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Abstract

We investigate a nonsymmetric Nash-Riccati equation which has arisen in linear quadratic games
for positive systems. There are papers where the stabilising solution of the nonsymmetric Nash-Riccati
equation is computed applying the Newton procedure in the literature. We construct a new decoupled
iteration scheme for computing the stabilizing nonnegative solution of the nonsymmetric Nash-Riccati
equation. The convergence properties of the proposed decoupled iteration are investigated and a suffi cient
condition for convergence is derived. The performance of the proposed algorithm is illustrated on some
numerical examples. On the basis of the experiments we derive conclusions for applicability of the new
scheme.

1 Introduction

We investigate the nonsymmetric matrix Riccati equation in the special form:

R(X ) = −DX − XA+ XSX −Q = 0 . (1)

The unknown matrix X =

(
X1

X2

)
is not square. For this reason the matrix coeffi cients have different

dimensions, i.e. they are : (−A) is an n × n M-matrix, D =
(
AT 0
0 AT

)
, S = (S1 S2) where Si is an

n× n nonpositive matrix, i = 1, 2, Q =
(
Q1
Q2

)
and Qi is an n× n symmetric nonnegative matrix.

The linear quadratic differential game is described by the dynamic system:

ẋ = Ax+B1u1 +B2u2 , x(0) = x0 , (2)

with matrices A ∈ Rn×n, B1 ∈ Rm1 , B2 ∈ Rm2 , x(t) ∈ Rn is the state of the game and the control functions
u1, u2.
We say that a system is positive, if for nonnegative inputs u1, u2 and nonnegative initial values x0, the

state function x is nonnegative. A suffi cient condition for the above system to be a positive system is that
(−A) is an M-matrix and B1, B2 are nonnegative matrices.

The cost-functional for each player is considered

Ji(u1, u2) =

∫ ∞
0

(xT Qi x+ u
T
1 Ri1u1 + u

T
2 Ri2u2) dt , i = 1, 2 ,

where Qi ∈ Rn×n, Rij ∈ Rmi×mj , i, j = 1, 2. The matrices Qi, Rij , i, j = 1, 2 are symmetric.
We say that (u∗1, u

∗
2) is an open loop Nash equilibrium if for each player i = 1, 2, the inequalities

J1(u
∗
1, u
∗
2) ≥ J1(u1, u∗2) and J2(u

∗
1, u
∗
2) ≥ J2(u∗1, u2)
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hold [12, 1]. According to the above inequalities the aim of each player is to maximize his own utility function.
The notation an ’open loop’strategy means that the players have to choose their strategies u1 and u2 prior
to the game and that their only information on the state of the game is the initial state x0. A suffi cient
condition to exits for the existence of unique Nash equilibrium is the matrices R11, R22 are negative definite
ones (see [12, Theorem 4]). The optimal strategy of each player u∗i , i = 1, 2 is given by u

∗
i = −R−1ii BTi X̃i x

∗,

where

(
X̃1

X̃2

)
is the stabilizing solution of (1) with Si = BiR

−1
ii BTi is an n×n nonpositive matrix, i = 1, 2,

and x∗ being the solution of the closed loop equation ẋ = (A−S1X̃1−S2X̃2)x, x(0) = x0 (see [12, Theorem
4]).

The stabilizing solution of (1) is defined in [12] as follows. A left-right stabilizing solution

(
X̃1

X̃2

)
of (1)

satisfies that the matrices A−S1X̃1−S2X̃2 and

(
AT − X̃1S1 −X̃1S2

−S1X̃2 AT − X̃2S2

)
are both stable. The Newton

method under some conditions for computing the stabilizing solution of (1) is proposed in [12]. Authors in [1]
present a study of the Nash equilibria on positive systems, described by the concept of deterministic feedback
Nash equilibrium and the concept of open loop Nash equilibrium. We establish [10] a new decoupled recursive
equations for computing the stabilizing solution of (1) called the Alternately Linearized Implicit Decoupled
Iteration (ALIDI).
In this paper, we propose a New Linearized Implicit Decoupled Iteration (NLIDI) for computing the

stabilizing nonnegative solution of (1). Compared to the ALIDI method, the new iteration is more effi cient
because the algorithm needs less matrix computations in the iterative process. Thus, it requires less CPU
time for solving (1) than ALIDI and it is easy to construct a parallel version of NLIDI. Some numerical
experiments are provided to confirm the effectiveness of the NLIDI.
The rest of the paper is organized as follows. In section 2, we describe the NLIDI and derive its conver-

gence properties. In Section 3, we present numerical examples to illustrate the performance of the algorithm.
Concluding remarks are given in Section 4.
The notation Rs×q stands for s × q real matrices. In this investigation we exploit the properties of

nonnegative matrices. A matrix A = (aij) ∈ Rm×n is a nonnegative matrix if the inequalities aij ≥ 0
are satisfied for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. We use an elementwise order relation. The inequality
P ≥ Q(P > Q) for P = (pij), Q = (qij) means that pij ≥ qij(pij > qij) for all indexes i and j. A matrix
A = (aij) ∈ Rn×n is said to be a Z-matrix if it has nonpositive off-diagonal entries. Any Z-matrix A can be
written in the form A = αI −N with N being a nonnegative matrix. Each M-matrix is a Z-matrix with if
α ≥ ρ(N), where ρ(N) is the spectral radius of N . It is called a nonsingular M-matrix if α > ρ(N) and a
singular M-matrix if α = ρ(N).

2 A New Iterative Scheme

2.1 Preliminary

The equation (1) is a special case of the general nonsymmetric matrix Riccati equation of the form

−DX −XA+XSX +Q = 0 , (3)

where D, Q, S and A are real matrices of dimensions m × m, m × n, n × m and n × n, respectively.

The block matrix K =

(
A −S
−Q D

)
is an M-matrix. The general nonsymmetric matrix Riccati equation

associated with M-matrices has many applications - in the Markov chains [7], in the transport theory [8] and
many others. Nonsymmetric Riccati equation (1) arises from the game theory and more specially from the
investigation of the open-loop Nash linear quadratic differential game [2, 1, 12, 13]. Research on the theories
and the effi cient numerical methods of (3) and it special case (1) has become a hot topic in recent years.
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A more general problem on connected to the properties of the stabilising solution of the game theoretic
algebraic Riccati equation is investigated in [4, 5, 11]. The solution of practical interest is the stabilizing
nonnegative solution of (1).
There are many numerical methods up to now proposed for the minimal nonnegative solution of (3) with

a nonsingular M-matrix. An effective method called alternately linearized implicit iteration method (ALI)
was proposed and investigated in [3, 14, 6]. A new alternately linearized implicit iteration method (NALI)
for computing the minimal nonnegative solution of (3) is introduced in [6]. The approach used in [14] is
extended in the current paper and is applied to compute the stabilizing solution of (1).

2.2 Defining the NLIDI

In [10], we have proposed the following recursive equations (ALIDI) for computing the stabilizing solution
of (1):

Y
(k)
i (µIn +A− S1X(k)

1 − S2X(k)
2 ) = (µI −AT )X(k)

i −Qi, i = 1, 2, (4)

(µIn +A
T − Y (k)i Si)X

(k+1)
i = Y

(k)
i (µI −A+ SjX(k)

j )−Qi, i, j = 1, 2, j 6= i , (5)

X
(0)
1 = X

(0)
2 = 0, k = 0, 1, 2, . . . , γ < 0 .

Here, we propose another iteration to solve the same problem:

Y
(k)
i (µIn +A− S1X(k)

1 − S2X(k)
2 ) = (µI −AT )X(k)

i −Qi , (6)

(µIn +A
T )X

(k+1)
i = Y

(k)
i (µI −A+ S1Y (k)1 + S2Y

(k)
2 )−Qi , (7)

i = 1, 2, X
(0)
1 = X

(0)
2 = 0, k = 0, 1, 2, . . . , µ < 0 . We call it the NLIDI. Note that the first recursive

equation (6) is the same as (4).
We formulate two statements for nonnegative matrices.

Lemma 1 The following statements are equivalent for a Z-matrix (−W ):

(a) −W is a nonsingular M-matrix.

(b) (θIn −W ) is a nonsingular M-matrix, where θ < 0 and In is the n× n unit matrix.

(c) W−1 ≤ 0 ( in elementwise order).

(d) All eigenvalues of W have negative real parts, i.e. W is asymptotically stable .

Lemma 2 ([9]) Let A = (aij) be an n× n M-matrix. If the elements of B = (bij) satisfy the relations:

aii ≥ bii, (aij) ≤ (bij) ≤ 0, i 6= j, i, j = 1, . . . , n ,

then B is also an M-matrix.

We rewrite the matrix function R(X ) in the form R(X ) =
(
R1(X1, X2)

R2(X1, X2)

)
, where

R1(X1, X2) = −ATX1 −X1A+X1S1X1 +X1S2X2 −Q1,

R2(X1, X2) = −ATX2 −X2A+X2S1X1 +X2S2X2 −Q2.
The equation R(X ) = 0 is equivalent to the set of Riccati equations R1(X1, X2) = 0, R2(X1, X2) = 0. We
derive some properties and identities of the matrix functions R1(.), R2(.).

Lemma 3 We construct the matrix sequences {X1
(k), X2

(k), Y1
(k), Y2

(k)}∞k=0 using (6)—(7) with initial values
X
(0)
1 = X

(0)
2 = 0. The following properties hold:
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(i) Ri(X1
(k), X2

(k)) = (Y
(k)
i −X(k)

i )(µIn +A− S1X(k)
1 − S2X(k)

2 ), i = 1, 2.

(ii) Ri(Y1(k), Y2(k)) = (µIn −AT + Y (k)i Si)(Y
(k)
i −X(k)

i ) + Y
(k)
i Sj(Y

(k)
j −X(k)

j ), i, j = 1, 2 , j 6= i.

(iii) Ri(Y1(k), Y2(k)) = (µIn +AT )(X(k+1)
i − Y (k)i ), i = 1, 2.

(iv) Ri(X1
(k+1), X2

(k+1)) = (X
(k+1)
i − Y (k)i )(µIn −A+ SiX(k+1)

i + S2X
(k+1)
2 ) + Y

(k)
i S1(X

(k+1)
i − Y (k)i ) +

Y
(k)
i Sj(X

(k+1)
j − Y (k)j ), i = 1, 2 .

In addition, the following equalities are true for any symmetric nonnegative matrices X̂1, X̂2:

(v) Ri(X̂1, X̂2) = (Y
(k)
i −X̂i)(µIn+A−S1X(k)

1 −S2X
(k)
2 )−(µIn−A+X̂iSi)(X

(k)
i −X̂i)−X̂iSj(X

(k)
j −X̂j),

i, j = 1, 2 , j 6= i .

(vi) Ri(X̂1, X̂2) = (µIn+A
T )(X

(k+1)
i − X̂i)− (Y (k)i − X̂i)(µI −A+S1Y (k)1 +S2Y

(k)
2 )− X̂iSi(Y

(k)
i − X̂i)−

X̂iSj(Y
(k)
j − X̂j), i, j = 1, 2 , j 6= i .

Proof. The proof is completed by a direct calculation.

2.3 Convergence Properties of the Matrix Sequences {X(k)
i , Y

(k)
i }∞k=0

Lemma 4 Assume the matrix (−A) is an M-matrix and Q ≥ 0 and S < 0, µ < 0 , such that (−µI −A) is
an M-matrix and (µI −A) is nonpositive. Assume there exist symmetric nonnegative matrices X̂1, X̂2 such
that Ri(X̂1, X̂2) ≥ 0, i = 1, 2 and −A + S1X̂1 + S2X̂2 is an M-matrix. We construct the matrix sequences
{X1

(k), X2
(k), Y1

(k), Y2
(k)}∞k=0 using (6)—(7) with initial values X

(0)
1 = X

(0)
2 = 0. The following properties

are satisfied:

(a) 0 ≤ Y (k)i ≤ X̂i for i = 1, 2, k = 0, 1, . . ..

(b) 0 ≤ X(k)
i ≤ X̂i for i = 1, 2, k = 0, 1, . . ..

The comparison is in the elementwise order.

Proof. Note that from lemma’s assumptions we obtain the following inequalities A−1 ≤ 0, (µI +A)−1 ≤ 0,
(µI + AT )−1 ≤ 0 which we will use in the proof. For k = 0, we have Y (0)i = −Qi (µIn + A)−1 ≥ 0, because
(µIn +A)

−1 is nonpositive. Using Lemma 3(v) we get

(Y
(0)
i − X̂i) = [Ri(X̂1, X̂2) + (µIn −A)(−X̂i)− X̂iSiX̂i − X̂iSjX̂j ](µIn +A)

−1 ,

with i, j = 1, 2, j 6= i . Note that µIn +A, S1, S2 are nonpositive and thus (Y
(0)
i − X̂i) ≤ 0 and Y (0)i ≤ X̂i,

i = 1, 2.
Further on, we apply equality (vi) from Lemma 3 for k = 0. The matrix µIn − A + S1Y

(0)
1 + S2Y

(0)
2 is

nonpositive. We obtain

0 ≤ Ri(X̂1, X̂2) + X̂iSi(Y
(0)
i − X̂i) + X̂iSj(Y

(0)
j − X̂j) + (Y

(0)
i − X̂i)(µI −A+ S1Y (0)1 + S2Y

(0)
2 )

= (µIn +A
T )(X

(1)
i − X̂i), i, j = 1, 2, j 6= i.

It follows that X(1)
i − X̂i ≤ 0, i = 1, 2. The statements (a) and (b) are proved for k = 0.

We assume that the inequalities are true: 0 ≤ Y
(r−1)
i ≤ X̂i, i = 1, 2, and 0 ≤ X

(r)
i ≤ X̂i, i = 1, 2, for

k = 0, 1, . . . , r.
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We will prove the inequalities: 0 ≤ Y
(r)
i ≤ X̂i, 0 ≤ X

(r+1)
i ≤ X̂i, i = 1, 2. We compute Y (r)i , i = 1, 2

using (6) with k = r, i = 1, 2. We have

Y
(r)
i (µIn +A− S1X(r)

1 − S2X
(r)
2 ) =W

(r)
i ,

where
W

(r)
i := (µI −AT )X(r)

i −Qi ≤ 0, i = 1, 2.

The inequality is true
S1X̂1 + S2X̂2 ≤ S1X(r)

1 + S2X
(r)
2 ,

because X(r)
i ≤ X̂i, i = 1, 2. Thus, −A + S1X̂1 + S2X̂2 and −µI − A + S1X̂1 + S2X̂2 are M-matrices,

and moreover −µI − A + S1X
(r)
1 + S2X

(r)
2 = −Z(r) is an M-matrix. Then (Z(r))−1 ≤ 0. Therefore,

Y
(r)
i =W

(r)
i (Z(r))−1 ≥ 0, i = 1, 2.

According to Lemma 3(v) with k = r, we get

Ri(X̂1, X̂2) + (µIn −A+ X̂iSi)(X
(r)
i − X̂i) + X̂iSj(X

(r)
j − X̂j)

= (Y
(r)
i − X̂i)(γIn +A− S1X(r)

1 − S2X
(r)
2 ), i, j = 1, 2, j 6= i.

The left hand side of the above equality is nonnegative. We conclude Y (r)i − X̂i ≤ 0, i = 1, 2.
Further on, we compute X(r+1)

i , i = 1, 2 using (7) with k = r. We obtain:

(µIn +A
T )X

(r+1)
i = Y

(r)
i (µI −A+ S1Y (r)1 + S2Y

(r)
2 )−Qi ,

i = 1, 2,. Since the matrix (µI−A+S1Y (r)1 +S2Y
(r)
2 ) is nonpositive the right hand side of the above equality

is nonpositive and thus

X
(r+1)
i = (µIn +A

T )−1[Y
(r)
i (µI −A+ S1Y (r)1 + S2Y

(r)
2 )−Qi] ≥ 0 ,

i = 1, 2.
According to Lemma 3(vi) with k = r we get

(µIn +A
T )(X

(r+1)
i − X̂i) = Ri(X̂1, X̂2) + (Y

(r)
i − X̂i)(µI −A+ S1Y (r)1 + S2Y

(r)
2 )

+X̂i Si(Y
(r)
i − X̂i) + X̂iSj(Y

(r)
j − X̂j), i, j = 1, 2, j 6= i .

The right hand side of the above equality is nonnegative and (µIn + AT )−1 ≤ 0. Thus X(r+1)
i − X̂i ≤ 0,

i = 1, 2.
We compute Y (r+1)i , i = 1, 2 using (6) with k = r + 1, i = 1, 2. We have

Y
(r+1)
i (µIn +A− S1X(r+1)

1 − S2X(r+1)
2 ) =W

(r+1)
i ,

where
W

(r+1)
i := (µI −AT )X(r+1)

i −Qi ≤ 0, i = 1, 2.

Therefore the statements (a) and (b) are proved of k = r + 1. This ends the proof.

In the next theorem we derive a suffi cient condition for the convergence of the introduced NLIDI.

Theorem 1 Assume the matrix −A is an M-matrix and Q ≥ 0, and S ≤ 0, µ < 0 such that (−µI − A) is
an M-matrix and µI − A is nonpositive. Assume there exist symmetric nonnegative matrices X̂1, X̂2, such
that Ri(X̂1, X̂2) ≥ 0, i = 1, 2. The matrix sequences {X(k)

1 , X
(k)
2 }∞k=0 defined by (6)—(7) satisfy the following

properties:
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(i) X̂i ≥ X(k+1)
i ≥ Y (k)i ≥ X(k)

i for i = 1, 2, k = 0, 1, . . ..

(ii) Ri(X(k)
1 , X

(k)
2 ) ≤ 0, Ri(Y (k)1 , Y

(k)
2 ) ≤ 0, Ri(X(k+1)

1 , X
(k+1)
2 ) ≤ 0, i = 1, 2, k = 0, 1, . . ..

(iii) The matrix sequences {X(k)
1 , X

(k)
2 }∞k=0 converge to the nonnegative minimal solution X̃1, X̃2 to the set

of Riccati equations R1(X1, X2)) = 0, R2(X1, X2) = 0 with X̃i ≤ X̂i.

(iv) Moreover, if −A+ S X̂ and −D+ X̂ S are M-matrices, then the solution X̃ =
(
X̃1

X̃2

)
is a left- right

stabilizing solution of the nonsymmetric Nash Riccati equation R(X ) = 0.

Proof. We construct the matrix sequences {X1
(k), X2

(k), Y1
(k), Y2

(k)}∞k=0 applying recursive equations (6)—
(7) with X(0)

1 = 0, X
(0)
2 = 0 and µ < 0. The matrix µIn − AT is nonpositive. According to Lemma 4 we

know that the statements (a) and (b) are true. We have to prove the inequalities X(k+1)
i ≥ Y (k)i ≥ X(k)

i for
i = 1, 2, k = 0, 1, . . .. For k = 0 we have Y (0)i ≥ X

(0)
i = 0, i = 1, 2. We have Ri(X(0)

1 , X
(0)
2 ) = −Qi ≤ 0,

i = 1, 2. Applying Lemma 3(ii), we get

Ri(Y1(0), Y2(0)) = (γIn −AT + Y (0)i Si)(Y
(0)
i ) + Y

(0)
i Sj(Y

(0)
j ), i, j = 1, 2, j 6= i .

We apply equalities (ii) and (iii) (k = 0) from Lemma 3

Ri(Y1(0), Y2(0)) = (µIn −AT + Y (0)i Si)Y
(0)
i + Y

(0)
i SjY

(0)
j ≤ 0,

for i, j = 1, 2, j 6= i and

Ri(Y1(0), Y2(0)) = (µIn +AT )(X(1)
i − Y

(0)
i ), i = 1, 2 .

We obtain
(µIn +A

T )(X
(1)
i − Y

(0)
i ) = (µIn −AT + Y (0)i Si)Y

(0)
i + Y

(0)
i SjY

(0)
j ≤ 0 ,

i, j = 1, 2, j 6= i . Thus X(1)
i − Y

(0)
i ≥ 0, i = 1, 2.

Further on, we compute X(1)
1 , X

(1)
2 applying the recursive equation (7). According to Lemma 3(iv) we

induce

Ri(X1
(1), X2

(1)) = (X
(1)
i − Y

(0)
i )(µIn −A+ S1X(1)

1 + S2X
(1)
2 )

+Y
(0)
i Si(X

(1)
i − Y

(0)
i ) + Y

(0)
i Sj(X

(1)
j − Y

(0)
j ) ≤ 0 ,

i, j = 1, 2, j 6= i , because the matrices µIn −A, S1X(1)
1 , S2X

(1)
2 are nonpositive.

Assume that the inequalities (i)—(ii) hold for k = 0, 1, . . . , r. We know

X
(r+1)
i ≥ Y (r)i ≥ X(r)

i , i = 1, 2,

and
Ri(X(r)

1 , X
(r)
2 ) ≤ 0, Ri(Y (r)1 , Y

(r)
2 ) ≤ 0, Ri(X(r+1)

1 , X
(r+1)
2 ) ≤ 0, i = 1, 2 .

Applying Lemma 3(iv) with k = r, we get

Ri(X1
(r+1), X2

(r+1)) = (X
(r+1)
i − Y (r)i )(µIn −A+ SiX(r+1)

i + S2X
(r+1)
2 ) + Y

(r)
i S1(X

(r+1)
i − Y (r)i )

+Y
(r)
i Sj(X

(r+1)
j − Y (r)j ), i = 1, 2 .

We know that Ri(X(r+1)
1 , X

(r+1)
2 ) ≤ 0, i = 1, 2 by the induction assumption and (µIn + A − S1X(r+1)

1 −
S2X

(r+1)
2 )−1 ≤ 0. Thus, Y (r+1)i ≥ X

(r+1)
i , i = 1, 2. Applying Lemma 3(ii) and the fact that µIn − AT +

Y
(r+1)
i Si, i = 1, 2 is a nonpositive matrix, we conclude

Ri(Y1(r+1), Y2(r+1)) = (µIn −AT + Y (r+1)i Si)(Y
(r+1)
i −X(r+1)

i ) + Y
(r+1)
i Sj(Y

(r+1)
j −X(r+1)

j ) ≤ 0,
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i, j = 1, 2, j 6= i .
According to Lemma 3(i) we extract (i = 1, 2)

Ri(X(r+1)
1 , X

(r+1)
2 ) = (Y

(r+1)
i −X(r+1)

i )(µIn +A− S1X(r+1)
1 − S2X(r+1)

2 ),

Ri(X(r+1)
1 , X

(r+1)
2 ) = (Y

(r+1)
i −X(r+1)

i )Z(r+1),

Ri(X(r+1)
1 , X

(r+1)
2 )(Z(r+1))−1 = (Y

(r+1)
i −X(r+1)

i ) ≥ 0.

Since (Z(r+1))−1 ≤ 0, because −Z(r+1) is a nonsingular M-matrix, we infer

Ri(X(r+1)
1 , X

(r+1)
2 ) ≤ 0, i = 1, 2.

Further on, we compute X(r+2)
1 , X

(r+2)
2 applying the recursive equations (6)—(7). We know X̂i ≥ X(r+2)

i ≥ 0,
i = 1, 2.
We apply equalities (ii) and (iii) from Lemma 3 in order to obtain:

(µIn +A
T )(X

(r+2)
i − Y (r+1)i ) = (µIn −AT + Y (r+1)i Si)(Y

(r+1)
i −X(r+1)

i ) + Y
(r+1)
i Sj(Y

(r+1)
j −X(r+1)

j ),

i, j = 1, 2, j 6= i. The right hand side of the above equality is nonposivive. The matrix −µIn−AT +Y (r+1)i Si

is a nonsingular M-matrix, i = 1, 2. Thus X(r+2)
i − Y (r+1)i ≥ 0, i = 1, 2.

According to Lemma 3(iv) we write down

Ri(X1
(r+2), X2

(r+2)) = (X
(r+2)
i − Y (r+1)i )(µIn −A+ SiX(r+2)

i + S2X
(r+2)
2 ) + Y

(r+1)
i S1(X

(r+2)
i − Y (r+1)i )

+Y
(r+1)
i Sj(X

(r+2)
j − Y (r+1)j ), i = 1, 2.

and therefore Ri(X(r+2)
1 , X

(r+2)
2 ) ≤ 0, i = 1, 2.

Hence, the induction process has been completed. Thus the matrix sequences {X(k)
1 , X

(k)
2 }∞k=0 are

nonnegative, monotonically increasing and bounded from above by (X̂1, X̂2) (in the elementwise ordering).
We denote limk→∞( X

(k)
1 , X

(k)
2 ) = (X̃1, X̃2). By taking the limits in (6)—(7) it follows that (X̃1, X̃2) is a

solution of Ri(X1, X2) = 0, i = 1, 2 with the property X̃i ≤ X̂i, i = 1, 2.
Further on, combining the facts that −A+ S X̃ and −D + X̃ S are Z-matrices with Lemma 2 we conse-

quently conclude −A+S X̃ and −D+ X̃ S are also M-matrices, and A−S X̃ and D−X̃ S are asymptotically
stable ones. Thus, the solution X̃ is a left-right stabilizing solution of R(X ) = 0.
The proof is complete.

3 Numerical Examples

We consider a two-players game and we apply iterative methods ALIDI (4)—(5) and NLIDI (6)—(7) on two
numerical examples. We have compared via numerical experiments the Newton method and the ALIDI
method for computing the stabilizing solution of (1). The matrix coeffi cients A, Bi, Qi and Rii for i = 1, 2
are defined using the Matlab description. The numerical experiments are constructed following the approach
applied in [11].

Example 1 The matrix coeffi cients of (1) are

A =


−2.74 0.06 0.015 0.099
0.2 −2.5 0.064 0.08

0.004 0.15 −2.56 0.09
0.14 0.12 0.21 −2.57

 , B1 =


0.5938
0.2985
0.49
0.98

 ,
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Table 1: Comparison between iterations with tol=1.0e-12 .

ALIDI (4)—(5) NLIDI (6)—(7)

µ avIt CPU avIt CPU

-5 402 2.67s 431 2.7s

-3 256 1.76s 278 1.78s

-1 112 0.82s 112 0.79s

-0.5 40 0.37s 39 0.34s

-0.25 80 0.62s 77 0.57s

Table 2: Comparison between iterations with tol=1.0e-12, µ = −1 and different values of n.

ALIDI (4)—(5) NLIDI (6)—(7)

n maxIt avIt CPU maxIt avIt CPU

28 51 48.3 3.5s 50 47.5 2.2s

48 66 63.5 10.1s 66 62.9 8.5s

56 71 69.6 14.1s 72 68.7 11.9s

96 103 99.6 94.3 108 98.5 87.7s

B2 =


2.8 0 0 0
0 2.9 0 0
0 0 2.84 1.5
0 0 1.5 1.3

 ,

Q1 = eye(4, 4)/2, Q1(1, 1) = 2.0, Q1(4, 4) = 1.5,

Q2 = 0.5 ∗Q1,
R11 = −1.909,

R22 = −eye(4, 4), R22(1, 1) = −50, R22(4, 4) = −30.
We apply the above iterative methods for computing the stabilizing solution of (1) with the stop criteria
‖Ri(X(k)

1 , X
(k)
2 )‖ ≤ tol = 1.0e− 12, i = 1, 2 and different values of µ. It takes the following values: µ = −5,

µ = −3 and µ = −1 . Table 1 presents the computational results for different values of µ. The CPU time is
computed for 100 runs for each value of µ.
The iterations require the same number of iteration steps while finding the stabilising nonnegative solution

of (1) for big values of |µ|. Yet, the conclusion is that the NLIDI method is more effective than ALIDI method
for the lower values of |µ| under the conditions of Theorem 1.

Example 2 The matrix coeffi cients are
A =abs(randn(n))/9, s = max(abs(eig(A))) + 3.5, µ is a parameter with µ < 0,
for i = 1 : n, A(i, i) = −(A(i, i))− s, end
B1 = abs(randn(n, 4))/2,
B2 = 0.7*eye(n, n), B2(n, n) = 0.67,
Q1 = zeros(n, n), Q1(1, 1) = n/2, Q1(n, n) = 1.5,
for i = 1 : n− 1, Q1(i, i+ 1) = 1/sqrt(n); Q1(i+ 1, i) = 1/sqrt(n), end
Q2 = 2 ∗Q1,
R11 = −10,
R22 =-eye(n, n), R22(1, 1) = −50, R22(n, n) = −30.
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We are executing this example for different values of n, and 100 runs are completed for each value of n.
We take X(0)

1 = X
(0)
2 = 0 and thus Ri(X(0)

1 , X
(0)
2 ) = −Qi ≤ 0, i = 1, 2 , (i.e. the matrices are nonpositive).

Table 2 presents the computational results for different values of n.
Results from experiments, which are presented in Table 2, show that the numbers of iterations are slightly

bigger than the ones in the ALIDI method. However the corresponding CPU times (for different values of
n) for (6)—(7) are less than the corresponding CPU time for the ALIDI method.

4 Conclusion

The proposed NLIDI method (6)—(7) combine simplicity and effi cient computer realization. It has the
following advantages: (a) it is faster than the ALIDI method; (b) it uses only one matrix inverting for
computing X(k+1)

1 , X
(k+1)
2 , k = 0, 1, . . .. The inverse matrix is computed only in the beginning of the

iteration; (c) it is easy to extend the NLIDI iteration for a game with N players, N > 2. The advantages
of the NLIDI are preserved in the case of more players; and (d) moreover, it is easy to reorganize the
computations in the NLIDI in order to construct a parallel algorithm for computing the matrix sequences
X
(k+1)
1 , . . . , X

(k+1)
N , k = 0, 1, . . ..

The NLIDI iteration is more effi cient on the basis of property (b). In fact the NLIDI iteration needs only
one matrix inverting for computing all matrices of the matrix sequence X(k+1)

1 , X
(k+1)
2 , k = 0, 1, . . ..
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