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Abstract

New relations for the Riemann zeta function (RZF) by defining supplementary partial product func-
tions are developed in this paper. Relations are based on partial products of prime numbers with recourse
to product form of the RZF found by unique factorization in Z. This paper is in pursuit of generat-
ing new identities– involving RZF including summations, products, and limits– mostly in the matter of
multiplicative property of Euler products and by applying Taylor series. This is done with the intention
of relating some classical and newly defined functions (using multiplicative Jordan’s totient function and
primorial sequence) to RZF in the form of theorems and proofs.

1 Introduction

The famous Riemann zeta function ζ(s) (RZF) has a variety of applications in mathematics, in particular, in
field of number theory which makes it an important special function. In addition to its direct applications,
there exist several open problems in the field solvable in the event of a correct proof of the well-known
Riemann hypothesis concerning real part of non-trivial zeros located in vertical line R(s) = 1

2 . The Riemann
hypothesis proof as a key towards answers to many problems can be found by equivalences which transform
diffi culty level of the problem into a new level [7].
The paper is organized as 2 main sections: 1- A brief introductory section (2) for RZF 2- Section 3

for developing new formulas, relations, and theorems with 2 subsections concerning RZF as Taylor series
coeffi cients in subsection 3.1, and other special sums, products, and limits for RZF in subsection 3.2. Section
2 provides fundamental, classical definitions involving RZF and other related number theory functions for
the purpose of an overview.
The development of new relations for RZF is done by defining specific auxiliary functions, named and

introduced as lemmas, in order to acquire new series and limit-based formulas for this function. However,
other identities for RZF are developed by consideration of partial product of a special case of Euler products.
The method is also useful when a relation between primorial function and RZF is needed.

2 Riemann zeta function

The RZF definition and its relation to L-functions with its product expansion are reviewed briefly in this
part.

Definition 1 (Riemann zeta function [1]) The RZF is defined by

ζ(s)
∆
=

∞∑
n=1

1

ns
(1)

for R(s) > 1.
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Now, with respect to L-functions [1], introduced by Dirichlet (1837), which is defined by

L(s, χ)
∆
=

∞∑
n=1

χ(n)

ns
, R(s) > 1, (2)

relation (1) is written as
ζ(s) = L(s, 1). (3)

Product expansion of (1) [1] is defined as

ζ(s) =
∏
p

1

1− p−s , R(s) > 1, (4)

where product is taken over all primes. Identity (4) is a special case of product of the L-functions where χ
is considered as a multiplicative function [16]. Equation (4) is product over all prime numbers, therefore it
gives

− ζ
′
(s)

ζ(s)
=

∞∑
n=1

Λ(n)n−s, R(s) > 1 (5)

calculated by taking logarithmic derivative. In (5), Λ(n) is the Mangoldt’s function [1] which equals zero for
n 6= pr, and it equals to

Λ(n)
∆
= log(p)

for n = pr where r ∈ N.

3 Riemann Zeta Function in Taylor Series and Some Special Series

With an eye to other formulas involving RZF, and in contrast to previous section showing some classic
relations for RZF, in this part, some identities involving RZF including sums and products are presented.
Majority of these formulas are related to RZF as coeffi cients in power series of different functions.

3.1 Taylor Series Involving RZF and Other Special Functions

The main intention is to develop power series with ζ function separable in coeffi cients. Assume that left-hand
side of following relation admits Taylor series expansion in neighborhood of x0 in the form of∑

n≥1

f(x/np)

nα
=
∑
n≥0

f (n)(x0)

n!
(x− x0)

n
ζ(α+ np), (6)

which is found by applying Taylor series to left-side of equation and is valid for f (m)(x0) = f (m)(x0/2
p) = ...

where m = 0, 1, . . .. In other words, these parts of coeffi cients should be factored for the zeta function to
appear. Variable p shifts argument in right side, and condition for which ζ(1) not appearing in right side
is α - 1− np for α and p as integers. This shifting of variable is applicable on argument of zeta function in
series presented in this paper, hence it is not re-mentioned in next examples.
If x = 1 with coeffi cients g(n) = f(1/n), left hand side of (6) is a Dirichlet-series shown as

G(s) =

∞∑
n=1

g(n)n−s,

where ζ(s) = G(s) for g(n) = 1. As an example, f(x) = sin(x− x0) is standard form of f in (6) to be valid.
Equation (6) is reformulated as∑

n≥1

f((x− x0)/np)

nα
=
∑
n≥0

f (n)(0)

n!
(x− x0)

n
ζ(α+ np)
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to take functions like f(x) = sin(x) as well provided that zeta function is separable in coeffi cients as in (6).
However, in this paper form of equation (6) is selected for generated Taylor series centered at x0 = 0. If
argument of f is inverted and x set to 1, (6) forms a generalized Euler sum which is itself a special case of
Dirichlet-series [2], [3], represented as

H(s) =

∞∑
n=1

h(n)

ns
, R(s) > 1,

for various functions in place of h(n) which is defined in [15]. However, by inverting argument of f , right-side
of (6) forms a Laurent series. If h(n) is a Dirichlet character (mod k), H(s) = L(s, χ) becomes meromorphic
continuation of it [8], [14].

Example 1 For f(x) = sin(x) near x0 = 0, (6) yields

∑
n≥1

sin(x/np)

nα
=
∑
n≥0

(−1)
n
x2n+1

(2n+ 1)!
ζ(α+ (2n+ 1)p).

Next, Lemma 1 is introduced:

Lemma 1 The defined Upsilon-function

Υp(α)
∆
=
∑
n≥0

np

αnn!
, α 6= 0, (7)

where for p = 0 it gives
Υ0(α) = e

1
α ,

can be calculated for p = 1, 2, ... by recursive relation

Υp(α) = −αΥ
′
p−1(α).

Proof. This result is provable by induction.
In view of Υp(α), assume following series expansion

∑
n≥0

f(nx)

αnn!
=
∑
n≥0

f (n)(x0)

n!
(x− x0)

n
Υn(α), α 6= 0, (8)

which is valid if f (m)(x0) = f (m)(2x0) = ... for m = 0, 1, . . .. By applying (6)-(8), following double sum
involving ζ function is found as

∑
m≥1

∑
n≥0

f(nx/mp)

mβαnn!
=
∑
n≥0

f (n)(x0)

n!
(x− x0)

n
Υn(α)ζ(β + np), α 6= 0. (9)

Next, some examples with Lemma 2 are presented.

Example 2 Sums ∑
n≥0

sin(nx)

αn
=

αsin(x)

α2 + 1− 2αcos(x)
, |α| > 1 (10)

and ∑
n≥0

cos(nx)

αn
=

α2 − αcos(x)

α2 + 1− 2αcos(x)
, |α| > 1 (11)
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have closed form expressions evaluated using Euler identities for sin(x) and cos(x) functions. Integration of
(10) is calculable explicitly after removing first zero term from left-side and dividing1 right-side nominator
and denominator integrand by α2 as

−
∑
n≥1

cos(nx)

nαn
=

∫
α−1sin(x)

1 + α−2 − 2α−1 cos(x)
dx =

1

2
ln(1 +

1

α2
− 2

α
cos(x)). (12)

Integration of (12) gives∑
n≥1

sin(nx)

n2αn
= −

∫ x

0

1

2
ln(1 +

1

α2
− 2

α
cos(θ))dθ

∣∣∣
α=1

= −
∫ x

0

ln(2 sin(
x

2
))dx (13)

which is a generalized form for the Clausens’s integral [10] originally defined for α = 1. Another relation is
cosine series [10] of the form ∑

n≥1

cos(nx)

n2
=
x2

4
− πx

2
+
π2

6
,

which is equal to left-hand side of (11) for α = 1 after integrating twice [10].

For integration of (11), Lemma 2 is introduced:

Lemma 2 The defined sigma-function

ςp(α)
∆
=
∑
n≥0

np

αn
, |α| > 1, (14)

where for p = 0 it equals
ς0(α) =

α

α− 1
,

is calculated for p = 1, 2, ... by recursive relation

ςp(α) = −ας
′

p−1(α).

Proof. This result is provable by induction.
Sigma-function is related to the Polylogarithm-function by following relation:

ςm(α) = (−1)m+1Li−m(α), m = 0, 1, 2, .... (15)

A formula similar to (8) using Lemma 2 is expansion∑
n≥0

f(nx)

αn
=
∑
n≥0

f (n)(x0)

n!
(x− x0)

n
ςn(α). (16)

The generating function for ςn(α) using (16) where f(x) = ex is found as

1

1− α−1ex
=
∑
n≥0

xn

n!
ςn(α), x < ln |α|.

For α = −1, (16) diverges according to (14), therefore, using relation Lim(−1) = ζ(m)(21−m − 1) extracted
based on Hardy’s series for RZF [11],

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
, R(s) > 0,

1The integrand is reformed according to desired domain in order to result in correct integration as for right-side of (10),
|α| < 1 is part of domain where left-side diverges, thus, the integrand was changed to fit left-side domain as well.
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where m 6= 1 with (15), an alternative series results in

∑
n≥0

(−1)nf(nx) =
∑
n≥0

f (n)(x0)

n!
(x− x0)

n
(−1)n+1Li−n(−1). (17)

Moreover, (17) is reducible to

∑
n≥0

(−1)nf(nx) =
1

2
f(x0) +

∑
n≥0

f (2n+1)(x0)

(2n+ 1)!
(x− x0)

2n+1
ζ(−2n− 1)(4n+1 − 1), (18)

where even powers– in general form of series– are removed by ζ(−2n) = 0 and first term equals −ζ(0)f(x0).
To rewrite series in terms of the Bernoulli -numbers [1], ζ(−n) should be replaced by −Bn+1n+1 . Many diver-
gent series are evaluated using various methods including Ramanujan’s summation. In fact, Ramanujan’s
summation equals (18) with little variations for x0 = 0 and x = 1 in terms of Bernoulli -numbers [6].

Example 3 By (16) where f(x) = cos(x), series expansion of (real part) integration of right-hand side of
(11) is evaluated by separating first term as

x+
∑
n≥1

sin(nx)

nαn
=

∫
1− α−1cos(x)

1 + α−2 − 2α−1cos(x)
dx =

∑
n≥0

(−1)
n

(2n+ 1)!
x2n+1ς2n(α), (19)

for |α| ≥ 1. The power series for (10) and (11) are equivalent to

αsin(x)

α2 + 1− 2αcos(x)
=

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
ς2n+1(α)

and
α2 − α cos(x)

α2 + 1− 2αcos(x)
=

∞∑
n=0

(−1)nx2n

(2n)!
ς2n(α)

for |α| > 1.

A new double sum formula similar to (9) is found by Lemma 2 as

∑
m≥1

∑
n≥0

f(nx/mp)

mβαn
=
∑
n≥0

f (n)(x0)

n!
(x− x0)

n
ςn(α)ζ(β + np), α > 1. (20)

Next examples illustrate use of formula (20).

Example 4 Letting f(x) = sin(x) and f(x) = cos(x) with p = 1 in (20) using previous formulas gives

∑
m≥1

αsin(x/m)

mβ(α2 + 1− 2αcos(x/m))
=
∑
n≥0

(−1)
n

(2n+ 1)!
x2n+1ς2n+1(α)ζ(2n+ β + 1), α > 1

and ∑
m≥1

α2 − αcos(x/m)

mβ(α2 + 1− 2αcos(x/m))
=
∑
n≥0

(−1)
n

(2n)!
x2nς2n(α)ζ(2n+ β), α > 1.

To develop more formulas in following, Lemma 3 is introduced:
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Lemma 3 The defined tau-function

τp(α)
∆
=
∑
n≥1

1

npαnn!
, α 6= 0 (21)

where for p = 0 it equals
τ0(α) = e

1
α − 1,

is calculated for p = −1, 0, ... by recursive relation

τp(α) = −
∫
τp−1(α)

α
dα.

Proof. This result can be verified by induction.

By using Lemma 3, series for left-side of equation (22) is assumed as its right-side:

∑
n≥1

f(nx)

npαnn!
=
∑
n≥0

f (n)(x0)

n!
(x− x0)

n
τp−n(α). (22)

For ζ to appear, double summation method applied on (22) as before results in

∑
m≥1

∑
n≥1

f(nx/mp1)

mβn
p
αnn!

=
∑
n≥0

f (n)(x0)

n!
(x− x0)

n
τp−n(α)ζ(β + np1), β > 1. (23)

Tau function satisfies τ−n(1) = eB(n) for n > 1, where B(n) is the Bell -number [4], [5] appearing in series
[9] of the form ∑

n≥0

f(nx)

n!
= e

∑
n≥0

f (n)(x0)

n!
(x− x0)

n
B(n). (24)

Next example illustrates a property of these numbers.

Example 5 Assume that a set of m+ 1 recurrence functions defined as

f0(x) =
∑
n≥0

an
n!

(x− x0)
n
,

fm(x) =
∑
n≥0

fm−1(nx)

n!
,

exists. Then, using Bell-numbers, the Taylor series expansion of fm(x) near x0 for m ∈ R is equal to

fm(x) = em
∑
n≥0

an
n!

(x− x0)
n
Bm(n) (25)

for

x < x0 + lim
n→∞

( n!

anBm(n)

)1/n
.
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3.2 Special Products and Sums Representing RZF

In this section, Theorem 1 with the intention of relating partial zeta function and partial primes’product
function (Definition 2) to RZF is presented. However, a simple average sum based on limit operator is also
introduced in Theorem 6.
A limit-based relation for ζn is

ζ(s) = lim
N→∞

1

N

N∑
n=1

ζn(s), (26)

which is proved by a relation presented in Lemma 4.

Lemma 4 Let S be a Cesàro mean [12] (sum or product) and Sn its partial value. Then

S = lim
N→∞

1

N

N∑
n=1

Sn,

where

Sn =

n∑
m=1

an =

n∏
m=1

bn,

under condition
S = lim

n→∞
Sn.

Proof. The sum in statement of Lemma 4 is written as

S = lim
N→∞

{ S1

N︸︷︷︸
0

+
S2

N︸︷︷︸
0

+ · · ·+ Sn
N

+
Sn+1

N
+ · · ·+ S∞

N︸ ︷︷ ︸
average of infinite terms

}
= S∞,

which ends proof under condition of lemma with assumption of

lim
n→∞

sn
n

= 0.

Definition 2 Define partial primes’product function and partial zeta function as

Pn(s) =
{ n∏
i=1

pi

}−s
= {pn#}−s (27)

and

ζn(s) =

n∏
i=1

1

1− p−si
, (28)

where pn# is the primorial function.

Next, using these functions, Theorem 5 is introduced.

Theorem 5 RZF can be determined in terms of partial product functions Pn and ζn as

ζ(s) = lim
n→∞

1

P2bnc+1(s)

{ 2−s

1− 2−s
−

2bnc∑
k=1

(−1)
k+1

Pk(s)ζk+1(s)
}
, R(s) > 1 (29)

and

ζ(s) =
2s

2s − 1
+

∞∑
n=2

Pn(s)ζn(s)

Pn−1(s)
, R(s) > 1. (30)
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Proof. By assuming pi as sequence of prime numbers, left-side of equality

p−s1

1− p−s1

=
p−s1

(1− p−s1 )(1− p−s2 )
− (p1p2)

−s

(1− p−s1 )(1− p−s2 )

is expanded as its right-side by multiplying numerator and denominator by 1 − p−s2 . If this is done for n
prime numbers, it yields

p−s1

1− p−s1

=
p−s1

(1− p−s1 )(1− p−s2 )
− (p1p2)

−s

(1− p−s1 ) . . . (1− p−s3 )
+· · ·+ (−1)

n
(p1 . . . pn−1)

−s

(1− p−s1 ) . . . (1− p−sn )
+

(−1)
n+1

(p1 . . . pn)
−s

(1− p−s1 ) . . . (1− p−sn )
.

This can be rewritten on the basis of partial product functions Pn and ζn as

p−s1

1− p−s1

= P1(s)ζ2(s)− P2(s)ζ3(s) + · · ·+ (−1)
n
Pn−1(s)ζn(s) + (−1)

n+1
Pn(s)ζn(s).

In this step, n is replaced by 2n+ 1 in order to eliminate last term sign, then equation is solved for ζ2n+1(s),
therefore it gives

ζ2n+1(s) =
1

P2n+1(s)

{ p−s1

1− p−s1

−
2n∑
k=1

(−1)
k+1

Pk(s)ζk+1(s)
}

which equals Theorem 5 statement by setting p1 = 2 and limiting equality as n approaches infinity.
To prove second relation, same technique by interchanging first and second terms is applied which results

in
p−s1

1− p−s1

=
−p−s1 p−s2

(1− p−s1 )(1− p−s2 )
+

p1
−s

(1− p−s1 )(1− p−s2 )
.

This is done for n prime numbers, therefore it gives

1

1− p−s1

+ · · ·+ pn
−s

(1− p−s1 ) . . . (1− p−sn )
=

1

(1− p−s1 ) . . . (1− p−sn )
,

which can be reformed as (30) by pk = Pk(s)/Pk−1(s).
A familiar relation [13] for s = 2, 3, . . . is

ζ(s) =
2s

2s − 1
+

∞∑
n=2

(pn−1#)
s

Js(pn#)
, s = 2, 3, . . .

in terms of primorial sequence pn# with multiplicative Jordan’s totient function defined as

pn#
∆
=

n∏
k=1

pk

and
Jk(n)

∆
= nk

∏
p|n

(1− 1

pk
).

However, equation (29) is also valid for non-integer values of s in the domain of convergence.

Theorem 6 The average identity

ζ(s) =
1

q

{ q∑
i=1

{ 1

1− p−si
+

∞∑
n=0

pn+1i −1∑
m=pni +1

1

ms

}}
(31)

represents RZF, where sequence pi denotes prime numbers.
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Proof. The set
n⋃
i=0

{
mi + 1 ,mi + 2, . . . ,mi+1 − 1

}
,

where 1 < m ∈ N, is equal to {1, 2, . . . ,mn+1 − 1} excluded by {1,m1,m2 . . . ,mn+1 }, so the sum

∞∑
n=0

pn+1i −1∑
m=pni +1

1

ms
=

∑
m∈N−{1, pi, p2i , ...}

1

ms

in (31) equals

ζ(s)−
(
1 +

1

psi
+

1

p2s
i

+ . . .
)

= ζ(s)− 1

1− p−si
,

and it finally follows that

ζ(s) =
1

q

{ q∑
i=1

{ 1

1− p−si
+ ζ(s)− 1

1− p−si

}}
.

The last relation is theorem’s statement.
Equation (31) is valid for other unique sequences satisfying 1 < αi ∈ N in place of pi, but using prime

numbers pi with theorem 2 and relation (31), a functional equation for Euler product is found as

∞∏
i=1

1

1− p−si
=

∞∏
i=1

{
ζ(s)−

∞∑
n=0

pn+1i −1∑
m=pni +1

1

ms

}
, (32)

where terms in left-hand side correspond to terms in right-hand side respectively.

4 Summary

Basic definitions related to the RZF were reviewed briefly at beginning part of this paper. Then, several
lemmas with their proofs and relations to the RZF were presented in order to develop some power series
(with RZF in their coeffi cients) and some limit-based identities. Finally, a theorem providing a familiar
identity for RZF, and another one for Euler product were introduced.
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[13] I. Mező, The primorial and the Riemann zeta function, Amer. Math. Monthly, 120(2013), 321.

[14] F. W. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, Nist Handbook of Mathematical Functions
Hardback, Cambridge University Press, 2010.

[15] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, vol. 530, Springer
Science & Business Media, 2001.

[16] E. C. Titchmarsh, The theory of the Riemann Zeta-Function. Second edition. Edited and with a preface
by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986.


	Introduction
	Riemann zeta function
	Riemann Zeta Function in Taylor Series and Some Special Series
	Taylor Series Involving RZF and Other Special Functions
	Special Products and Sums Representing RZF

	Summary

