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Abstract

In this paper, by making use of Ostrowski type integral inequalities, we establish several error bounds
in approximating the Exponential-Beta function

F (α, β) :=

∫ 1

0

exp
[
xα (1− x)β

]
dx,

where α, β are positive numbers, with some simple quadrature rules of Ostrowski and Trapezoid type.

1 Introduction

The ability to forecast project cash flow has profound impact on organizations ability to perform and secure its
sustainability. The adverse impact of cash flow mismanagement can range from low financial performance
to bankruptcy. The traditional and indeed dominant approach relies on significant knowledge about the
project and the programme of work. The shortcomings of this approach have given rise to the development
and use of mathematical approaches which tend to be easier, cheaper and faster.
One way by which the forecasting models are categorized is by examining the way the project dependant

variables are related to the parameters of the mathematical expression. To this end, three groups of models
are identified [8].
1) Inbuilt-Parameters: Typical of regression models and often referred to as black box model, here, the

model is the product of the data and model parameters are determined by the data that generate the model.
2) No-Parameters: Here, the mathematical expression is simply a calculation of all cost elements by their

relative quantity and rates as well as the identification of the time of their occurrence.
3) Independent-Parameters: Here, the mathematical expression is arbitrarily selected and attempts are

made to establish link between its parameters and the domain data. These models tend have limited use, as
they are not specifically designed to reflect the particular behavior of the domain data.
The proposed alternative model is a variation of the Independent-Parameters approach where the math-

ematical expression displays the general characteristics of the domain data and is capable of generating the
specific characteristics of the domain data. However, the link between the data and the parameters of the
mathematical expression is established through a common set of variables, namely the shape variables. In
this approach, the model is independent of the data and new set of data can be processed without mod-
ifying the model. Here, the parameters have a real meaning which are then contextualised by the data.
These meanings are defined in terms of two sets of characteristics: general and specific [9]. The former
characteristics apply to all projects. Accordingly, the project starts and ends with zero values; there are no
negative values and the periodic values are discrete values. The specific characteristics define the specific
nature of each project pattern of expenditure. They are defined in terms of the coordinates of the main
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project peak on both time and cost axis (the curve monotonically ascends from zero to the peak point and
then monotonically descends towards zero); the cumulative expenditure growth from the start to the peak;
and distortion of the normal pattern resulting in the creation of additional peaks and troughs. Once these
project variables are quantified, the mathematical model can generate an expenditure profile from which the
expenditure values are extracted
Extensive analysis of project expenditure patterns has revealed that the main features of the shape of

the project periodic expenditure pattern are defined in terms of a number of variables represented by the
following expression (see, [10]):

YC := exp
[
bxa(1− x)d

]
− 1

where
xp := R =

a

a+ d
and yp := Q = exp

[
bRa(1−R)d

]
− 1,

where:
-Q, R , represent the positions of the project expenditure peak on both the cost and time access.
-a and b are parameterized in terms of xp and yp as follows

a =
xpd

1− xp
, b =

ln (1 + yp)

xap (1− xp)d
.

-Parameter d is calculated through numerical method that is derived to rapidly converge towards a
solution within desired error tolerance.
A relationship is established between the properties of the project and the physical shape of the project

expenditure pattern. These are then related and reflected on the mathematical expression through its
parameters.
Motivated by the above considerations, in the recent paper [4] we introduced the two-parameters family

of functions
fα,β (x) := exp

[
xα (1− x)

β
]
, x ∈ [0, 1] , α , β > 0

and the "exponential beta function" defined by the integral

F (α, β) :=

∫ 1

0

exp
[
xα (1− x)

β
]
dx, α, β > 0

and studied their mathematical properties.
We obtained among others the following representation:

Theorem 1 For any natural number n ≥ 1 and any α, β > 0 we have

F (α, β) = 1 +

n∑
k=1

1

k!
B (αk + 1, βk + 1) +Rn (α, β) , (1)

where the remainder Rn (α, β) is given by

Rn (α, β) :=
1

n!

∫ 1

0

(∫ 1

0

{
xα(n+1) (1− x)

β(n+1)
exp

[
sxα (1− x)

β
]}

dx

)
(1− s)n ds. (2)

As a consequence, we derived the following convergence result:

Corollary 2 We have the following beta series expansion

F (α, β) = 1 +

∞∑
k=1

1

k!
B (αk + 1, βk + 1) (3)

uniformly over α, β > 0.
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We also obtained the following convexity results:

Theorem 3 The function F − 1 is logarithmically convex on (0,∞)× (0,∞) as a function of two variables,
and, in particular, F is convex on (0,∞)× (0,∞) .

In this paper, by utilising various Ostrowski type inequalities, we first establish some error bounds in
approximating the Exponential Beta function F (α, β) with the generating function fα,β (x) in the case when
α, β > 1. In the second part we consider the following Ostrowski type quadrature rule

Ωk (fα,β , Ik,α) :=

k∑
i=0

(αi+1 − αi) exp
[
xαi (1− xi)β

]
and the Trapezoid rule

Tk (fα,β , Ik) :=
1

2

[
x1 +

k−1∑
i=1

(xi+1 − xi−1) exp
[
xαi (1− xi)β

]
+ 1− xk−1

]
,

associated to the division of the interval [0, 1] ,

Ik : 0 = x0 < x1 < ... < xk−1 < xk = 1

and the intermediate points α0 = 0, αi ∈ [xi−1, xi] (i = 1, ..., k) and αk+1 = 1, and establish accurate error
bounds in approximating the Exponential Beta function F (α, β) with these quadrature rules. The case of
equidistant Trapezoid rule given by

Tk (fα,β) :=
1

k
+

1

k

k−1∑
i=1

exp

[(
i

k

)α(
1− i

k

)β]

for k ≥ 2 is also analyzed.

2 Bounds Via Ostrowski Type Inequalities

The following lemma provides an error estimate in approximating the integral mean by a value of the function
in the case when the derivative is bounded. It was obtained in 1938 by Ostrowski, see [12].

Lemma 4 Let f : [a, b] −→ R be continuous on [a, b] and differentiable on (a, b) , whose derivative is bounded
on (a, b) and let ‖f ′‖∞,(a,b) := supt∈(a,b) |f ′ (t)| <∞. Then∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)

2

]
(b− a) ‖f ′‖∞,(a,b) (4)

for all x ∈ [a, b]. The constant 14 is sharp in the sense that it cannot be replaced by a smaller one.

For a recent survey on this inequality, see [1] and the references therein.
We start with a simple fact incorporated in the following:

Lemma 5 Let α, β > 0. The generating function fα,β is increasing on
[
0, α

α+β

]
, decreasing on

[
α

α+β , 1
]

and

max
x∈[0,1]

fα,β (x) = fα,β

(
α

α+ β

)
= exp

[(
α

α+ β

)α(
β

α+ β

)β]
. (5)
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Proof. We have
fα,β (x) = exp [gα,β (x)]

where gα,β (x) = xα (1− x)
β
, x ∈ [0, 1] and

f ′α,β (x) = g′α,β (x) exp [gα,β (x)] , x ∈ [0, 1] (6)

showing that the sign of f ′α,β on [0, 1] is the same with the one of g′α,β .
Further, we have

g′α,β (x) = αxα−1 (1− x)
β − βxα (1− x)

β−1
= xα−1 (1− x)

β−1
[α (1− x)− βx]

= xα−1 (1− x)
β−1

[α− (α+ β)x] , x ∈ (0, 1) . (7)

This shows that g′α,β (x) > 0 for x ∈
(

0, α
α+β

)
and g′α,β (x) < 0 for

(
α

α+β ,∞
)
, which proves the statement.

Lemma 6 For α, β > 1 we have

max
x∈[0,1]

∣∣g′α,β (x)
∣∣ ≤ max {α, β}

(
α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
. (8)

Proof. From (7), we have

g′α,β (x) = gα−1,β−1 (x) [α− (α+ β)x] , x ∈ [0, 1] ,

which implies that for α, β > 1 we have

max
x∈[0,1]

∣∣g′α,β (x)
∣∣ ≤ max

x∈[0,1]
gα−1,β−1 (x) max

x∈[0,1]
|α− (α+ β)x| = max {α, β} max

x∈[0,1]
gα−1,β−1 (x) . (9)

From (7) we get
g′α−1,β−1 (x) = gα−2,β−2 (x) [α− 1− (α+ β − 2)x] , x ∈ (0, 1) .

This shows that g′α−1,β−1 (x) > 0 for x ∈
(

0, α−1
α+β−2

)
and g′α−1,β−1 (x) < 0 for

(
α−1

α+β−2 ,∞
)
, which gives

that

max
x∈[0,1]

gα−1,β−1 (x) = gα−1,β−1

(
α− 1

α+ β − 2

)
=

(
α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
. (10)

By (9) and (10) we get the desired inequality (8).

We have the following result via Ostrowski’s inequality:

Theorem 7 For α, β > 1 we have

|F (α, β)− fα,β (x)| ≤
[

1

4
+

(
x− 1

2

)2]
×max {α, β}

(
α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
× exp

[(
α

α+ β

)α(
β

α+ β

)β]
(11)

for all x ∈ [0, 1]. In particular,∣∣∣∣F (α, β)− exp

(
1

2α+β

)∣∣∣∣
≤ 1

4
max {α, β}

(
α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
exp

[(
α

α+ β

)α(
β

α+ β

)β]
. (12)
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Proof. If we write Ostrowski’s inequality for the function fα,β on the interval [0, 1] , then we have∣∣∣∣fα,β (x)−
∫ 1

0

fα,β (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x− 1

2

)2]∥∥f ′α,β∥∥∞,[0,1] (13)

for all x ∈ [0, 1]. From (6) we have

f ′α,β (x) = g′α,β (x) fα,β (x) , x ∈ [0, 1] ,

which shows that

max
x∈[0,1]

∣∣f ′α,β (x)
∣∣

≤ max
x∈[0,1]

∣∣g′α,β (x)
∣∣ max
x∈[0,1]

fα,β (x)

≤ max {α, β}
(

α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
exp

[(
α

α+ β

)α(
β

α+ β

)β]
,

where for the last inequality we used Lemmas 4 and 5. By employing (13) we obtain the desired result (11).

In 1997, Dragomir and Wang proved the following Ostrowski type inequality [5], see also [1, p. 26]:

Lemma 8 Let f : [a, b]→ R be an absolutely continuous function on [a, b]. Then we have the inequality∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1

2
+

∣∣x− a+b
2

∣∣
b− a

]
‖f ′‖[a,b],1 , (14)

for all x ∈ [a, b], where ‖·‖1 is the Lebesgue norm on L1 [a, b], i.e., we recall it

‖g‖[a,b],1 :=

∫ b

a

|g (t)| dt.

The constant 12 is best possible.

Note the fact that 12 is the best constant for differentiable functions was proved in [13].

Theorem 9 For α, β > 1 we have∣∣∣∣ fα,β (x)

F (α, β)
− 1

∣∣∣∣ ≤ [1

2
+

∣∣∣∣x− 1

2

∣∣∣∣]×max {α, β}
(

α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
(15)

for all x ∈ [0, 1] and, in particular,∣∣∣∣∣exp
(

1
2α+β

)
F (α, β)

− 1

∣∣∣∣∣ ≤ 1

2
max {α, β}

(
α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
. (16)

For α, β > 0, we also have

|F (α, β)− fα,β (x)| ≤
[

1

2
+

∣∣∣∣x− 1

2

∣∣∣∣]×max {α, β}B (α, β) exp

[(
α

α+ β

)α(
β

α+ β

)β]
(17)

for all x ∈ [0, 1] and, in particular,∣∣∣∣F (α, β)− exp

(
1

2α+β

)∣∣∣∣ ≤ 1

2
max {α, β}B (α, β) exp

[(
α

α+ β

)α(
β

α+ β

)β]
(18)

where B (·, ·) is Euler’s Beta function.
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Proof. If we write the inequality (14) for fα,β on the interval [0, 1] , then we have

|fα,β (x)− F (α, β)| ≤
[

1

2
+

∣∣∣∣x− 1

2

∣∣∣∣] ∥∥f ′α,β∥∥[0,1],1 , (19)

for all x ∈ [0, 1]. Now, observe that

∥∥f ′α,β∥∥[0,1],1 =

∫ 1

0

∣∣f ′α,β (t)
∣∣ dt =

∫ 1

0

∣∣g′α,β (t)
∣∣ exp [gα,β (t)] dt

=

∫ 1

0

∣∣g′α,β (t)
∣∣ fα,β (t) dt =

∫ 1

0

gα−1,β−1 (t) |α− (α+ β) t| fα,β (t) dt

≤ max
t∈[0,1]

|α− (α+ β) t|
∫ 1

0

gα−1,β−1 (t) fα,β (t) dt

= max {α, β}
∫ 1

0

gα−1,β−1 (t) fα,β (t) dt. (20)

Since ∫ 1

0

gα−1,β−1 (t) fα,β (t) dt ≤ max
t∈[0,1]

gα−1,β−1 (t)

∫ 1

0

fα,β (t) dt

=

(
α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
F (α, β) by (10), (21)

hence by (19)—(21) we get

|fα,β (x)− F (α, β)| ≤
[

1

2
+

∣∣∣∣x− 1

2

∣∣∣∣]( α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
F (α, β)

that is equivalent to (15).
We also have ∫ 1

0

gα−1,β−1 (t) fα,β (t) dt ≤ max
t∈[0,1]

fα,β (t)

∫ 1

0

gα−1,β−1 (t) dt

= exp

[(
α

α+ β

)α(
β

α+ β

)β]
B (α, β) (by 5), (22)

hence by (19), (20) and (22) we get (17).

In 1998, Dragomir and Wang proved the following Ostrowski type inequality for p-norms of the derivative
[6].

Lemma 10 Let f : [a, b]→ R be an absolutely continuous function on [a, b]. If f ′ ∈ Lp [a, b] , then we have
the inequality∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

(q + 1)
1/q

[(
x− a
b− a

)q+1
+

(
b− x
b− a

)q+1]1/q
(b− a)

1/q ‖f ′‖[a,b],p , (23)

for all x ∈ [a, b], where p > 1, 1p + 1
q = 1 and ‖·‖[a,b],p is the p-Lebesgue norm on Lp [a, b], i.e., we recall it

‖g‖[a,b],p :=

(∫ b

a

|g (t)|p dt
)1/p

.
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Using this tool we can prove the following result as well:

Theorem 11 For α, β > 1 we have

|F (α, β)− fα,β (x)| ≤ 1

(q + 1)
1/q

[
xq+1 + (1− x)

q+1
]1/q

×max {α, β} exp

[(
α

α+ β

)α(
β

α+ β

)β]
× [B (p (α− 1) + 1, p (β − 1) + 1)]

1/p (24)

for all x ∈ [0, 1] , where p > 1, 1p + 1
q = 1. In particular,∣∣∣∣F (α, β)− exp

(
1

2α+β

)∣∣∣∣ ≤ 1

2 (q + 1)
1/q

max {α, β} exp

[(
α

α+ β

)α(
β

α+ β

)β]
× [B (p (α− 1) + 1, p (β − 1) + 1)]

1/p
, (25)

where B (·, ·) is Euler’s Beta function.

Proof. If we write the inequality (23) for the function for fα,β on the interval [0, 1] , then we have

|fα,β (x)− F (α, β)| ≤ 1

(q + 1)
1/q

[
xq+1 + (1− x)

q+1
]1/q ∥∥f ′α,β∥∥[0,1],p , (26)

for all x ∈ [a, b], where p > 1, 1p + 1
q = 1.

Observe that∥∥f ′α,β∥∥p[0,1],p =

∫ 1

0

∣∣f ′α,β (t)
∣∣p dt =

∫ 1

0

∣∣g′α,β (t)
∣∣p (exp [gα,β (t)])

p
dt

=

∫ 1

0

∣∣g′α,β (t)
∣∣p fpα,β (t) dt =

∫ 1

0

gpα−1,β−1 (t) |α− (α+ β) t|p fpα,β (t) dt

≤ max {αp, βp}
∫ 1

0

xp(α−1) (1− x)
p(β−1)

fpα,β (t) dt. (27)

Since

max
t∈[0,1]

fpα,β (t) = fpα,β

(
α

α+ β

)
= exp

[
p

(
α

α+ β

)α(
β

α+ β

)β]
,

and by (27), we get

∥∥f ′α,β∥∥p[0,1],p ≤ max {αp, βp} exp

[
p

(
α

α+ β

)α(
β

α+ β

)β]∫ 1

0

xp(α−1) (1− x)
p(β−1)

dt

= max {αp, βp} exp

[
p

(
α

α+ β

)α(
β

α+ β

)β]
B (p (α− 1) + 1, p (β − 1) + 1) ,

namely

∥∥f ′α,β∥∥[0,1],p ≤ max {α, β} exp

[(
α

α+ β

)α(
β

α+ β

)β]
[B (p (α− 1) + 1, p (β − 1) + 1)]

1/p
,

Therefore, by (26), we get the desired result (24).
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3 Quadrature Rules of Ostrowski and Trapezoid Type

Let
Ik : a = x0 < x1 < ... < xk−1 < xk = b

be a division of the interval [a, b] , αi (i = 0, ..., k + 1) be ”k + 2” points so that α0 = a, αi ∈ [xi−1, xi]
(i = 1, ..., k) and αk+1 = b. Define

hi := xi+1 − xi (i = 0, ..., k − 1) and ν (h) := max {hi | i = 0, ..., k − 1} .

Consider the equality ∫ b

a

f (t) dt = Ωk (f, Ik,αk+1) +Rk (f, Ik,αk+1) (28)

where

Ωk (f, Ik,α) :=

k∑
i=0

(αi+1 − αi) f (xi) (29)

is theOstrowski quadrature rule associated to the division Ik and the ”k+2” pointsαk+1 := (α0, α1, ..., αk, αk+1)

while Rk (f, Ik,αk+1) is the error in approximating the integral
∫ b
a
f (t) dt by the quadrature Ωk (f, Ik,α).

If we chose in (29)

α0 = a, α1 =
a+ x1

2
, α2 =

x1 + x2
2

, ..., αk−1 =
xk−2 + xk−1

2
, αk =

xk−1 + xk
2

, αk+1 = b,

then we get after some arrangements that

Ωk (f, Ik,α) =
1

2

[
(x1 − a) f (a) +

k−1∑
i=1

(xi+1 − xi−1) f (xi) + (b− xk−1) f (b)

]
=: Tk (f, Ik) ,

where Tk (f, Ik) is called the Trapezoid quadrature rule associated to the function f and the division Ik.
In this situation we have ∫ b

a

f (t) dt = Tk (f, Ik) +Rk (f, Ik) , (30)

where Rk (f, Ik) is the error in approximation the integral by the trapezoid rule Tk (f, Ik) .
Let

Ik : xi := a+ (b− a)
i

k
, i = 0, ..., k

be the equidistant partitioning of [a, b] . We can consider then the equidistant Trapezoid rule given by

Tk (f) :=
1

k

f (a) + f (b)

2
(b− a) +

b− a
k

k−1∑
i=1

f

(
a+ (b− a)

i

k

)
for k ≥ 2.
Further, we can approximate the integral as∫ b

a

f (t) dt = Tk (f) +Rk (f) , (31)

where Rk (f) is the error in this equidistant approximation.
Assume that f is absolutely continuous on [a, b] .



440 Approximating the Exponential Beta Function

If f ′ is essentially bounded on [a, b], namely, f ′ ∈ L∞ [a, b] , then we have the error bounds [7, p. 19]

|Rk (f, Ik,αk+1)| ≤
[

1

4

k−1∑
i=0

h2i +

k−1∑
i=0

(
αi+1 −

xi + xi+1
2

)2]
‖f ′‖∞,[a,b]

≤ 1

2

k−1∑
i=0

h2i ‖f ′‖∞,[a,b] ≤
1

2
(b− a) ‖f ′‖∞,[a,b] ν (h) . (32)

The trapezoid rule error Rk (f, Ik) satisfies the better bounds

|Rk (f, Ik)| ≤ 1

4

(
k−1∑
i=0

h2i

)
‖f ′‖∞,[a,b] ≤

1

4
(b− a) ‖f ′‖∞,[a,b] ν (h)

and the equidistant error Rk (f) satisfies the inequality

|Rk (f)| ≤ 1

4k
(b− a)

2 ‖f ′‖∞,[a,b] .

In terms of 1-norm we have the error bounds [2], see also [7, p. 51],

|Rk (f, Ik,αk+1)| ≤
[

1

2
ν (h) + max

i=1,...,n

∣∣∣∣αi+1 − xi + xi+1
2

∣∣∣∣] ‖f ′‖1,[a,b] ≤ ‖f ′‖1,[a,b] ν (h) . (33)

In particular, we have

|Rk (f, Ik)| ≤ 1

2
ν (h) ‖f ′‖1,[a,b]

and

|Rk (f)| ≤ 1

2k
(b− a) ‖f ′‖1,[a,b] .

If f ′ ∈ Lp [a, b] , p > 1 and 1
p + 1

q = 1, then [3], see also [7, p. 35],

|Rk (f, Ik,αk+1)| ≤
1

(q + 1)
1/q

[
k−1∑
i=0

(αi+1 − xi)q+1 + (xi+1 − αi+1)q+1
]1/q
‖f ′‖p,[a,b]

≤ 1

(q + 1)
1/q
‖f ′‖p,[a,b]

(
k−1∑
i=0

hq+1i

)1/q
≤ 1

(q + 1)
1/q

(b− a)
1/q ‖f ′‖p,[a,b] ν (h) . (34)

Moreover, we have

|Rk (f, Ik)| ≤ 1

2 (q + 1)
1/q
‖f ′‖p,[a,b]

(
k−1∑
i=0

hq+1i

)1/q
≤ 1

2 (q + 1)
1/q

(b− a)
1/q ‖f ′‖p,[a,b] ν (h)

and

|Rk (f)| ≤ 1

2k (q + 1)
1/q

(b− a)
1+1/q ‖f ′‖p,[a,b] .

Let
Ik : 0 = x0 < x1 < ... < xk−1 < xk = 1
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be a division of the interval [0, 1] and α0 = 0, αi ∈ [xi−1, xi] (i = 1, ..., k) and αk+1 = 1. We define the
following Ostrowski type quadrature rule for the Exponential Beta function by

Ωk (fα,β , Ik,α) :=

k∑
i=0

(αi+1 − αi) exp
[
xαi (1− xi)β

]
and the Trapezoid rule by

Tk (fα,β , Ik) :=
1

2

[
x1 +

k−1∑
i=1

(xi+1 − xi−1) exp
[
xαi (1− xi)β

]
+ 1− xk−1

]
.

Consider also the equidistant Trapezoid rule given by

Tk (fα,β) :=
1

k
+

1

k

k−1∑
i=1

exp

[(
i

k

)α(
1− i

k

)β]
for k ≥ 2.

Theorem 12 Let Ik, α be as defined above. Then

F (α, β) = Ωk (fα,β , Ik,α) +Rk (fα,β , Ik,αk+1) ,

where the remainder Rk (fα,β , Ik,αk+1) satisfies the bounds

|Rk (fα,β , Ik,αk+1)| ≤
[

1

4

k−1∑
i=0

h2i +

k−1∑
i=0

(
αi+1 −

xi + xi+1
2

)2]∥∥f ′α,β∥∥∞,[0,1]
≤
[

1

4

k−1∑
i=0

h2i +

k−1∑
i=0

(
αi+1 −

xi + xi+1
2

)2]

×max {α, β}
(

α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
× exp

[(
α

α+ β

)α(
β

α+ β

)β]
, α, β > 1, (35)

|Rk (fα,β , Ik,αk+1)| ≤
[

1

2
ν (h) + max

i=1,...,n

∣∣∣∣αi+1 − xi + xi+1
2

∣∣∣∣] ∥∥f ′α,β∥∥1,[0,1]
≤
[

1

2
ν (h) + max

i=1,...,n

∣∣∣∣αi+1 − xi + xi+1
2

∣∣∣∣]
×max {α, β}B (α, β) exp

[(
α

α+ β

)α(
β

α+ β

)β]
, α, β > 0 (36)

and

|Rk (fα,β , Ik,αk+1)| ≤
1

(q + 1)
1/q

[
k−1∑
i=0

(αi+1 − xi)q+1 + (xi+1 − αi+1)q+1
]1/q ∥∥f ′α,β∥∥p,[0,1]

≤ 1

(q + 1)
1/q

[
k−1∑
i=0

(αi+1 − xi)q+1 + (xi+1 − αi+1)q+1
]1/q

×max {α, β} exp

[(
α

α+ β

)α(
β

α+ β

)β]
× [B (p (α− 1) + 1, p (β − 1) + 1)]

1/p
, α, β > 1, (37)
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where p > 1 and 1
p + 1

q = 1.

The proof follows from the inequalities (32), (33) and (34), and the fact that from the previous section
we have the following upper bounds for the norms of f ′α,β

∥∥f ′α,β∥∥∞,[0,1] ≤ max {α, β}
(

α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
exp

[(
α

α+ β

)α(
β

α+ β

)β]
, α, β > 1,

∥∥f ′α,β∥∥1,[0,1] ≤ max {α, β} exp

[(
α

α+ β

)α(
β

α+ β

)β]
B (α, β) , α, β > 0

and

∥∥f ′α,β∥∥[0,1],p ≤ max {α, β} exp

[(
α

α+ β

)α(
β

α+ β

)β]
[B (p (α− 1) + 1, p (β − 1) + 1)]

1/p
, α, β > 1.

Corollary 13 Let Ik be as defined above. Then

F (α, β) = Tk (fα,β , Ik) +Rk (fα,β , Ik) ,

where the remainder Rk (fα,β , Ik) satisfies the bounds

|Rk (fα,β , Ik)| ≤ 1

4

k−1∑
i=0

h2i
∥∥f ′α,β∥∥∞,[0,1]

≤
[

1

4

k−1∑
i=0

h2i

]
×max {α, β}

(
α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
× exp

[(
α

α+ β

)α(
β

α+ β

)β]
, α, β > 1, (38)

|Rk (fα,β , Ik)| ≤
[

1

2
ν (h)

] ∥∥f ′α,β∥∥1,[0,1] ≤ [1

2
ν (h)

]
×max {α, β}B (α, β) exp

[(
α

α+ β

)α(
β

α+ β

)β]
, α, β > 0 (39)

and

|Rk (fα,β , Ik)| ≤ 1

2 (q + 1)
1/q

(
k−1∑
i=0

hq+1i

)1/q ∥∥f ′α,β∥∥p,[0,1]
≤ 1

2 (q + 1)
1/q

(
k−1∑
i=0

hq+1i

)1/q

×max {α, β} exp

[(
α

α+ β

)α(
β

α+ β

)β]
× [B (p (α− 1) + 1, p (β − 1) + 1)]

1/p
, α, β > 1. (40)

Remark 1 Finally, we mention the following simple trapezoid quadrature rule

F (α, β) = Tk (fα,β) +Rk (fα,β) ,
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where the remainder Rk (fα,β) satisfies the bounds

|Rk (fα,β)| ≤ 1

4k

∥∥f ′α,β∥∥∞,[0,1]
≤ 1

4k
max {α, β}

(
α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1
× exp

[(
α

α+ β

)α(
β

α+ β

)β]
, α, β > 1, (41)

|Rk (fα,β)| ≤ 1

2k

∥∥f ′α,β∥∥1,[0,1]
≤ 1

2k
max {α, β} exp

[(
α

α+ β

)α(
β

α+ β

)β]
B (α, β) , α, β > 0 (42)

and

|Rk (fα,β)| ≤ 1

2k (q + 1)
1/q

∥∥f ′α,β∥∥p,[0,1]
≤ 1

2k (q + 1)
1/q

max {α, β} exp

[(
α

α+ β

)α(
β

α+ β

)β]
× [B (p (α− 1) + 1, p (β − 1) + 1)]

1/p
, α, β > 1. (43)

The bounds above show that Rk (fα,β) → 0 when k → ∞ and therefore F (α, β) = limk→∞ Tk (fα,β) for α,
β > 1.
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