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Abstract

We discuss the existence and uniqueness of points of coincidence and common fixed points for three
self mappings in m-metric spaces and apply our main result to derive fixed points for expansive type
mappings and several new results in this setup. Finally, we give some examples to justify the validity of
our result.

1 Introduction

Fixed point theory is an important branch of nonlinear analysis that can be applied to many areas of
mathematics and applied sciences. The most celebrated result in this field is the Banach contraction principle
[5]. Because of its simplicity and usefulness, it has become an important tool to solving existence and
uniqueness problems in nonlinear functional analysis. After the appearance of Banach contraction principle,
lots of generalizations have been made in different directions (see [10, 11, 12] and references therein). In
1994, Matthews [9] introduced the notion of partial metric spaces as a generalization of metric spaces and
proved some important fixed point theorems including the well-known Banach contraction theorem in this
new framework. Recently, Asadi et al. [3] extended the notion of partial metric spaces to m-metric spaces
and studied some fixed point results in this setup. The main aim of this paper is to obtain a suffi cient
condition for the existence and uniqueness of points of coincidence and common fixed points for three self
mappings satisfying a generalized contractive type condition in m-metric spaces. As some consequences of
this study, we obtain several related results in the setting of m-metric spaces.

2 Some Basic Concepts

We recall some basic notations, definitions, and results in m-metric spaces.

Definition 1 ([3]) Let X be a nonempty set. A function µ : X × X → R+ is called an m-metric if the
following conditions are satisfied:

(m1) µ(x, x) = µ(y, y) = µ(x, y)⇐⇒ x = y,

(m2) mxy ≤ µ(x, y),

(m3) µ(x, y) = µ(y, x),

(m4) (µ(x, y)−mxy) ≤ (µ(x, z)−mxz) + (µ(z, y)−mzy),

where mxy := min {µ(x, x), µ(y, y)}. Then the pair (X,µ) is called an m-metric space. The following
notation is useful in the sequel Mxy := max {µ(x, x), µ(y, y)}.
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Example 1 ([3]) Let X = [0,∞). Then µ(x, y) = x+y
2 on X is an m-metric. It is valuable to note that µ

is not a partial metric on X. In fact, if x = 4, y = 2 then µ(x, x) > µ(x, y).

Remark 1 ([3]) For every x, y ∈ X,

1. 0 ≤Mxy +mxy = µ(x, x) + µ(y, y);

2. 0 ≤Mxy −mxy =| µ(x, x)− µ(y, y) |.

Example 2 ([3]) Let µ be an m-metric. Put µw(x, y) = µ(x, y) − 2mxy + Mxy. Then µw is an ordinary
metric.

Lemma 1 ([3]) Every p-metric is an m-metric.

It is clear that each m-metric µ on X generates a topology τµ on X. The set {Bµ(x, ε) : x ∈ X, ε > 0 },
where Bµ(x, ε) = { y ∈ X : µ(x, y) < mxy + ε }, for all x ∈ X and ε > 0, forms the base of τµ.

Definition 2 ([3]) Let (X,µ) be an m-metric space. Then:

1. A sequence (xn) in an m-metric space (X,µ) converges to a point x ∈ X if limn→∞(µ(xn, x)−mxnx) =
0.

2. A sequence (xn) in an m-metric space (X,µ) is called an m-Cauchy sequence if limn,m→∞(µ(xn, xm)−
mxnxm) and limn,m→∞(Mxnxm −mxnxm) exist(and are finite).

3. An m-metric space (X,µ) is said to be complete if every m-Cauchy sequence (xn) in X converges, with
respect to τµ, to a point x ∈ X such that limn→∞(µ(xn, x)−mxnx) = 0 and limn→∞(Mxnx−mxnx) = 0.

Lemma 2 ([3]) Let (X,µ) be an m-metric space. Then:

1. (xn) is an m-Cauchy sequence in (X,µ) if and only if it is a Cauchy sequence in the metric space
(X,µw).

2. An m-metric space (X,µ) is complete if and only if the metric space (X,µw) is complete.

Definition 3 ([7]) A function ψ : [0,∞) → [0,∞) is called an altering distance function if it satisfies the
following properties:

(i) ψ is strictly increasing and continuous;

(ii) ψ(t) = 0 if and only if t = 0.

The class of all altering distance functions is denoted by Ψ.

Definition 4 ([2]) A function ϕ : [0,∞) → [0,∞) is called an ultra altering distance function if ϕ is
continuous, and ϕ(0) ≥ 0, ϕ(t) > 0, t 6= 0. The class of all ultra altering distance functions is denoted by Φ.

Definition 5 ([2]) A mapping F : [0,∞)2 → R is called a C-class function if it is continuous and satisfies
the following axioms:

1. F (s, t) ≤ s;

2. F (s, t) = s implies that either s = 0 or t = 0.

We denote the C-class functions by C.
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Example 3 ([2]) The following functions are elements of C.

1. F (s, t) = s− t.

2. F (s, t) = ms, 0 < m < 1.

3. F (s, t) = sβ(s), β : [0,∞)→ [0, 1) and is continuous.

Definition 6 ([1]) Let T, S : X → X be two self mappings on a set X. If y = Tx = Sx for some x in X,
then x is called a coincidence point of T and S and y is called a point of coincidence of T and S.

Definition 7 ([6]) The mappings T, S : X → X are called weakly compatible if they commute at their
coincidence points, i.e., if T (Sx) = S(Tx) whenever Sx = Tx.

Lemma 3 ([4]) Let X be a nonempty set and the mappings S, T, f : X → X be such that (S, f) and (T, f)
are weakly compatible. If S, T and f have a unique point of coincidence y in X, then y is the unique common
fixed point of S, T and f in X.

Definition 8 Let (X,µ) be an m-metric space. A mapping f : X → X is called expansive if there exists a
positive number k > 1 such that

µ(fx, fy) ≥ k µ(x, y), ∀x, y ∈ X.

3 Main Results

Theorem 4 Let (X,µ) be an m-metric space and let the mappings S, T, f : X → X satisfy the following
condition:

max {ψ(µ(Sx, Ty)), ψ(µ(Tx, Sy)), ψ(µ(Tx, Ty)), ψ(µ(Sx, Sy))} ≤ F (ψ(µ(fx, fy)), ϕ(µ(fx, fy))) (1)

for all x, y ∈ X, where ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C. Suppose that S(X) ∪ T (X) ⊆ f(X) and f(X)
is a complete subspace of X. Then S, T and f have a unique point of coincidence u(say) in f(X) with
µ(u, u) = 0. Moreover, if (S, f) and (T, f) are weakly compatible, then S, T and f have a unique common
fixed point in f(X).

Proof. Let x0 ∈ X be arbitrary and choose a point x1 ∈ X such that fx1 = Sx0 which is possible since
S(X) ⊆ f(X). Similarly, there is a point x2 ∈ X such that fx2 = Tx1. Continuing this process, we can
construct a sequence (fxn) in f(X) by fxn = Sxn−1, if n is odd and fxn = Txn−1, if n is even.
If n ∈ N is odd, then by using condition (1) we have

ψ(µ(fxn, fxn+1))

= ψ(µ(Sxn−1, Txn))

≤ max {ψ(µ(Sxn−1, Txn)), ψ(µ(Txn−1, Sxn)), ψ(µ(Txn−1, Txn)), ψ(µ(Sxn−1, Sxn))}
≤ F (ψ(µ(fxn−1, fxn)), ϕ(µ(fxn−1, fxn))).

If n ∈ N is even, then similarly we get

ψ(µ(fxn, fxn+1)) ≤ F (ψ(µ(fxn−1, fxn)), ϕ(µ(fxn−1, fxn))).

Thus for all n ∈ N, we must have

ψ(µ(fxn, fxn+1)) ≤ F (ψ(µ(fxn−1, fxn)), ϕ(µ(fxn−1, fxn))) ≤ ψ(µ(fxn−1, fxn)). (2)

We shall show that limn→∞ µ(fxn, fxn+1) = 0. If µ(fxn0 , fxn0+1) = 0 for some n0 ∈ N, then by using
condition (2), we have

0 ≤ ψ(µ(fxn0+1, fxn0+2)) ≤ ψ(µ(fxn0 , fxn0+1))
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which implies that ψ(µ(fxn0+1, fxn0+2)) = 0 and hence µ(fxn0+1, fxn0+2) = 0. This means that

µ(fxn, fxn+1) = 0 for all n ≥ n0

and so limn→∞ µ(fxn, fxn+1) = 0.
We now suppose that µ(fxn, fxn+1) > 0 for all n ∈ N. Since ψ is strictly increasing, it follows from

condition (2) that µ(fxn, fxn+1) ≤ µ(fxn−1, fxn). Therefore, (µ(fxn, fxn+1)) is a decreasing sequence of
nonnegative real numbers. So, there exists r ≥ 0 such that limn→∞ µ(fxn, fxn+1) = r. We shall show that
r = 0. From condition (2), we get

lim sup
n→∞

ψ(µ(fxn, fxn+1)) ≤ lim sup
n→∞

F (ψ(µ(fxn−1, fxn)), ϕ(µ(fxn−1, fxn)))

≤ lim sup
n→∞

ψ(µ(fxn−1, fxn)).

Therefore, ψ(r) ≤ F (ψ(r), ϕ(r)) ≤ ψ(r). So, it must be the case that F (ψ(r), ϕ(r)) = ψ(r) which ensures
that either ψ(r) = 0 or ϕ(r) = 0. By using the properties of ψ and ϕ, it follows that in each case, r = 0.
Therefore,

lim
n→∞

µ(fxn, fxn+1) = 0. (3)

Now we prove that (fxn) is an m-Cauchy sequence in (f(X), µ).
For all n ∈ N, we obtain by using condition (1) that

ψ(µ(fxn+1, fxn+1)) ≤ max {ψ(µ(Sxn, Txn)), ψ(µ(Txn, Txn)), ψ(µ(Sxn, Sxn))}
≤ F (ψ(µ(fxn, fxn)), ϕ(µ(fxn, fxn)))

≤ ψ(µ(fxn, fxn)).

Since ψ is strictly increasing, we have µ(fxn+1, fxn+1) ≤ µ(fxn, fxn). This assures that the sequence
(µ(fxn, fxn)) is decreasing. So, lim

n→∞
µ(fxn, fxn) exists. By using (m2), we get

0 ≤ mfxnfxn+1 = µ(fxn+1, fxn+1) ≤ µ(fxn, fxn+1).

This implies that limn→∞ µ(fxn, fxn) = 0. On the other hand,mfxnfxm = min {µ(fxn, fxn), µ(fxm, fxm)}
implies that

lim
n,m→∞

mfxnfxm = 0. (4)

As 0 ≤Mfxnfxm −mfxnfxm = | µ(fxn, fxn)− µ(fxm, fxm) |, it follows that

lim
n,m→∞

(Mfxnfxm −mfxnfxm) = 0.

We now show that limn,m→∞(µ(fxn, fxm)−mfxnfxm) = 0. Let µ∗(x, y) := µ(x, y)−mxy, for all x, y ∈ X.
Therefore,

lim
n→∞

µ∗(fxn, fxn+1) = 0. (5)

Suppose that limn,m→∞ µ∗(fxn, fxm) 6= 0. Then there exist ε > 0 and two subsequences (fxnk) and (fxmk
)

of (fxn) with k ≤ nk < mk and

µ∗(fxmk−1, fxnk) < ε ≤ µ∗(fxmk
, fxnk) ∀k ∈ N.

By (m4), we have

ε ≤ µ∗(fxmk
, fxnk) ≤ µ∗(fxmk

, fxmk−1) + µ∗(fxmk−1, fxnk)

< µ∗(fxmk
, fxmk−1) + ε.
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Taking limit as k →∞ and using condition (5), we get

lim
k→∞

µ∗(fxmk
, fxnk) = ε.

i.e.,
lim
k→∞

(µ(fxmk
, fxnk)−mfxmk

fxnk
) = ε.

As limk→∞mfxmk
fxnk

= 0, it follows that

lim
k→∞

µ(fxmk
, fxnk) = ε. (6)

By repeated use of (m4), we get

µ∗(fxmk
, fxnk) ≤ µ∗(fxmk

, fxmk+1) + µ∗(fxmk+1, fxnk+1) + µ∗(fxnk+1, fxnk)

and
µ∗(fxmk+1, fxnk+1) ≤ µ∗(fxmk+1, fxmk

) + µ∗(fxmk
, fxnk) + µ∗(fxnk , fxnk+1).

Taking limit as k →∞ and using conditions (3) and (6), we have

lim
k→∞

µ∗(fxmk+1, fxnk+1) = ε.

This together with condition (4) imply that

lim
k→∞

µ(fxmk+1, fxnk+1) = ε. (7)

By using condition (1), we obtain

ψ(µ(fxmk+1, fxnk+1))

≤ max {ψ(µ(Sxmk
, Txnk)), ψ(µ(Txmk

, Sxnk)), ψ(µ(Txmk
, Txnk)), ψ(µ(Sxmk

, Sxnk))}
≤ F (ψ(µ(fxmk

, fxnk)), ϕ(µ(fxmk
, fxnk)))

≤ ψ(µ(fxmk
, fxnk)).

Taking limit as k →∞ and using conditions (6) and (7), we get

ψ(ε) ≤ F (ψ(ε), ϕ(ε)) ≤ ψ(ε).

So F (ψ(ε), ϕ(ε)) = ψ(ε). The definition of F ensures that either ψ(ε) = 0 or ϕ(ε) = 0. In each case, we
have ε = 0, which is a contradiction. Therefore, limn,m→∞(µ(fxn, fxm) −mfxnfxm) = 0. Thus, (fxn) is
an m-Cauchy sequence in f(X). Since f(X) is complete, there exists u ∈ f(X) such that fxn → u = ft for
some t ∈ X. So it must be the case that

lim
n→∞

(µ(fxn, u)−mfxnu) = 0 and lim
n→∞

(Mfxnu −mfxnu) = 0.

As limn→∞mfxnu = 0, it follows that limn→∞ µ(fxn, u) = 0. Moreover, 0 ≤Mfxnu−mfxnu =| µ(fxn, fxn)−
µ(u, u) | implies that µ(u, u) = 0.By using condition (1), we get

ψ(µ(fx2n+1, T t)) = ψ(µ(Sx2n, T t))

≤ max {ψ(µ(Sx2n, T t)), ψ(µ(Tx2n, St)), ψ(µ(Tx2n, T t)), ψ(µ(Sx2n, St))}
≤ F (ψ(µ(fx2n, ft)), ϕ(µ(fx2n, ft)))

≤ ψ(µ(fx2n, ft)).

Since ψ is strictly increasing, we have

µ(fx2n+1, T t) ≤ µ(fx2n, ft). (8)
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By an argument similar to that used above, we obtain

µ(fx2n+2, St) ≤ µ(fx2n+1, ft).

By using condition (8), we have

0 ≤ µ(ft, T t) = µ(ft, T t)−mftT t

≤ µ(ft, fx2n+1) + µ(fx2n+1, T t)

≤ µ(ft, fx2n+1) + µ(fx2n, ft).

Taking limit as n→∞, we get µ(ft, T t) = 0. Similarly, by using the inequality

0 ≤ µ(ft, St) ≤ µ(ft, fx2n+2) + µ(fx2n+2, St),

we obtain, µ(ft, St) = 0. Again,

0 ≤ ψ(µ(Tt, T t)) ≤ max{ψ(µ(St, T t)), ψ(µ(Tt, T t)), ψ(µ(St, St))}
≤ F (ψ(µ(ft, ft)), ϕ(µ(ft, ft)))

≤ ψ(µ(ft, ft)) = 0.

This gives that µ(Tt, T t) = 0. Similarly, µ(St, St) = 0. Therefore, µ(ft, ft) = µ(ft, T t) = µ(ft, St) =
µ(Tt, T t) = µ(St, St) and hence ft = Tt = St = u. This shows that u is a point of coincidence of S, T and
f .
For uniqueness, assume that there is another point v ∈ f(X) such that fx = Tx = Sx = v for some

x ∈ X and µ(v, v) = 0. Then,

ψ(µ(u, v)) = ψ(µ(St, Tx))

≤ max {ψ(µ(St, Tx)), ψ(µ(Tt, Sx)), ψ(µ(Tt, Tx)), ψ(µ(St, Sx))}
≤ F (ψ(µ(ft, fx)), ϕ(µ(ft, fx))) ≤ ψ(µ(u, v)),

which implies that F (ψ(µ(u, v)), ϕ(µ(u, v))) = ψ(µ(u, v)). Using properties of F , we have ψ(µ(u, v)) = 0
or ϕ(µ(u, v)) = 0. In each case, µ(u, v) = 0. Thus, µ(u, u) = µ(v, v) = µ(u, v) which ensures that u = v.
Therefore, S, T and f have a unique point of coincidence in f(X). If (S, f) and (T, f) are weakly compatible,
then by Lemma 3, S, T and f have a unique common fixed point in f(X).

Remark 2 It is worth mentioning that we can replace the continuity of F in Theorem 4 by its upper semi-
continuity.

Corollary 5 Let (X,µ) be an m-metric space and let the mappings T, f : X → X satisfy the following
condition:

ψ(µ(Tx, Ty)) ≤ F (ψ(µ(fx, fy)), ϕ(µ(fx, fy)))

for all x, y ∈ X, where ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C. Suppose that T (X) ⊆ f(X) and f(X) is a complete
subspace of X. Then T and f have a unique point of coincidence u(say) in f(X) with µ(u, u) = 0. Moreover,
if T and f are weakly compatible, then T and f have a unique common fixed point in f(X).

Proof. The proof can be obtained from Theorem 4 by taking S = T .

Corollary 6 Let (X,µ) be an m-metric space and let the mappings T, f : X → X satisfy the following
condition:

ψ(µ(Tx, Ty)) ≤ ψ(µ(fx, fy))− ϕ(µ(fx, fy))

for all x, y ∈ X, where ψ ∈ Ψ, ϕ ∈ Φ. Suppose that T (X) ⊆ f(X) and f(X) is a complete subspace of X.
Then T and f have a unique point of coincidence u(say) in f(X) with µ(u, u) = 0. Moreover, if T and f
are weakly compatible, then T and f have a unique common fixed point in f(X).
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Proof. The proof follows from Theorem 4 by taking S = T and F (s, t) = s− t.

Corollary 7 Let (X,µ) be an m-metric space and let the mappings T, f : X → X satisfy the following
condition:

µ(Tx, Ty) ≤ µ(fx, fy)β(µ(fx, fy))

for all x, y ∈ X, where β : [0,∞)→ [0, 1) is a continuous function. Suppose that T (X) ⊆ f(X) and f(X) is
a complete subspace of X. Then T and f have a unique point of coincidence u(say) in f(X) with µ(u, u) = 0.
Moreover, if T and f are weakly compatible, then T and f have a unique common fixed point in f(X).

Proof. The proof can be obtained from Theorem 4 by taking S = T, ψ(t) = t, ∀ t ≥ 0 and F (s, t) = sβ(s).

Corollary 8 Let (X,µ) be an m-metric space and let the mappings S, T, f : X → X satisfy the following
condition:

max {µ(Sx, Ty), µ(Tx, Sy), µ(Tx, Ty), µ(Sx, Sy)} ≤ k µ(fx, fy)

for all x, y ∈ X, where 0 < k < 1 is a constant. If S(X) ∪ T (X) ⊆ f(X) and f(X) is a complete subspace
of X, then S, T and f have a unique point of coincidence u(say) in f(X) with µ(u, u) = 0. Moreover, if
(S, f) and (T, f) are weakly compatible, then S, T and f have a unique common fixed point in f(X).

Proof. The proof follows from Theorem 4 by taking ψ(t) = t, ∀ t ≥ 0 and F (s, t) = ks, 0 < k < 1.
The following corollary is a generalization of [3, Theorem 3.1].

Corollary 9 Let (X,µ) be an m-metric space and let the mappings T, f : X → X satisfy the following
condition:

µ(Tx, Ty) ≤ k µ(fx, fy)

for all x, y ∈ X, where 0 < k < 1 is a constant. If T (X) ⊆ f(X) and f(X) is a complete subspace of X,
then T and f have a unique point of coincidence u(say) in f(X) with µ(u, u) = 0. Moreover, if T and f are
weakly compatible, then T and f have a unique common fixed point in f(X).

Proof. The proof follows from Theorem 4 by taking S = T, ψ(t) = t for all t ∈ [0,∞) and F (s, t) = ks,
where 0 < k < 1.

Taking T = I in above corollary, we obtain the following result.

Corollary 10 Let (X,µ) be a complete m-metric space and let f : X → X be an onto expansive mapping.
Then f has a unique fixed point in X.

We now give some examples to support our main result.

Example 4 Let X = [0,∞) and µ : X × X → R+ be defined by µ(x, y) = x+y
2 for all x, y ∈ X. Then

(X,µ) is a complete m-metric space. Let S, T, f : X → X be defined by Sx = x
3 , if 0 ≤ x < 1 and

Sx = 0, if 1 ≤ x <∞; Tx = 0, if 0 ≤ x < 1 and Tx = x
3 , if 1 ≤ x <∞; fx = 2x for all x ∈ X. Clearly,

S(X) ∪ T (X) ⊆ f(X) = X. Take ψ(t) = 3t for all t ≥ 0 and F (s, t) = 1
3s for all s, t ≥ 0. It is easy to

verify that all the hypotheses of Theorem 4 hold true and 0 is the unique common fixed point of S, T and f
in f(X) with µ(0, 0) = 0.

Example 5 Let X = [0,∞) and µ : X ×X → R+ be defined by µ(x, y) = min{x, y}+ x+y
2 for all x, y ∈ X.

Then (X,µ) is a complete m-metric space. Let S, T, f : X → X be defined by Sx = (x−1)2
3 , if 0 ≤ x < 1

and Sx = 0, if 1 ≤ x < ∞; Tx = 0, if 0 ≤ x < 1 and Tx = (x−1)2
3 , if 1 ≤ x < ∞; fx = (x − 1)2 for all

x ∈ X. Clearly, S(X) ∪ T (X) ⊆ f(X) = X. Take ψ(t) = 2t for all t ≥ 0 and F (s, t) = 1
3s for all s, t ≥ 0.

It is observed that S(1) = T (1) = f(1) = 0 but f(S(1)) 6= S(f(1)). Therefore, S and f are not weakly
compatible. However, all the other conditions of Theorem 4 are satisfied. We find that 0 is the unique point
of coincidence of S, T and f in f(X) with µ(0, 0) = 0. It should be noticed that Theorem 4 can not assure
the existence of a common fixed point of S, T and f .
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