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Abstract
In this paper we study the sequence with general term cn = e n

√
n!/(n + 1), which appears in finite

form of Carleman’s inequality. We obtain an asymptotic expansion of log cn with coeffi cients that involve
Bernoulli numbers, and also we get an asymptotic expansion of cn. These results lead to some refinements
of Carleman’s inequality.

1 Introduction and Summary of the Results

For positive real numbers a1, . . . , an, Carleman’s inequality [2] in finite form asserts that
n∑
k=1

(a1 · · · ak)
1
k 6 e

n∑
k=1

ak. (1)

The constant e is the best possible. A proof of this inequality, based on the arithmetic-geometric means
(AM-GM) inequality, starts by observing that for each integer i > 1,

∞∑
k=i

1

k(k + 1)
=

1

i
.

Hence
n∑
i=1

ai =

n∑
i=1

i ai

∞∑
k=i

1

k(k + 1)
>

n∑
i=1

i ai

n∑
k=i

1

k(k + 1)
=

n∑
k=1

1 a1 + 2 a2 + · · ·+ k ak
k(k + 1)

.

The AM-GM inequality over the numbers a1, 2 a2, . . . , k ak gives

1 a1 + 2 a2 + · · ·+ k ak
k

> k!
1
k (a1 a2 · · · ak)

1
k .

Thus

e

n∑
k=1

ak >
n∑
k=1

ck (a1 · · · ak)
1
k , (2)

where

cn =
en!

1
n

n+ 1
. (3)

The function f(x) = (1 + 1
x )x is strictly increasing for x > 0 and admits the limit value limx→∞ f(x) = e.

Thus, the inequality f(x) < e holds for any x > 0, from which we get

en >

n∏
k=1

(
1 +

1

k

)k
=

n∏
k=1

(k + 1)k

kk
=

(n+ 1)n∏n
k=1 k

=
(n+ 1)n

n!
.

This implies that cn > 1 for each n > 1, and by (2) we obtain Carleman’s inequality (1). In this note we
study the sequence cn in more detail to obtain the following result, which is a refinement of Carleman’s
inequality.
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Theorem 1 Given any integer r > 1, the sequence (cn)n>1 defined by (3) is strictly decreasing, and admits
the logarithmic asymptotic expansion

log cn =
log n

2n
+

2r∑
j=1

ηj
nj

+O
( 1

n2r+1

)
, (4)

where η1 = log
√
2π
e and for j > 1,

ηj =
Bj

j(j − 1)
+

(−1)j

j
, (5)

with Bi denoting the i-th Bernoulli number.

Corollary 2 For given integer r > 1 and for integers j with 1 6 j 6 r there exist polynomials Pj(x) with
degree j such that

cn = 1 +

r∑
j=1

Pj(log n)

nj
+O

(( log n

n

)r+1)
. (6)

The inequality (2) and monotonicity of the sequence (cn)n>1 give the following refinements of Carleman’s
inequality.

Corollary 3 For each n > 1,

n∑
k=1

(a1 · · · ak)
1
k < cn

n∑
k=1

(a1 · · · ak)
1
k 6

n∑
k=1

ck (a1 · · · ak)
1
k 6 e

n∑
k=1

ak. (7)

To prove Theorem 1 we need the following asymptomatic formula for log n!. The following result provides
such expansion.

Proposition 4 Given any positive integer r, as n→∞ we have

log n! = n log n− n+
1

2
log n+ log

√
2π +

r∑
j=1

B2j
(2j)(2j − 1)n2j−1

+O
( 1

n2r+1

)
. (8)

Meanwhile, to obtain monotonicity results of some sequences appearing in the proofs, the following lemma
is very useful.

Lemma 5 For given θ ∈ R and for x > 0, let

fθ(x) =
(

1 +
1

x

)x+θ
.

Then, for x ∈ (0,∞), the function f0(x) is strictly increasing and the function f 1
2
(x) is strictly decreasing.

Moreover, f0(x) < e and f 1
2
(x) > e for each x > 0.

2 Proofs

Proof of Lemma 5. We have

f ′θ(x) :=
d

dx
fθ(x) = fθ(x)gθ(x),

where

gθ(x) = log
(

1 +
1

x

)
− x+ θ

x(x+ 1)
.
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Hence

g′θ(x) :=
d

dx
gθ(x) =

2tx− x+ t

x2(x+ 1)2
.

For each fixed θ, we observe that limx→∞ fθ(x) = e and limx→∞ gθ(x) = 0. Since g′0(x) < 0 it follows that
g0(x) > 0. Thus f ′0(x) > 0 and f0 is strictly increasing, and this implies that f0(x) < limx→∞ f 1

2
(x) = e.

Also, since g′1
2

(x) > 0 we obtain g 1
2
(x) < 0, and f ′1

2

(x) < 0. Hence, f 1
2
is strictly decreasing. Moreover,

f 1
2
(x) > limx→∞ f 1

2
(x) = e. This completes the proof.

Proof of Proposition 4. By using Euler—Maclaurin summation formula (see [3]), for any integer r > 1
and for any integer n > 1 we obtain

n∑
k=1

log k = n log n− n+
1

2
log n+ sr + J − I,

with

sr = 1 +

∫ ∞
1

B2r({x})
2rx2r

dx−
r∑
j=1

B2j
(2j)(2j − 1)

,

which is a constant depending, at most on r, and

J =

r+1∑
j=1

B2j
(2j)(2j − 1)n2j−1

, I =

∫ ∞
n

B2(r+1)({x})
2(r + 1)x2(r+1)

dx.

Note that Bi({x}) denotes the i-th Bernoulli function, which is bounded. Hence J � 1
n and

|I| 6
∫ ∞
n

|B2(r+1)({x})|
2(r + 1)x2(r+1)

dx�
∫ ∞
n

dx

x2(r+1)
� 1

n2r+1
.

Thus, we obtain

J − I =

r∑
j=1

B2j
(2j)(2j − 1)n2j−1

+O
( 1

n2r+1

)
.

To conclude the proof we show sr = log
√

2π, which asserts that sr is an absolute constant. We define the
sequence (δn)n>1 by

n! =
(n

e

)n√
n δn.

The inequality δn+1 < δn is equivalent with the assertion that (1 + 1
n )n+

1
2 > e, which holds due to Lemma

5 for the case θ = 1
2 . Hence, δn admits a limit values as n→∞. Let δ = limn→∞ δn. Since J − I � 1

n , we
obtain

sr = lim
n→∞

(
log n!−

(
n log n− n+

1

2
log n

))
= lim
n→∞

log δn = log δ.

Let wn =
∏n
k=1

(
2k
2k−1

2k
2k+1

)
denote the truncated Wallis’product. We have

wn =

(
n!222n

(2n)!

)2
1

2n+ 1
,

and
n!222n

(2n)!

√
2

n
=

(δn)
2

δ2n
.

Hence

wn =

(
(δn)

2

δ2n

)2
n

2(2n+ 1)
. (9)
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By using Wallis’product formula which asserts that limn→∞ wn = π
2 (see [1] for an elementary proof), and

taking limits from both sides of (9) we obtain

π

2
=
δ2

4
.

Thus, δ =
√

2π and consequently sr = log
√

2π. This completes the proof.

Proof of Theorem 1. The inequality cn+1 < cn is equivalent with tn > 1, where

tn =
n! (n+ 2)n(n+1)

(n+ 1)n(n+2)
.

Lemma 5 for the case θ = 0 implies that f0(n + 2) > f0(n + 1), and this is equivalent with ( tn+1tn
)

1
n+1 > 1.

Hence, tn+1 > tn > t1 = 9
8 > 1. This implies that cn is strictly decreasing. To show (4) we use the expansion

(8) as follows

log cn = 1− log(n+ 1) +
1

n
log n!

=
log n

2n
+

log
√

2π

n
+

r∑
j=1

B2j
(2j)(2j − 1)n2j

− log
(

1 +
1

n

)
+O

( 1

n2r+1

)
.

Expanding − log(1 + t) as t→ 0, and letting t = 1
n we obtain

− log
(

1 +
1

n

)
=

2r∑
j=1

(−1)j

jnj
+O

( 1

n2r+1

)
.

We write
r∑
j=1

B2j
(2j)(2j − 1)n2j

=

2r∑
j=2

B̄j
nj
,

where B̄j =
Bj

j(j−1) when j is even and B̄j = 0 when j is odd. Thus

log cn =
log n

2n
+

log
√

2π − 1

n
+

2r∑
j=2

( B̄j
nj

+
(−1)j

jnj

)
+O

( 1

n2r+1

)
,

which is (4) with

ηj =


log
√
2π
e for j = 1,

Bj

j(j−1) + 1
j for j > 1 and j even,

− 1j for j > 1 and j odd.

Since Bj = 0 for odd values of j > 1, we obtain (5).

Proof of Corollary 2. Given any integer r > 1, applying the exponential function to both sides of (4) we
get

cn = n
1
2n exp

 2r∑
j=1

ηj
nj

+O
( 1

n2r+1

) = n
1
2n exp

( 2r∑
j=1

ηj
nj

)(
1 +O

( 1

n2r+1

))
.

Note that

n
1
2n = exp

( log n

2n

)
=

2r∑
j=0

1

j!

( log n

2n

)j
+O

(( log n

n

)2r+1)
.
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Also, we write

exp
( 2r∑
j=1

ηj
nj

)
=

2r∑
i=0

1

i!

( 2r∑
j=1

ηj
nj

)i
+O

( 1

n2r+1

)
.

Thus,

cn =

 2r∑
j=0

1

2jj!

( log n

n

)j 2r∑
i=0

1

i!

( 2r∑
j=1

ηj
nj

)i+O

(( log n

n

)2r+1)
.

Although, multiplying product of sums gives a number of terms weaker than Oh term, after simplifying we
get (6).
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