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Abstract

In this paper we discuss Bass diffusion model, which is widely used in technology forecasting. Some
recurrence relations between the single and product moments of progressively Type-II right censored
order statistics from Bass diffusion model have been established. These relations would enable one to
compute all the single and product moments of progressively Type-II right censored order statistics for
all sample sizes n and all censoring schemes (R1, R2, . . . , Rm), m ≤ n, in a simple recursive manner. For
the estimation of the parameters and the reliability characteristic, maximum likelihood approach is used.
Monte Carlo simulation study is conducted to compare the performance of the estimates for different
censoring schemes.

1 Introduction

The Bass diffusion model was developed by Bass [6], and was described as the process of how new products
get adapted as an interaction between users and potential users. He developed a growth model for the timing
of first purchase (adoption) of a new product (innovation) by consumers in the marketplace, which has been
widely used in marketing research both from a practical and theoretical point of view.
It has been described as one of the most famous empirical generalizations in marketing, along with the

Dirichlet model of repeat buying and brand choice. The model is widely used in forecasting and technology
forecasting. Mathematically, the Bass diffusion is a Riccati equation with constant coeffi cient.
The modelling and forecasting of the diffusion of innovations is a topic of increasing research interest in

marketing science and other disciplines (cf. Meade and Islam [12]). In particular, the Bass diffusion model
assumes that the time to first purchase of an innovation by a consumer can be modelled as a random variable,
which henceforth we denote by X, with probability density function (p.d.f.) f(x) satisfying the following
Riccati differential equation with constant coeffi cients

f(x)

1− F (x)
= p+ qF (x), x > 0, 0 < p ≤ 1, 0 ≤ q ≤ 1, (1)

where F (x) = P (X ≤ x), denotes the cumulative distribution function (c.d.f.) of X. The solution of the
differential equation (1) gives the p.d.f. as

f(x) =
((p+ q)

2
/p)e−(p+q)x

(1 + (q/p)e−(p+q)x)
2 , x > 0. (2)
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The parameters p and q determine the shape of the diffusion process and are interpreted as the coeffi cients of
innovation (external influence) and imitation (internal influence), respectively. If we denote sum of external
influence and internal influence by α and the ratio of internal influence to external influence by β, then form
of p.d.f. given by (2) becomes

f(x) =
α(1 + β)e−αx

(1 + βe−αx)
2 , x > 0, α > 0, β > −1, (3)

where α = p+ q and β = q/p. The corresponding c.d.f. is given by

F (x) =
1− e−αx

1 + βe−αx
, x > 0, α > 0, β > −1. (4)

From (4), the reliability function R(t) is given as

R(t) =
(1 + β)e−αt

1 + βe−αt
, t > 0, α > 0, β > −1. (5)

The failure rate function of Bass diffusion model is given by

h(t) =
f(t)

R(t)
=

α

1 + βe−αt
, t > 0, α > 0, β > −1. (6)

It may be noted that the function f(x) obtained in equation (3), is a well-defined probability density function
when the parameters take the values α > 0, β > −1, i.e.,∫ ∞

0

f(x)dx = 1.

From (3) and (4), we observe that the characterizing differential equation for the Bass diffusion model is
given as

f(x) = α [1− F (x)]− αβ

1 + β
[1− F (x)]

2
. (7)

Note. If imitation (internal influence) q = 0, then p.d.f. given in (2) or in (3) becomes the p.d.f. of
exponential distribution.

2 Progressively Type-II Right Censored Order Statistics

Progressive censoring sampling scheme is very useful in reliability and life time studies. Its allowance for
removal of live units from the test at various stages during the experiment will potentially save the ex-
perimenter cost while still allowing for the observation of some extreme data. Inferential issues based on
this scheme have been extensively studied in the literature for a number of distributions by several authors
including Aggarwala and Balakrishnan [1, 2], Balakrishnan and Aggarwala [4], Athar and Akhter [3], Cohen
[7, 8, 9], Cohen and Whitten [10], Balakrishnan and Sandhu [5], Saran and Pushkarna [16, 17], Saran and
Pande [15], Pushkarna et al. [13] , Saran et al. [14] and Singh and Khan [18].
Let the random variable X represent the waiting time of purchase of an innovation (new product).

Suppose n independent individuals (namely A1, A2, . . . , An) are observed for their respective purchases of a
newly launched product, with continuous identically distributed purchase times X1, X2, . . . , Xn. Suppose,

further that a censoring scheme R1, R2, . . . , Rm is chosen before the experiment such that n = m +
m∑
i=1

Ri.

Now immediately following the first purchase, suppose by Ak (k ∈ [1, n]), Ak and R1 others (randomly
chosen) i.e. (R1 + 1) individuals are removed from the experiment; immediately following the first purchase



250 Relationships for Moments of Progressively Type-II Right Censored Order . . .

after that point. After second observed purchase say by Ap, Ap and R2 others (randomly chosen) i.e. (R2+1)
individuals are removed from the experiment; this process continues until, at the time of the mth observed
purchase, Rm + 1 individuals are removed from the test. Thus, in this type of sampling, we observe in all m
observed purchases and

m∑
i=1

Ri items are progressively censored so that n = m+

m∑
i=1

Ri .

Let X(R1,R2,...,Rm)
1:m:n < X

(R1,R2,...,Rm)
2:m:n < · · · < X

(R1,R2,...,Rm)
m:m:n be the m ordered observed first purchase times

in a sample of size n from the Bass diffusion model as defined by (3), under the progressive Type-II right
censoring scheme (R1, R2, . . . , Rm), m ≤ n. Then the joint p.d.f. of

X
(R1,R2,...,Rm)
1:m:n , X

(R1,R2,...,Rm)
2:m:n , . . . , X(R1,R2,...,Rm)

m:m:n

is given by (Balakrishnan and Sandhu [5])

f1,2,...,m:m:n(x1, x2, . . . , xm) = A(n,m− 1)

m∏
i=1

f(xi)[1− F (xi)]
Ri ,

0 < x1 < x2 < · · · < xm <∞, (8)

where
A(n,m−1)=n(n−R1−1)(n−R1−R2−2) . . . (n−R1−R2−. . .−Rm−1−m+1),

f(x) and F (x) are given by (3) and (4), respectively. Here, note that all the factors in A(n,m−1) are positive
integers. Also it may be observed that the different factors in A(n,m− 1) represent the number of units still
on test immediately preceding the 1st, 2nd, . . . ,mth observed purchases, respectively.
Similarly, for convenience in notation, let us define for q = 0, 1, . . . , (p− 1),

A(p, q) = p(p−R1 − 1)(p−R1 −R2 − 2) . . . (p−R1 −R2 − · · · −Rq − q),

with all the factors being positive integers.
We shall denote the single moments of progressively Type-II right censored order statisticsX(R1,R2,...,Rm)

i:m:n ,
as follows:
For 1 ≤ i ≤ m ≤ n, k ≥ 0,

µ
(R1,R2,...,Rm)

(k)

i:m:n = E
[
X
(R1,R2,...,Rm)
i:m:n

]k
= A(n,m− 1)

∫∫
. . .

∫
0<x1<···<xm<∞

xki

m∏
t=1

f(xt)[1− F (xt)]
Rtdxt, (9)

µ
(R1,R2,...,Rm)

(1)

i:m:n ≡ µ(R1,R2,...,Rm)
i:m:n .

We shall denote the product moments of progressively Type-II right censored order statistics as follows:
For 1 ≤ i < j ≤ m ≤ n, r, s ≥ 0,

µ
(R1,R2,...,Rm)

(r,s)

i,j:m:n = E[{X(R1,R2,...,Rm)
i:m:n }

r
{X(R1,R2,...,Rm)

j:m:n }
s
]

= A(n,m− 1)

∫∫
. . .

∫
0<x1<···<xm<∞

xrix
s
j

m∏
t=1

f(xt)[1− F (xt)]
Rtdxt, (10)

µ
(R1,R2,...,Rm)

(r,s)

i,i:m:n ≡ µ(R1,R2,...,Rm)
(r+s)

i:m:n , 1 ≤ i ≤ m ≤ n . (11)

In Sections 3 and 4, utilizing the characterizing differential equation (7), we have derived recurrence
relations for the single and the product moments of progressively Type-II right censored order statistics
from Bass diffusion model.
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3 Recurrence Relations for Single Moments

Theorem 1 For 2 ≤ m ≤ n, n ∈ N and for k ≥ 0,

µ
(R1+1,R2,...,Rm)

(k+1)

1:m:n+1 =
(n+ 1)(1 + β)

nαβ(R1 + 2)

[
α(n−R1 − 1)µ

(R1+R2+1,R3,...,Rm)
(k+1)

1:m−1:n

+α(R1 + 1)µ
(R1,R2,...,Rm)

(k+1)

1:m:n

−αβn(n−R1 − 1)

(1 + β)(n+ 1)
µ
(R1+R2+2,R3,...,Rm)

(k+1)

1:m−1:n+1

−(k + 1)µ
(R1,R2,...,Rm)

(k)

1:m:n

]
, (12)

and for m = 1, n ∈ N and k ≥ 0,

µ
(n)(k+1)

1:1:n+1 =
(1 + β)

αβ

[
αµ

(n−1)(k+1)
1:1:n − (k + 1)

n
µ
(n−1)(k)
1:1:n

]
. (13)

Proof. Consider (9) for i = 1, i.e.,

µ
(R1,R2,...,Rm)

(k)

1:m:n = A(n,m− 1)

∫∫
. . .

∫
0<x2<x3<···<xm<∞

{∫ x2

0

xk1f(x1)[1− F (x1)]
R1dx1

}
×f(x2)[1− F (x2)]

R2 . . . f(xm)[1− F (xm)]Rmdx2dx3 . . . dxm

= A(n,m− 1)

∫∫
. . .

∫
0<x2<x3<···<xm<∞

I(x2)

m∏
t=2

f(xt)[1− F (xt)]
Rtdxt, (14)

where

I(x2) =

∫ x2

0

xk1f(x1)[1− F (x1)]
R1dx1.

Making use of the relation in (7) by replacing there in x by x1, we have

I(x2) = αI1(x2)−
αβ

(1 + β)
I2(x2), (15)

where

Ia(x2) =

∫ x2

0

xk1 [1− F (x1)]
R1+adx1, a = 1, 2.

Integrating by parts yields,

Ia(x2) =
1

(k + 1)

[
xk+12 [1− F (x2)]

R1+a + (R1 + a)

∫ x2

0

xk+11 [1− F (x1)]
R1+a−1f(x1)dx1

]
. (16)

Substituting the values of I1(x2) and I2(x2) from (16) in (15) and then substituting the resultant expression
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for I(x2) in (14), we get

µ
(R1,R2,...,Rm)

(k)

1:m:n

=
αA(n,m− 1)

k + 1

∫∫
. . .

∫
0<x2<x3<···<xm<∞

xk+12 f(x2)[1− F (x2)]
R1+R2+1dx2

m∏
t=3

f(xt)[1− F (xt)]
Rtdxt

+
αA(n,m− 1)(R1 + 1)

k + 1

∫∫
. . .

∫
0<x1<x2<···<xm<∞

xk+11

m∏
t=1

f(xt)[1− F (xt)]
Rtdxt

−αβA(n,m− 1)

(1 + β)(k + 1)

∫∫
. . .

∫
0<x2<x3<···<xm<∞

xk+12 f(x2)[1− F (x2)]
R1+R2+2dx2

m∏
t=3

f(xt)[1− F (xt)]
Rtdxt

−αβA(n,m− 1)(R1 + 2)

(1 + β)(k + 1)

∫∫
. . .

∫
0<x1<x2<···<xm<∞

xk+11 f(x1)[1− F (x1)]
R1+1dx1

×
m∏
t=2

f(xt)[1− F (xt)]
Rtdxt

=
α(R1 + 1)

k + 1
µ
(R1,R2,...,Rm)

(k+1)

1:m:n +
α(n−R1 − 1)

k + 1
µ
(R1+R2+1,R3,...,Rm)

(k+1)

1:m−1:n

− αβn(n−R1 − 1)

(1 + β)(n+ 1)(k + 1)
µ
(R1+R2+2,R3,...,Rm)

(k+1)

1:m−1:n+1 − αβn(R1 + 2)

(1 + β)(n+ 1)(k + 1)
µ
(R1+1,R2,...,Rm)

(k+1)

1:m:n+1 ,

which on rearranging the terms leads to (12).
To prove the relation in (13), we take i = 1, m = 1 in (9) and then using (7) with x replaced by x1, we

get

µ
(R1)

(k)

1:1:n = A(n, 0)

[
α

∫ ∞
0

xk1 [1− F (x1)]
R1+1dx1 −

αβ

(1 + β)

∫ ∞
0

xk1 [1− F (x1)]
R1+2dx1

]
.

Integrating the right hand side integrals by parts and noting that R1 = n − 1, since the equation n =
m+R1 +R2 + · · ·+Rm must be satisfied, we have

µ
(n−1)(k)
1:1:n =

n

k + 1

[
αn

∫ ∞
0

xk+11 [1− F (x1)]
n−1f(x1)dx1 −

αβ(n+ 1)

(1 + β)

∫ ∞
0

xk+11 [1− F (x1)]
nf(x1)dx1

]
=

n

k + 1

[
αµ

(n−1)(k+1)
1:1:n − αβ

(1 + β)
µ
(n)(k+1)

1:1:n+1

]
,

which on rearranging the terms leads to (13).

Remark 1 It may be noted that the first progressively Type-II right censored order statistic X(R1,R2,...,Rm)
1:m:n

is the same as the first usual order statistic from a sample of size n, regardless of the censoring scheme
employed. This is because no censoring has taken place before this time.

Theorem 2 For 2 ≤ i ≤ m− 1, m ≤ n and k ≥ 0,

µ
(R1,...,Ri−1,Ri+1,Ri+1,...,Rm)

(k+1)

i:m:n+1

=
(1 + β)A(n+ 1, i− 1)

αβ(Ri + 2)A(n, i− 1)

[
α(n−R1 −R2 − · · · −Ri − i)µ(R1,R2,...,Ri−1,Ri+Ri+1+1,Ri+2,...,Rm)

(k+1)

i:m−1:n

−α(n−R1 −R2 − · · · −Ri−1 − i+ 1)µ
(R1,R2,...,Ri−2,Ri−1+Ri+1,Ri+1,...,Rm)

(k+1)

i−1:m−1:n

+α(Ri + 1)µ
(R1,R2,...,Rm)

(k+1)

i:m:n − αβA(n, i)

(1 + β)A(n+ 1, i− 1)
µ
(R1,R2,...,Ri−1,Ri+Ri+1+2,Ri+2,...,Rm)

(k+1)

i:m−1:n+1

+
αβA(n, i− 1)

(1 + β)A(n+ 1, i− 2)
µ
(R1,R2,...,Ri−2,Ri−1+Ri+2,Ri+1,...,Rm)

(k+1)

i−1:m−1:n+1 − (k + 1)µ
(R1,R2,...,Rm)

(k)

i:m:n

]
. (17)
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Proof. Using (9), we have for 2 ≤ i ≤ m− 1,

µ
(R1,R2,...,Rm)

(k)

i:m:n = A(n,m− 1)

∫
. . .

∫
. . .

∫
0<x1<···<xi−1<xi+1<···<xm<∞

J(xi−1, xi+1)

m∏
t=1
t6=i

f(xt)[1− F (xt)]
Rtdxt, (18)

where

J(xi−1, xi+1) =

∫ xi+1

xi−1

xki f(xi)[1− F (xi)]
Ridxi.

Making use of the relation in (7) and splitting the integral accordingly into two, we have

J(xi−1, xi+1) = αJ1(xi−1, xi+1)−
αβ

(1 + β)
J2(xi−1, xi+1), (19)

where

Ja(xi−1, xi+1) =

∫ xi+1

xi−1

xki [1− F (xi)]
Ri+adxi, a = 1, 2.

Integrating by parts yields

Ja(xi−1, xi+1) =
1

(k + 1)

[
xk+1i+1 [1− F (xi+1)]

Ri+a − xk+1i−1 [1− F (xi−1)]
Ri+a

+(Ri + a)

∫ xi+1

xi−1

xk+1i [1− F (xi)]
Ri+a−1f(xi)dxi

]
. (20)

Upon substituting for J1(xi−1, xi+1) and J2(xi−1, xi+1) from (20) in (19) and then substituting the resultant
expression for J(xi−1, xi+1) in (18) and simplifying, on using (9), it leads to (17).

Corollary 3 For 2 ≤ m ≤ n, n ∈ N and k ≥ 0,

µ
(R1,...,Rm−1,Rm+1)

(k+1)

m:m:n+1

=
(1 + β)A(n+ 1,m− 1)

αβ(Rm + 2)A(n,m− 1)

[
αβA(n,m− 1)

(1 + β)A(n+ 1,m− 2)
µ
(R1,R2,...,Rm−2,Rm−1+Rm+2)

(k+1)

m−1:m−1:n+1

−α(n−R1 −R2 − · · · −Rm−1 −m+ 1)µ
(R1,R2,...,Rm−2,Rm−1+Rm+1)

(k+1)

m−1:m−1:n

+α(Rm + 1)µ(R1,R2,...,Rm)
(k+1)

m:m:n − (k + 1)µ(R1,R2,...,Rm)
(k)

m:m:n

]
. (21)

Proof. The recurrence relation in (21) can be established by following exactly the same steps as those used
in proving Theorem 2.

4 Recurrence Relations for Product Moments

The recurrence relations for the product moments, defined in equation (10), of progressively Type-II right
censored order statistics from Bass Diffusion model, are given in the following theorems.
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Theorem 4 For 1 ≤ i < j < m, m ≤ n and r, s ≥ 0,

µ
(R1,R2,...,Rj−1,Rj+1,Rj+1,...,Rm)

(r,s+1)

i,j:m:n+1

=
(1 + β)A(n+ 1, j − 1)

(Rj + 2)αβA(n, j − 1)

[
α(n−R1 −R2 − · · · −Rj − j)µ(R1,R2,...,Rj−1,Rj+Rj+1+1,Rj+2,...,Rm)

(r,s+1)

i,j:m−1:n

−α(n−R1 −R2 − · · · −Rj−1 − j + 1)µ
(R1,R2,...,Rj−2,Rj−1+Rj+1,Rj+1,...,Rm)

(r,s+1)

i,j−1:m−1:n

+α(Rj + 1)µ
(R1,R2,...,Rm)

(r,s+1)

i,j:m:n − αβA(n, j)

(1 + β)A(n+ 1, j − 1)
µ
(R1,R2,...,Rj−1,Rj+Rj+1+2,Rj+2,...,Rm)

(r,s+1)

i,j:m−1:n+1

+
αβA(n, j − 1)

(1 + β)A(n+ 1, j − 2)
µ
(R1,R2,...,Rj−2,Rj−1+Rj+2,Rj+1,...,Rm)

(r,s+1)

i,j−1:m−1:n+1

−(s+ 1)µ
(R1,R2,...,Rm)

(r,s)

i,j:m:n

]
. (22)

Proof. From equation (10), we have

µ
(R1,R2,...,Rm)

(r,s)

i,j:m:n

= A(n,m− 1)

∫
. . .

∫
. . .

∫
0<x1<···<xj−1<xj+1<···<xm<∞

xri

{∫ xj+1

xj−1

xsjf (xj) [1− F (xj)]
Rjdxj

}

×
m∏
t=1
t6=j

f (xt) [1− F (xt)]
Rtdxt

= A(n,m− 1)

∫
. . .

∫
. . .

∫
0<x1<···<xj−1<xj+1<···<xm<∞

xriT (xj−1, xj+1)

m∏
t=1
t 6=j

f(xt)[1− F (xt)]
Rtdxt, (23)

where

T (xj−1, xj+1) =

∫ xj+1

xj−1

xsjf(xj)[1− F (xj)]
Rjdxj .

Making use of the relation in (7) and splitting the integral accordingly into two, we have

T (xj−1, xj+1) = αT1(xj−1, xj+1)−
αβ

(1 + β)
T2(xj−1, xj+1), (24)

where

Ta(xj−1, xj+1) =

∫ xj+1

xj−1

xsj [1− F (xj)]
Rj+adxj , a = 1, 2.

Integrating by parts yields

Ta(xj−1, xj+1) =
1

(s+ 1)

[
xs+1j+1[1− F (xj+1)]

Rj+a − xs+1j−1[1− F (xj−1)]
Rj+a

+ (Rj + a)

∫ xj+1

xj−1

xs+1j [1− F (xj)]
Rj+a−1f(xj)dxj

]
. (25)
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Upon substituting for T1(xj−1, xj+1) and T2(xj−1, xj+1) from (25) in (24) and then substituting the resultant
expression for T (xj−1, Tj+1) in (23) and simplifying, on using (10), we get

µ
(R1,R2,...,Rm)

(r,s)

i,j:m:n

=
αA(n,m− 1)

s+ 1

∫
. . .

∫
. . .

∫
0<x1<···<xj−1<xj+1<···<xm<∞

xrix
s+1
j+1[1− F (xj+1)]

Rj+1
m∏
t=1
t 6=j

f(xt)[1− F (xt)]
Rtdxt

−αA(n,m− 1)

s+ 1

∫
. . .

∫
. . .

∫
0<x1<···<xj−1<xj+1<···<xm<∞

xrix
s+1
j−1[1− F (xj−1)]

Rj+1
m∏
t=1
t 6=j

f(xt)[1− F (xt)]
Rtdxt

+
αA(n,m− 1)(Rj + 1)

s+ 1

∫
. . .

∫
. . .

∫
0<x1<···<xm<∞

xrix
s+1
j

m∏
t=1

f(xt)[1− F (xt)]
Rtdxt

−αβA(n,m− 1)

(1 + β)(s+ 1)

∫
. . .

∫
. . .

∫
0<x1<···<xj−1<xj+1<···<xm<∞

xrix
s+1
j+1[1− F (xj+1)]

Rj+2
m∏
t=1
t 6=j

f(xt)[1− F (xt)]
Rtdxt

+
αβA(n,m− 1)

(1 + β)(s+ 1)

∫
. . .

∫
. . .

∫
0<x1<···<xj−1<xj+1<···<xm<∞

xrix
s+1
j−1[1− F (xj−1)]

Rj+2
m∏
t=1
t 6=j

f(xt)[1− F (xt)]
Rtdxt

−αβA(n,m− 1)(Rj + 2)

(1 + β)(s+ 1)

∫
. . .

∫
. . .

∫
0<x1<x2<···<xm<∞

xrix
s+1
j f(xj)[1− F (xj)]

Rj+1dxj

m∏
t=1
t 6=j

f(xt)[1− F (xt)]
Rtdxt.

This implies that

(s+ 1)µ
(R1,R2,...,Rm)

(r,s)

i,j:m:n

= α(n−R1 −R2 − · · · −Rj − j)µ(R1,R2,...,Rj−1,Rj+Rj+1+1,Rj+2,...,Rm)
(r,s+1)

i,j:m−1:n

− α(n−R1 −R2 − · · · −Rj−1 − j + 1)µ
(R1,R2,...,Rj−2,Rj−1+Rj+1,Rj+1,...,Rm)

(r,s+1)

i,j−1:m−1:n

+ α(Rj + 1)µ
(R1,R2,...,Rm)

(r,s+1)

i,j:m:n − αβA(n, j)

(1 + β)A(n+ 1, j − 1)

× µ(R1,R2,...,Rj−1,Rj+Rj+1+2,Rj+2,...,Rm)
(r,s+1)

i,j:m−1:n+1 +
αβA(n, j − 1)

(1 + β)A(n+ 1, j − 2)

× µ(R1,R2,...,Rj−2,Rj−1+Rj+2,Rj+1,...,Rm)
(r,s+1)

i,j−1:m−1:n+1 − (Rj + 2)αβA(n, j − 1)

(1 + β)A(n+ 1, j − 1)

× µ(R1,R2,...,Rj−1,Rj+1,Rj+1,...,Rm)
(r,s+1)

i,j:m:n+1 ,

which on rearranging the terms leads to (22).

Remark 2 It may be noted that Theorem 4 holds even for j = i+ 1, without altering the proof, provided we

realize that µ(R1,R2,...,Rm)
(r,s)

i,i:m:n = µ
(R1,R2,...,Rm)

(r+s)

i:m:n , as mentioned in equation (11).

Theorem 5 For 1 ≤ i ≤ m− 1, m ≤ n and r, s ≥ 0,

µ
(R1,R2,...,Rm−1,Rm+1)

(r,s+1)

i,m:m:n+1

=
(1 + β)A(n+ 1,m− 1)

(Rm + 2)αβA(n,m− 1)

[
αβA(n,m− 1)

(1 + β)A(n+ 1,m− 2)
µ
(R1,R2,...,Rm−2,Rm−1+Rm+2)

(r,s+1)

i,m−1:m−1:n+1

−α(n−R1 −R2 − · · · −Rm−1 −m+ 1)µ
(R1,R2,...,Rm−2,Rm−1+Rm+1)

(r,s+1)

i,m−1:m−1:n

+α(Rm + 1)µ
(R1,R2,...,Rm)

(r,s+1)

i,m:m:n − (s+ 1)µ
(R1,R2,...,Rm)

(r,s)

i,m:m:n

]
. (26)
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Proof. The relation in (26) may be proved by following exactly the same steps as those used in proving
Theorem 4.

Remark 3 For the special case R1 = R2 = · · · = Rm = 0 so that m = n, in which case the progressively
censored order statistics become the usual order statistics X1:n, X2:n, . . . , Xn:n, whose single moments are
denoted by µ(k)i:n for 1 ≤ i ≤ n and product moments are denoted by µ(r,s)i,j:n for 1 ≤ i < j ≤ n, the recurrence
relations established in Sections 3 and 4 reduce to that of usual order statistics from Bass diffusion model.

5 Recursive Computational Algorithm

Thomas and Wilson [19] gave a computational method for obtaining single and product moments of progres-
sively Type-II right censored order statistics from an arbitrary continuous distribution through a mixture
form that expresses them in terms of those of the usual order statistics from a sample of size n. Utilizing
the knowledge of recurrence relations obtained in Sections 3 and 4 in a systematic manner, along with the
mixture formula for missing moments, one can evaluate the moments of progressively Type-II right censored
order statistics from Bass diffusion model for all sample sizes and all censoring schemes (R1, R2, . . . , Rm) in
a simple recursive way. The same has been demonstrated in the next section.

5.1 Single moments

Case I: When n = 1, then m = 1.

In this case, we have only one progressive censoring scheme R1 = 0. Thus, from equation (9), we have

E(X
(0)
1:1:1)

k = µ
(0)(k)

1:1:1 = µ
(k)
1:1 = E(Xk) = − (1 + β)Γ(k + 1)

αkβ
Lik(−β), (27)

where Lik(z) is called the polylogarithm of order k, k = 1, 2, . . . , defined as

Lik(z) =

∫ z

0

Lik−1(u)

u
du, with Li0(z) =

z

1− z , where k = 1, 2, . . . .

The case k = 1 is the natural logarithm Li1(z) = − log(1− z) (cf. Jod́ra [11]).
Putting k = 1 and 2, in equation (27), we get

µ
(0)
1:1:1 = µ

(1)
1:1 = E(X) =

(1 + β)

αβ
log(1 + β),

and

µ
(0)(2)

1:1:1 = µ
(2)
1:1 = E(X2) = −2(1 + β)

α2β
Li2(−β).

Proceeding in a similar manner µ(0)
(k)

1:1:1 for all k = 1, 2, . . . , can be calculated.

Case II: When n = 2, then m = 1 or 2.

Subcase (i): m = 1

We have only one progressive censoring scheme R1 = 1, and in this case we have from equation (13), on
putting n = 1,

E
(
X
(1)
1:1:2

)k+1
= µ

(1)(k+1)

1:1:2 =
(1 + β)

αβ

[
αµ

(0)(k+1)

1:1:1 − (k + 1)µ
(0)(k)

1:1:1

]
. (28)
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Putting k = 0 in equation (28), we get

µ
(1)(1)

1:1:2 = µ
(1)
1:1:2 = µ

(1)
1:2 =

(1 + β)

αβ
[αµ

(0)
1:1:1 − 1]

=
(1 + β)

αβ2
[(1 + β) log(1 + β)− β]. (29)

Also, for k = 1 in equation (28), we have

µ
(1)(2)

1:1:2 =
(1 + β)

αβ
[αµ

(0)(2)

1:1:1 − 2µ
(0)
1:1:1], (30)

where
µ
(0)(2)

1:1:1 and µ
(0)
1:1:1 can be calculated using (27).

Proceeding in a similar manner µ(1)
(k)

1:1:2 for all k = 1, 2, . . . , can be calculated.
Subcase (ii): m = 2
We have only one progressive censoring scheme R1 = R2 = 0, in this case we have

E(X
(0,0)
1:2:2 ) = µ

(0,0)
1:2:2 = µ1:2 and E(X

(0,0)
2:2:2 ) = µ

(0,0)
2:2:2 = µ2:2.

Also,

E(X
(0,0)
1:2:2 )2 = µ

(0,0)(2)

1:2:2 = µ
(2)
1:2 and E(X

(0,0)
2:2:2 )2 = µ

(0,0)(2)

2:2:2 = µ
(2)
2:2

and these values concerning ordinary order statistics can be evaluated.

Case III: When n = 3, then m = 1 or 2 or 3.

Subcase (i): m = 1
We have only one progressive censoring scheme R1 = 2, and in this case we have from (13), on putting

k = 0 and n = 2,

E(X
(2)
1:1:3) = µ

(2)
1:1:3 =

(1 + β)

αβ

[
αµ

(1)
1:1:2 −

1

2

]
,

and upon taking k = 1 and n = 2, we get

E(X
(2)
1:1:3)

2 = µ
(2)(2)

1:1:3 =
(1 + β)

αβ
[αµ

(1)(2)

1:1:2 − µ
(1)
1:1:2],

where, µ(1)1:1:2 and µ
(1)(2)

1:1:2 can be calculated using (29) and (30), respectively.

Proceeding in a similar manner µ(2)
(k)

1:1:3 for all k = 1, 2, . . . can be calculated.
Subcase (ii): m = 2
We have only two progressive censoring schemes. One is R1 = 1 and R2 = 0 and the other is R1 = 0 and

R2 = 1.
When R1 = 1 and R2 = 0
On putting k = 0, m = n = 2, R1 = 0 and R2 = 0 in (12), we get

E(X
(1,0)
1:2:3 ) = µ

(1,0)
1:2:3 =

3(1 + β)

4αβ

[
αµ

(1)
1:1:2 + αµ

(1)
1:2 −

2αβ

3(1 + β)
µ
(2)
1:1:3 − 1

]
and upon taking k = 1, m = n = 2, R1 = 0 and R2 = 0 in (12), we get

E(X
(1,0)
1:2:3 )2 = µ

(1,0)(2)

1:2:3 =
3(1 + β)

4αβ

[
αµ

(1)(2)

1:1:2 + αµ
(2)
1:2 −

2αβ

3(1 + β)
µ
(2)(2)

1:1:3 − 2µ
(1)
1:2

]
.
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Further, on using mixture formula, we have

µ
(1,0)
2:2:3 =

1

2
[µ2:3 + µ3:3] and µ

(1,0)(2)

2:2:3 =
1

2

[
µ
(2)
2:3 + µ

(2)
3:3

]
.

Proceeding in a similar manner µ(1,0)
(k)

1:2:3 and µ(1,0)
(k)

2:2:3 for all k = 1, 2, . . . can be calculated.
When R1 = 0 and R2 = 1
In this case, we find that

E(X
(0,1)
1:2:3 ) = µ

(0,1)
1:2:3 = µ1:3, E(X

(0,1)
2:2:3 ) = µ

(0,1)
2:2:3 = µ2:3,

E(X
(0,1)
1:2:3 )2 = µ

(0,1)(2)

1:2:3 = µ
(2)
1:3 and E(X

(0,1)
2:2:3 )2 = µ

(0,1)(2)

2:2:3 = µ
(2)
2:3.

Other moments can similarly be obtained.
Subcase (iii): m = 3
We have only one progressive censoring scheme R1 = 0, R2 = 0 and R3 = 0. In this case

E(X
(0,0,0)
1:3:3 ) = µ

(0,0,0)
1:3:3 = µ1:3, E(X

(0,0,0)
2:3:3 ) = µ

(0,0,0)
2:3:3 = µ2:3,

E(X
(0,0,0)
1:3:3 )2 = µ

(0,0,0)(2)

1:3:3 = µ
(2)
1:3, E(X

(0,0,0)
2:3:3 )2 = µ

(0,0,0)(2)

2:3:3 = µ
(2)
2:3,

and
E(X

(0,0,0)
3:3:3 )2 = µ

(0,0,0)(2)

3:3:3 = µ
(2)
3:3.

All these values can be obtained by using the results of Jod́ra [11] for ordinary order statistics.

5.2 Product moments

Case I: When n = 2 and m = 2.

In this case we have only one progressive censoring scheme i.e. R1 = R2 = 0. Thus, from equation (10),
we have

E(X
(0,0)
1:2:2X

(0,0)
2:2:2 ) = µ

(0,0)
1,2:2:2 = µ1:2:2

= (µ1:1)
2

=

(
(1 + β)

αβ
log(1 + β)

)2
.

Case II: When n = 3 and m = 2.

We have only two progressive censoring schemes. One is R1 = 1 and R2 = 0 and the other is R1 = 0 and
R2 = 1.
When R1 = 1 and R2 = 0
In this case we have E(X

(1,0)
1:2:3X

(1,0)
2:2:3 ) = µ

(1,0)
1,2:2:3 = 1

2 (µ1,2:3 + µ1,3:3), from the mixture formula.
When R1 = 0 and R2 = 1
In this case we have E(X

(0,1)
1:2:3X

(0,1)
2:2:3 ) = µ

(0,1)
1,2:2:3, which can be computed on putting m = 2, n = 2, r = 1,

s = 1, R1 = 0 and R2 = 0 in (26).

Case III: n = 3 and m = 3.

In this case we have only one progressive censoring scheme R1 = R2 = R3 = 0 and

E(X
(0,0,0)
1:3:3 X

(0,0,0)
2:3:3 ) = µ

(0,0,0)
1,2:3:3 = µ1,2:3, E(X

(0,0,0)
1:3:3 X

(0,0,0)
3:3:3 ) = µ

(0,0,0)
1,3:3:3 = µ1,3:3

and
E(X

(0,0,0)
2:3:3 X

(0,0,0)
3:3:3 ) = µ

(0,0,0)
2,3:3:3 = µ2,3:3.

Likewise, one could proceed for higher values of n and all choices of m and (R1, R2, . . . , Rm).
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6 Maximum Likelihood Estimators (MLEs)

Based on the observed sample x1 < x2 < · · · < xm from a progressive Type-II censoring scheme, (R1, R2, . . . , Rm),
the likelihood function can be written as

L(α, β) = A(n,m− 1)

m∏
t=1

f(xt, α, β)[1− F (xt, α, β)]
Rt ; x > 0, α > 0, β > −1, (31)

where

A(n,m− 1) = n(n−R1 − 1)(n−R1 −R2 − 2) . . . (n−R1 −R2 − · · · −Rm−1 −m+ 1),

and f(·) and F (·) are same as defined in (3) and (4), respectively. Therefore, ignoring the additive constant
the log-likelihood function is written as

log(L(α, β)) = m log(α) +m log(1 + β)− α
m∑
t=1

xt −
m∑
t=1

(Rt + 2) log(1 + βe−αxt)

+ log(1 + β)

m∑
t=1

Rt − α
m∑
t=1

xtRt. (32)

To compute the MLEs of the unknown parameters α and β, consider the two normal equations;

∂ log(L)

∂α
=
m

α
−

m∑
t=1

xt(1 +Rt) +

β
m∑
t=1

(Rt + 2)e−αxtxt

(1 + βe−αxt)
= 0, (33)

and

∂ log(L)

∂β
=

m

1 + β
+

m∑
t=1

Rt

1 + β
−

m∑
t=1

(Rt + 2)e−αxt

(1 + βe−αxt)
= 0, (34)

whose solution provide the MLEs α̂ and β̂.
Once MLEs of α and β are obtained as α̂ and β̂, the MLEs of R(t) and h(t) can be derived using

invariance property of MLEs as

R̂(t) =
(1 + β̂)e−α̂t

1 + β̂e−α̂t
, t > 0 (35)

and

ĥ(t) =
α̂

1 + β̂e−α̂t
, t > 0. (36)

7 Simulation Study

In this Section, a simulation study is conducted to observe the behavior of the proposed method for different
sample sizes, different effective sample sizes and for different censoring schemes. We have considered different
sample sizes; n = 20, 25, 30; different effective sample sizes; m = 8, 10, 15 and different censoring schemes.
In all the cases we have used α = 1 and β = 1. For a given set of n,m and a censoring scheme, using the
algorithm proposed by Balakrishnan and Sandhu [5], a sample is generated. Using the sample, the MLEs of
unknown parameters α and β are computed based on the method proposed in Section 6.
Finally, with 1000 replications, using a program in R, the MLEs of α, β, R(t) and h(t) along with their

mean square errors (MSEs) are obtained. The results are presented in Tables 1, 2 and 3.
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Table 1: MLEs of α and β along with their MSEs for different censoring schemes, for α = 1 and β = 1

n m Censoring scheme α̂ MSE(α̂) β̂ MSE(β̂)

20 8 (7*0,12) 1.0349 0.01610 1.0505 0.01332

20 8 (12,7*0) 1.0327 0.01534 1.0170 0.01175

20 8 (3, 0, 5, 2, 1, 1, 0, 0) 1.0286 0.01570 1.0217 0.01276

20 10 (9*0,10) 1.0219 0.01553 1.0406 0.01282

20 10 (10,9*0) 1.0285 0.01512 0.9901 0.01330

20 10 (3,0,5,2,6*0) 1.0240 0.01551 0.9839 0.01279

20 20 (20*0) 1.0093 0.01272 1.0058 0.01095

25 10 (9*0,15) 1.0184 0.01422 1.0229 0.01204

25 10 (15,9*0) 1.0212 0.01499 1.0191 0.01228

25 10 (5,5,5,7*0) 1.0466 0.01575 0.9963 0.01322

25 10 (3,0,5,2,1,1,0,0,2,1) 1.0223 0.01460 1.0076 0.01123

25 15 (14*0,10) 1.0141 0.01356 1.0188 0.01153

25 15 (10,14*0) 1.0119 0.01304 0.9878 0.01170

25 25 (25*0) 1.0067 0.00552 1.0057 0.00748

30 10 (9*0,20) 1.0122 0.01137 1.0214 0.01158

30 10 (20,9*0) 1.0107 0.01215 1.0116 0.01061

30 10 (5,0,5,0,0,5,0,0,0,5) 1.0246 0.01540 1.0374 0.01304

30 10 (3,0,5,2,1,1,2,2,2,2) 1.0265 0.01500 1.0124 0.01042

30 15 (14*0,15) 1.0103 0.01112 1.0110 0.01096

30 15 (15,14*0) 1.0102 0.01116 1.0091 0.01015

30 15 (3,0,5,2,1,1,0,0,1,0,2,4*0) 1.0202 0.01463 1.0049 0.01036

30 30 (30*0) 1.0005 0.00480 1.0020 0.00519
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Table 2: MLEs of R(t) and h(t) along with their MSEs for different censoring schemes, for α = 1 and β = 1;
t = 0.2

t = 0.2; R(t) = 0.9003; h(t) = 0.5498

n m Censoring scheme R̂(t) MSE(R̂(t)) ĥ(t) MSE(ĥ(t))

20 8 (7*0,12) 0.9027 0.0022 0.5483 0.0240

20 8 (12,7*0) 0.8947 0.0016 0.5910 0.0191

20 8 (3, 0, 5, 2, 1, 1, 0, 0) 0.8956 0.0015 0.5864 0.0177

20 10 (9*0,10) 0.9031 0.0021 0.5445 0.0207

20 10 (10,9*0) 0.8919 0.0015 0.6080 0.0171

20 10 (3,0,5,2,6*0) 0.8928 0.0016 0.6025 0.0212

20 20 (20*0) 0.9009 0.0011 0.5512 0.0102

25 10 (9*0,15) 0.9023 0.0020 0.5508 0.0202

25 10 (15,9*0) 0.8936 0.0014 0.5971 0.0132

25 10 (5,5,5,7*0) 0.8988 0.0016 0.5670 0.0202

25 10 (3,0,5,2,1,1,0,0,2,1) 0.9053 0.0018 0.5301 0.0245

25 15 (14*0,10) 0.8968 0.0017 0.5821 0.0199

25 15 (10,14*0) 0.8939 0.0013 0.5954 0.0187

25 25 (25*0) 0.9007 0.0010 0.5501 0.0101

30 10 (9*0,20) 0.9014 0.0017 0.5573 0.0167

30 10 (20,9*0) 0.8952 0.0016 0.5880 0.0147

30 10 (5,0,5,0,0,5,0,0,0,5) 0.8984 0.0018 0.5721 0.0136

30 10 (3,0,5,2,1,1,2,2,2,2) 0.8981 0.0018 0.5736 0.0177

30 15 (14*0,15) 0.9005 0.0016 0.5612 0.0160

30 15 (15,14*0) 0.8942 0.0013 0.5932 0.0156

30 15 (3,0,5,2,1,1,0,0,1,0,2,4*0) 0.8929 0.0015 0.6016 0.0143

30 30 (30*0) 0.9003 0.0008 0.5499 0.0090
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Table 3: MLEs of R(t) and h(t) along with their MSEs for different censoring schemes, for α = 1 and β = 1;
t = 1

t = 1; R(t) = 0.5379; h(t) = 0.7311

n m Censoring scheme R̂(t) MSE(R̂(t)) ĥ(t) MSE(ĥ(t))

20 8 (7*0,12) 0.5422 0.0030 0.7248 0.0133

20 8 (12,7*0) 0.5388 0.0021 0.7464 0.0136

20 8 (3, 0, 5, 2, 1, 1, 0, 0) 0.5179 0.0025 0.7554 0.0163

20 10 (9*0,10) 0.5213 0.0029 0.7639 0.0170

20 10 (10,9*0) 0.5345 0.0016 0.7480 0.0142

20 10 (3,0,5,2,6*0) 0.5371 0.0014 0.7589 0.0143

20 20 (20*0) 0.5370 0.0013 0.7354 0.0133

25 10 (9*0,15) 0.5336 0.0028 0.7438 0.0140

25 10 (15,9*0) 0.5316 0.0017 0.7541 0.0141

25 10 (5,5,5,7*0) 0.5318 0.0016 0.7660 0.0154

25 10 (3,0,5,2,1,1,0,0,2,1) 0.5267 0.0021 0.7417 0.0137

25 15 (14*0,10) 0.5387 0.0028 0.7476 0.0155

25 15 (10,14*0) 0.5215 0.0019 0.8001 0.0168

25 25 (25*0) 0.5374 0.0011 0.7322 0.0115

30 10 (9*0,20) 0.5381 0.0023 0.7360 0.0125

30 10 (20,9*0) 0.5400 0.0022 0.7565 0.0142

30 10 (5,0,5,0,0,5,0,0,0,5) 0.5242 0.0028 0.7603 0.0156

30 10 (3,0,5,2,1,1,2,2,2,2) 0.5251 0.0027 0.7481 0.0150

30 15 (14*0,15) 0.5360 0.0021 0.7432 0.0137

30 15 (15,14*0) 0.5349 0.0016 0.7340 0.0101

30 15 (3,0,5,2,1,1,0,0,1,0,2,4*0) 0.5355 0.0018 0.7464 0.0111

30 30 (30*0) 0.5378 0.0010 0.7313 0.0063



Pushkarna et al. 263

8 Conclusion

From Table 1, we observe that for complete samples, MLEs of α and β are very nearly unbiased and can
be regarded as good estimators. It is also observed that for complete samples, as sample size n increases
the average MSE decreases. Also, the MSE generally decreases as the failure information m increases, and
for all the censoring schemes the MSE of the estimates are quite small and can be used in all practical
situations. Here one has to make a trade off between the precision of the estimation method and the cost of
the experiment.
Also, from Tables 2 and 3, it is observed that for the MLEs of R(t) and h(t), the MSE generally decreases

as the failure information m increases. In addition, for the complete samples, as sample size n increases the
average MSE decreases.

Acknowledgement. Authors are grateful to the coordinating editor and the learned referee for giving
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