥ 1

}
of k-th upper record times for the

sequence {Xn, n ≥ 1} as follows:
U
(k)
1 = 1

U
(k)
n+1 = min

{
j > U (k)n : Xj:j+k−1 > X

U
(k)
n : U

(k)
n +k−1

}
,

where Xj:n is the j-th order statistic of the sample X1, X2, . . . . . . ., Xn. The sequence {Y (k)n , n ≥ 1},
where Y (k)n = X

U
(k)
n
is called the sequence of k-th upper record values or generalized upper record values of

{Xn, n ≥ 1}. Note that for k = 1, we write Y (1)n = XU(n), n ≥ 1, which are the upper record values of

{Xn, n ≥ 1} as defined (Ahsanullah, [4]) . Moreover, we see that Y (k)0 = 0 and Y (k)1 = min(X1, X2, . . . . . . ., Xn)=
X1:k.
The pdf of Y (k)n and the joint pdf of Y (k)m and Y (k)n are given by (Dziubdziela and Kopociński [1] and

Grudzień [5])

f
Y
(k)
n

(x) =
kn

(n− 1)!
[−lnF (x)]

n−1
[F (x)]k−1f(x), n ≥ 1 (1)

and

f
Y
(k)
m ,Y

(k)
n

(x, y) =
kn

(m− 1)! (n−m− 1)!
[−lnF (x)]

m−1 f(x)

F (x)

×[lnF (x)− lnF (y)]
n−m−1

[F (y)]k−1f(y), x < y, 1 ≤ m < n, n ≥ 2, (2)

where
F̄ (x) = 1− F (x).
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The conditional pdf of Y (k)n given Y (k)m = x is

f
Y
(k)
n |Y (k)

m
(y|x) =

kn−m

(n−m− 1)!
[lnF (x)− lnF (y)]

m−1
(
F (y)

F (x)

)k−1
f(x)

F (x)
, x < y. (3)

The statistical study of record values of a sequence of iid continuous random variables was carried out by
Chandler [2]. For a survey on important results developed in this area one may refer to Glick [6] and Arnold
et al. [7].
Applications of k-th record values can be found in the literature, for instance, see the examples cited in

Kamps [8] and Danielak and Raqab [9] in reliability theory. Record values can be viewed as order statistics
from a sample whose size is determined by the values and the order of occurrence of the observations.
Generalized upper record values have been considered among others, by Grudzień and Szynal [10] char-

acterized the continuous distributions via moments of k-th record values with random indices. Pawlas and
Szynal [11, 12] established relations for single and product moments of k-th record values from exponential,
Gumbel , Pareto, generalized Pareto and Burr distributions. Minimol and Thomas [13] studied the properties
of Makeham and Gompertz distribution and characterized using generalized upper record values. Kumar
and Khan [14] obtained recurrence relations for moments of k-th record values from generalized beta II
distribution and Khan, et al. [15] presented relations for moments of generalized record values from additive
Weibull distribution and associated inference and Khan and Khan [16] characterized the distribution having
power hazard function by properties of generalized upper record values.
In reliability theory, lifetime distributions are often specified by choosing a particular hazard rate function.

One of these hazard rate functions is the linear hazard rate function. The linear hazard rate function has
the form (Bain [17]):

h(x) = α+ βx, x > 0, α, β ≥ 0 (4)

where α, β are the parameters such that α+ β > 0.

The linear hazard rate function given in (4) induces the pdf

f (x) = (α+ βx)e−{αx+
β
2 x

2}, x > 0, α, β ≥ 0. (5)

which is known as linear hazard rate distribution.
The distribution function corresponding to (5) is

F (x) = 1− e−{αx+
β
2 x

2}, x > 0, α, β ≥ 0. (6)

Henceforth, linear hazard rate distribution will be denoted by LHR distribution.
The LHR distribution contains the following well known life time distributions:

(i) When β = 0, LHR distribution reduces to the exponential distribution.

(ii) When α = 0, LHR distribution reduces to the Rayleigh distribution.

From equation (5) and (6), we note that the characterizing differential equation for LHR distribution is given
by,

f(x) = (α+ βx)F (x) (7)

This relation will be used to characterize the LHR distribution. For more details, properties and application
of LHR distribution, see (Bain [17]). Neither the characterization results through the recurrence relations
of product moments and conditional moments of usual upper record values nor those of generalized upper
record values arising from the LHR distribution are known to have been obtained in the available literature.



400 Characterization of Linear Hazard Rate Distribution

2 Characterizations

Characterization of probability distributions play an important role in statistical theory. Different methods
are used for characterization of continuous distributions. Characterization based on recurrence relations,
conditional moments and truncation moment are amongst them.
In the following theorems, we introduce the characterization of linear hazard rate distribution using the

recurrence relations for product moments and conditional moments based on generalized upper record values.

Theorem 1 For a positive integer k, let i and j be non-negative integers. A necessary and suffi cient con-
dition for a random variable X to be distributed with pdf given by (5) is that

E
(
Y (k)m

)i(
Y (k)n

)j
=

αk

(j + 1)

{[
E
(
Y (k)m

)i(
Y (k)n

)j+1]
−
[
E
(
Y (k)m

)i(
Y
(k)
n−1

)j+1]}
+

βk

(j + 2)

{[
E
(
Y (k)m

)i(
Y (k)n

)j+2]
−
[
E
(
Y (k)m

)i(
Y
(k)
n−1

)j+2]}
(8)

Proof. In view of Saran and Singh [18] necessary part can be proved. Alternatively, if the relation in (8) is
satisfied, then by applying (2) and (7), we have:

E
(
Y (k)m

)i(
Y (k)n

)j
=

αk

(j + 1)

kn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ ∞
x

xiyj+1
[
−lnF (x)

]m−1
× f (x)

F (x)

[
F (y)

]k−1 {[−lnF (y) + lnF (x)
]
− (n−m− 1

k

}
f (y) dydx

+
βk

(j + 2)

kn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ ∞
x

xiyj+2
[
−lnF (x)

]m−1 f (x)

F (x)

[
F (y)

]k−1
×
{[
−lnF (y) + lnF (x)

]
− (n−m− 1

k

}
f (y) dydx. (9)

Let

G (y) = −1

k
[−lnF (y) + lnF (x)]

n−m−1[
F (y)

]k
. (10)

Differentiating both sides of (10), we get

G
′
(y) = [−lnF (y) + lnF (x)]

n−m−2[
F (y)

]k−1
f (y)

×
{

(−lnF (y) + lnF (x))− (n−m− 1

k

}
(11)

Thus,

E
(
Y (k)m

)i(
Y (k)n

)j
=

αk

(j + 1)

kn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ ∞
x

xiyj+1
[
−lnF (x)

]m−1 f (x)

F (x)
G

′
(y)dydx

+
βk

(j + 2)

kn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ ∞
x

xiyj+2
[
−lnF (x)

]m−1 f (x)

F (x)
G

′
(y)dydx. (12)

Now consider

I(X) =

∫ ∞
x

yj+1G
′
(y) dy +

∫ ∞
x

yj+2G
′
(y) dy. (13)
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Integrating (13) by parts and using the value of G(y) from (10), we have:

E
(
Y (k)m

)i(
Y (k)n

)j
=

αkn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ ∞
x

xiyj+1
[
−lnF (x)

]m−1 f (x)

F (x)

×[−lnF (y) + lnF (x)]
n−m−1[

F (y)
]k
dydx

+
βkn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ ∞
x

xiyj+1
[
−lnF (x)

]m−1 f (x)

F (x)

×[−lnF (y) + lnF (x)]
n−m−1[

F (y)
]k
dydx. (14)

Upon simplification (14), we have:

kn

(m− 1)! (n−m− 1)!

∫ ∞
0

∫ ∞
x

xiyj
[
−lnF (x)

]m−1 f (x)

F (x)
[−lnF (y) + lnF (x)]

n−m−1

×
[
F (y)

]k−1 {
f (y)− (α+ βy)F (y)

}
dydx = 0. (15)

Applying the extension of Müntz-Szász Theorem, (see, for example, Hwang and Lin, [19]) to (15), we get

f (y) = (α+ βy)F (y) .

This proves that f (y) is the pdf of the linear hazard rate distribution.

Remark 1 Putting i = 0 in Theorem 1, we deduce the characterizing result for single moments of k-th
upper record values from the linear hazard rate distribution as obtained by Saran and Singh [18].

Remark 2 Putting k = 1 and i = 0 in Theorem 1, we deduce the characterizing result for single moments
of upper record values from the linear hazard rate distribution as obtained by Saran and Pushkarna [20].

Remark 3 Putting k = 1 and β = 0, α = 1 in Theorem 1, we deduce the characterizing result for product
moments of upper record values from the standard exponential distribution

E
[
Y iU(m) Y

j+1
U(n)

]
= E

[
Y iU(m) Y

j+1
U(n−1)

]
+ (j + 1)E

[
Y iU(m) Y

j
U(n)

]
as obtained by Ahsanullah et al. [21].

Remark 4 Putting k = 1 and α = 0, β = 2θ in Theorem 1, we deduce the characterizing result for product
moments of upper record values from Rayleigh distribution as follows

E
[
Y iU(m) Y

j
U(n)

]
= E

[
Y iU(m) Y

j+2
U(n−1)

]
+

(
j + 2

2θ

)
E
[
Y iU(m) Y

j+2
U(n)

]
obtained by Mohsin et al. [22].

Theorem 2 Let X be a non-negative random variable having an absolutely continuous df F (x) with F (0) =
0 and 0 ≤ F (x) ≤ 1 for all x > 0. Then

E[ξ(Y (k)n )|(Y (k)l ) = x] = e−(αx+
β
2 x

2)

(
k

k + 1

)n−l
, l = m, m+ 1 (16)

if and only if
F (x) = 1− e−(αx+ β

2 x
2), x > 0, α, β ≥ 0 (17)

where
ξ (y) = e

−(αy+ β
2 y

2)
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Proof. From (3), we have:

E[ξ(Y (k)n )|(Y (k)m ) = x] =
kn−m

(n−m− 1)!

∫ ∞
x

e−(αy+
β
2 y

2)[lnF (x)− lnF (y)]
n−m−1

(
F (y)

F (x)

)k−1
f(y)

F (x)
dy. (18)

By setting

u =
F (y)

F (x)
=
e−(αy+

β
2 y

2)

e−(αx+ β
2 x

2)

from (6) in (18). Then (18) reduces to

E[ξ(Y (k)n )|(Y (k)m ) = x] =
kn−m

(n−m− 1)!
e−(αx+ β

2 x
2)
∫ 1

0

uk(−lnu )
n−m−1

du. (19)

Since ∫ 1

0

(−lnx )
µ−1

xυ−1dx =
Γµ

υµ
, µ > 0, υ > 0. (20)

(Gradshteyn and Ryzhik [23], p-551). On using (20) in (19), the necessary part is proved.
For the suffi ciency part, we consider

kn−m

(n−m− 1)!

∫ ∞
x

e−(αy+ β
2 y

2)[lnF (x) − lnF (y)
]n−m−1[

F (y)
]k−1

f (y) dy =
[
F (x)

]k
gn|m (x) (21)

where

gn|m (x) = e−(αx+
β
2 x

2)

(
k

k + 1

)n−m
.

Differentiating (21) both sides with respect to x, we get

− kn−m

(n−m− 2)!

∫ ∞
x

e−(αy+ β
2 y

2)[lnF (x) − lnF (y)
]n−m−2[

F (y)
]k−1 f(x)

F (x)
f (y) dy

= g
′

n|m (x)
[
F (x)

]k − kgn|m (x)
[
F (x)

]k−1
f(x).

Or:
−kgn|m+1 (x)

[
F (x)

]k−1
f(x) = g

′

n|m (x)
[
F (x)

]k − kgn|m (x)
[
F (x)

]k−1
f(x).

Therefore:
f(x)

F (x)
= −

g′n|m (x)

k[gn|m+1(x) −gn|m(x)]
= (α+ βx).

Integrating both sides of the above equation with respect to x between (0, y), the suffi ciency part is proved.

The following theorem contains the characterization result based on truncated moment.

Theorem 3 Suppose an absolutely continuous (with respect to Lebesgue measure) random variable X has
the df F (x) and pdf f(x) for x ≥ 0 such that f ′(x) and E(X|X ≤ x) exist then

E (X | X ≤ x) = g(x)η(x) (22)

where

g (x) =
1

(α+ βx)

[
−x+ e{αx+

β
2 x

2}
∫ x

0

e−{αu+
β
2 u

2}du
]

and η (x) = f(x)
F (x) if and only if

f (x) = (α+ βx)e−{αx+
β
2 x

2}, x > 0 α, β ≥ 0 .
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Proof. We have

E (X | X ≤ x) =
1

F (x)

∫ x

0

uf (u) du =
1

F (x)

∫ x

0

u(α+ βu)e−{αu+
β
2 u

2}du. (23)

Integrating (23) by parts, treating(α + βu)e−{αu+
β
2 u

2} for integration and the remaining part for the inte-
grand for differentiation, we get

E (X | X ≤ x) =
1

F (x)

{
−xe−{αx+

β
2 x

2} +

∫ x

0

e−{αu+
β
2 u

2}du
}
. (24)

After multiplying and dividing by f(x) in (24), we have

E (X | X ≤ x) =
1

(α+ βx)

[
−x+ e{αx+

β
2 x

2}
∫ x

0

e−{αu+
β
2 u

2}du
]
f(x)

F (x)
.

This proves the necessary part.
To prove the suffi ciency part, we have from (23):

1

F (x)

∫ x

0

uf (u) du =
g (x) f(x)

F (x)
or

∫ x

0

uf (u) du = g (x) f(x). (25)

Differentiating (25) on both the sides with respect to x, we get:

xf (x) = g
′
(x) f (x) + g(x)f

′
(x) .

Therefore
f ′ (x)

f(x)
=
x− g′ (x)

g(x)
Ahsanullah et al. [24],

f ′ (x)

f(x)
=
x− g′ (x)

g(x)
=

[
β

α+ βx
− (α+ βx)

]
, (26)

where

g′ (x) = x− g (x)

[
β

α+ βx
− (α+ βx)

]
.

Integrating both sides in (26) with respect to x, we get

f (x) = c(α+ βx)e−(αx+
β
2 x

2)

Now, using the condition:
∫∞
−∞ f(x)dx = 1,∫ ∞

0

c(α+ βx)e−(αx+
β
2 x

2)dx = 1,

1

c
=

∫ ∞
0

(α+ βx)e−(αx+
β
2 x

2)dx,

c = 1.

This proves that,
f (x) = (α+ βx)e−(αx+

β
2 x

2), x > 0 α, β ≥ 0 .

This completes the proof.
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