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Abstract

In this paper, we study a class of Cauchy-type problem for a singular fractional differential equation
involving a Caputo fractional derivative with respect to another function ψ. By using the modified
Picard’s iterative method, new existence and uniqueness results for the global solutions of Cauchy-type
problem are established. In particular, the unique existence of a global solution is proved under the
Lipschitz condition, without any constraints on the Lipschitz constant. The continuous dependence of
solution of Cauchy-type problem is investigated via generalized Gronwall inequality. At the end, an
illustrative example will be introduced to justify our results

1 Introduction

Over the decades, the fractional calculus has been building a great history and consolidating itself in several
scientific areas such as: physics, mechanics chemistry, biology, engineering, among others. The emergence of
various new definitions of fractional integrals and derivatives, makes the wide number of definitions becomes
increasingly larger and clears its numerous applications. So in the literature several studies dealing with
similar topics for different operators, for instance, Kilbas et al. in [10] introduced the properties of fractional
integrals and fractional derivatives of a function with respect to another function. Also some of generalized
fractional integral and differential operators and their properties were introduced by Agrawal in [3], and
consequently, open a window for new applications. And over time, other types of new fractional derivatives
and integrals arise and this makes the number of definitions wide, see [4, 8, 12, 13, 16].
Fractional differential equations have been proved to be new and valuable tools in the modeling of many

phenomena in various fields of physics, engineering and economics. Recently, there are some works about
the existence of solutions for a singular fractional differential equations, see [7, 9, 11, 17, 18, 19, 20] and the
references therein, for example Lian et al. in [11], studied a class of singular fractional differential equations

Dα0+u(t) = f(t, u(t)), t ∈ (0, b], 0 < α < 1, (1)

u(0) = u0, (2)

where Dα0+ is the Caputo fractional derivative operator of order α, u0 ∈ R, b > 0 is a constant and the
function f is defined on R× R with limt→0+ f(t, .) =∞.

As far as we know, there are few papers to discuss these problems for singular fractional differential
equations, especially those that include generalized Caputo fractional derivatives with respect to another
function ψ. In a very recent contribution, Almeida in [4] introduced a new type of fractional differentiation
operator the so-called ψ-Caputo fractional derivative with respect to another function and extended the
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works introduced by Kilbas et al. [10, 14]. Almeida et al. [5] investigated the existence and uniqueness
results for the Cauchy-type problem via fixed point theorem and Picard’s iteration method. Sousa and de
Oliveira in [15], discussed the existence, uniqueness and continuous dependence results of ψ-Hilfer fractional
differential equations by means of fixed point theorem and generalized Gronwall inequality.
Motivated by the excellent results mentioned above and the methods used in [11] and [5], in this paper, we

investigate the existence, uniqueness, and continuous dependence of global solution to the following singular
fractional differential equation involving the left generalized Caputo fractional derivative with respect to
another function ψ:

cDα;ψ
0+ u(t) = f(t, u(t)), t ∈ (0, b], b > 0, (3)

u(0) = u0, (4)

where 0 < α ≤ 1, cDα;ψ
0+ is the ψ-Caputo fractional derivative introduced by Almeida in [4], f : (0, b]×R −→ R

is given function with limt→0+ f(t, .) =∞ and satisfies some assumptions that will be specified in Section 3
and u0 is a constant.

The remainder of the paper is organized as follows: In Section 2, we present some preliminaries and
lemmas that will be used to prove our main results. In Section 3, we list the hypotheses and we also show
that problem (3)—(4) is equivalent to a Volterra integral equation. Further, we discuss the existence and
uniqueness of global solutions to the problem (3)—(4) via modified Picard’s iterative method. Section 4 deals
with the continuous dependence to such equations by means of generalized Gronwall inequality. Finally, an
example is provided to illustrate our main results in section 5.

2 Preliminaries

For the convenience of the reader, we present here the necessary definitions and lemmas from fractional
calculus theory. These preliminaries can be found in recent literature.

Definition 1 ([6]) For z ∈ C, R(z) > 0, the Euler gamma function is given by

Γ(z) =

∫ ∞
0

tz−1e−tdt.

Moreover, Γ(z + 1) = zΓ(z).

Definition 2 ([6]) Given R(p) > 0 and R(q) > 0. We define the Beta function (denoted B(p, q)) by

B(p, q) =

∫ 1

0

up−1(1− u)q−1du =
Γ(p)Γ(q)

Γ(p+ q)
. (5)

Definition 3 ([10]) The left-sided ψ-Riemann-Liouville fractional integral and fractional derivative of order
α (n − 1 < α < n) for an integrable function h : [0, b] → R with respect to another function ψ : [0, b] → R
that is an increasing differentiable function such that ψ′(t) 6= 0, for all t ∈ [0, b] are defined as follows

Iα,ψ0+ h(t) =
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1h(s)ds, t > 0, (6)

and

Dα,ψ0+ h(t) =

(
1

ψ′(t)

d

dt

)n
In−α,ψ0+ h(t) (7)

=
1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

0

ψ′(s)(ψ(t)− ψ(s))n−α−1h(s)ds, t > 0, (8)

respectively.
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Definition 4 ([4, 5]) Let α > 0 and ψ ∈ Cn[0, b] be a function such that ψ is increasing and ψ′(t) 6= 0, for
all t ∈ [0, b]. Given h ∈ Cn−1[0, b]. The ψ-Caputo fractional derivative of h of order α is defined as follows

cDα,ψ0+ h(t) = Dα,ψ0+

[
h(t)−

n−1∑
k=0

h
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k

]
,

where h[k]
ψ (t) =

[
1

ψ′(t)
d
dt

]k
h(t), and n = [α] + 1 for α /∈ N. Further, if α = n ∈ N, then cDα,ψ0+ h(t) = h

[n]
ψ (t).

In particular, if 0 < α < 1, then cDα,ψ0+ h(t) = Dα,ψ0+ [h(t)− h(0)] . If h ∈ Cn[0, b], then the left-sided ψ-Caputo
fractional derivative of h of order α can be represented by the expression

cDα,ψ0+ h(t) = In−α;ψ
0+

(
1

ψ′(t)

d

dt

)n
h(t)

=
1

Γ(n− α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))n−α−1h
[n]
ψ (s)ds.

Lemma 1 ([4]) Let α > 0, ψ, h ∈ Cn−1[0, b] and h(n) exists almost everywhere on any bounded interval of
[0, b]. Then

Iα,ψ0+
cDα,ψ0+ h(t) = h(t)−

n−1∑
k=0

h
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k.

In particular, if 0 < α < 1, we have Iα,ψ0+
cDα,ψ0+ h(t) = h(t)− h(0).

Lemma 2 ([10]) Let α > 0 and β > 0. Then, we have the following semigroup property given by

Iα,ψ0+ I
β,ψ
0+ h(t) = Iα+β,ψ

0+ h(t), t ∈ [0, b].

Lemma 3 ([2]) Let α > 0, h ∈ C[0, b] and ψ ∈ C1[0, b]. Then Iα;ψ
0+ h ∈ C[0, b] and

Iα;ψ
0+ h(0) = lim

t→0+
Iα;ψ

0+ h(t) = 0.

The following generalization of Gronwall’s lemma for singular kernels plays an important role in obtaining
some of our main results.

Lemma 4 ([15]) Let x, y, be two integrable functions and h continuous, with domain [0, b]. Let ψ ∈ C[0, b]
an increasing function such that ψ′(t) 6= 0, ∀t ∈ [0, b]. Assume that x and y are nonnegative and h is
nonnegative and nondecreasing. If

x(t) ≤ y(t) + h(t)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1x(s)ds,

then, for all t ∈ [0, b], we have

x(t) ≤ y(t) +

∫ t

0

∞∑
k=1

[h(t)Γ(α)]
k

Γ(αk)
ψ′(s)(ψ(t)− ψ(s))αk−1y(s)ds. (9)

Corollary 5 Under the hypotheses of Lemma 4, let y be a nondecreasing function on [a, b]. Then, we have

x(t) ≤ y(t)Eα(h(t)Γ(α) [ψ(t)− ψ(0)]
α

), ∀t ∈ [0, b],

where Eα(·) is the Mittag-Leffl er function defined by Eα(t) =
∑∞
k=0

tk

Γ(αk+1) .
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3 Main Results

In this section, we show the equivalence between a Cauchy type problem (3)—(4) and the Volterra integral
equation. Moreover, by using the method of modified Picard’s iterative, we obtain the existence and unique-
ness results of the given problem. Before proceeding for the main results, we introduce the lemmas needed
in the sequel.

Lemma 6 Let 0 < k < α. Then ψ-Riemann-Liouville fractional integral of a power function is given by

Iα,ψ0+ [ψ(t)− ψ(0)]
−k

=
Γ(α)Γ(−k + 1)

Γ(α− k + 1)
[ψ(t)− ψ(0)]

α−k
. (10)

Moreover, for all k = {0, 1, .., n− 1}, n ∈ N, we have
cDα,ψ0+ [ψ(t)− ψ(0)]

k
= 0.

Proof. In view of Definition 3, we have

Iα,ψ0+ [ψ(s)− ψ(0)]
−k

=
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1 [ψ(s)− ψ(0)]
−k
ds.

The integral is evaluated by the change of variable ψ(s) = ψ(0) + z [ψ(t)− ψ(0)] , and with the help of the
Beta function defined by Eq.(5), we obtain

Iα,ψ0+ [ψ(s)− ψ(0)]
−k

=
1

Γ(α)

∫ t

0

[ψ(t)− ψ(s)]
α−1

[ψ(s)− ψ(0)]
−k
ψ′(s)ds

=
1

Γ(α)
[ψ(t)− ψ(0)]

α−k
∫ 1

0

(1− z)α−1z−kdz

=
1

Γ(α)
[ψ(t)− ψ(0)]

α−k B(α,−k + 1)

= [ψ(t)− ψ(0)]
α−k Γ(−k + 1)

Γ(α− k + 1)
.

To prove that
cDα,ψ0+ [ψ(t)− ψ(0)]

k
= 0. (11)

We have from Definition 4,

cDα,ψ0+ [ψ(t)− ψ(0)]
k

= In−α;ψ
0+ Dn,ψ0+ [ψ(t)− ψ(0)]

k
. (12)

Since k < n ∈ N, then

Dn,ψ0+ [ψ(t)− ψ(0)]
k

=

[
1

ψ′(t)

d

dt

]n
[ψ(t)− ψ(0)]

k
= 0.

Replacing this last formula into Eq.(12), we conclude that the relation (11) holds.

Lemma 7 For any constant function C, we have
cDα,ψ0+ C = 0. (13)

Proof. From the Definition 4, we have

cDα,ψ0+ C = In−α;ψ
0+

(
1

ψ′(t)

d

dt

)n
C

= In−α;ψ
0+ Dn;ψ

0+ C

= C In−α;ψ
0+ Dn;ψ

0+ [ψ(t)− ψ(0)]0

since n > 0, Dn;ψ
0+ [ψ(t)− ψ(0)]0 = 0. Therefore, the relation (13) holds.
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Lemma 8 Let α > 0, ψ be as given in Definition 3 and u ∈ C[0, b]. Then

cDα,ψ0+ I
α,ψ
0+ u(t) = u(t), a.e.

Proof. From the Definition 4, we observe that

cDα,ψ0+ I
α,ψ
0+ u(t) = Dα,ψ0+

[
Iα,ψ0+ u(t)−

n−1∑
k=0

Iα,ψ0+ u
[k]
ψ (0)

k!
[ψ(t)− ψ(0)]

k

]
. (14)

Also, we have

Iα,ψ0+ u
[k]
ψ (t) =

[
1

ψ′(t)

d

dt

]k
Iα,ψ0+ u(t)

= Dk,ψ0+ I
k,ψ
0+ I

α−k,ψ
0+ u(t)

=
1

Γ(α− k)

∫ t

0

ψ′(s) [ψ(t)− ψ(s)]
α−k−1

u(s)ds.

Since u ∈ C[0, b], and by using Eq.(10), we find that∣∣∣Iα,ψ0+ u
[k]
ψ (t)

∣∣∣ ≤ ‖u‖C
Γ(α− k + 1)

[ψ(t)− ψ(0)]
α−k

.

Consequently,
(Iα,ψ0+ u)

[k]
ψ (0) = 0, for all k = 0, 1, ..., n− 1.

From the last equality with Eqs.(14), (7), and using Lemma 2, we obtain

cDα,ψ0+ I
α,ψ
0+ u(t) = Dα,ψ0+ I

α,ψ
0+ u(t)

=

[
1

ψ′(t)

d

dt

]n
In−α,ψ0+ Iα,ψ0+ u(t)

= Dn,ψ0+ I
n,ψ
0+ u(t) = u(t).

Corollary 9 ([2]) Let α > 0, ψ be as given in Definition 3, and h ∈ C[0, b]. Then

u(t) = u0 +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1h(s)ds, t ∈ (0, b]. (15)

is a solution for the Cauchy problem{
cDα,ψ0+ u(t) = h(t), a.e.t ∈ (0, b],
u(0) = u0.

(16)

For the forthcoming analysis, we introduce additional conditions that will be used to show our main
result.

(A1) f : (0, b] × R → R is a continuous with lim
t→0+

f(t, u) = ∞ and there exists a constant 0 < k < α such

that [ψ(t)− ψ(0)]
k
f(t, u) is a continuous function on [0, b]× R.

(A2) For the k above, there exists constant L > 0 such that

[ψ(t)− ψ(0)]
k |f(t, u1)− f(t, u2)| ≤ L |u1 − u2| (17)

for all t ∈ [0, b] and for all u1, u2 ∈ R.
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Lemma 10 Assume that (A1) and (A2) are fulfilled. The function u ∈ C[0, b] is a solution to Cauchy
problem (3)—(4) if and only if u satisfies the following Volterra integral equation

u(t) = u0 +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, u(s))ds, t ∈ (0, b]. (18)

Proof. We first show that for every u ∈ C[0, b], the integral∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)
f(s, u(s))ds

is convergent and uniformly bounded for t ∈ [0, b]. In fact every u ∈ C[0, b] is bounded. From the hypothesis
(A2), we know that (ψ(t)− ψ(0))kf(t, u(t)) ∈ C[0, b]. So there exists a constant M > 0 such that∣∣ψ(t)− ψ(0))kf(t, u(t))

∣∣ ≤M =⇒ |f(t, u(t))| ≤M [ψ(t)− ψ(0)]
−k
,

for all t ∈ [0, b]. Using Lemma 6, and definition of Beta function, we get∣∣∣∣∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)
f(s, u(s))ds

∣∣∣∣
≤ M

Γ(α)

∫ t

0

ψ′(s) [ψ(t)− ψ(s)]
α−1

[ψ(s)− ψ(0)]
−k
ds

=
MΓ(−k + 1)

Γ(α− k + 1)
[ψ(t)− ψ(0)]

α−k

≤ M

Γ(α)
B(α,−k + 1) [ψ(b)− ψ(0)]

α−k
.

This means that
∫ t

0
ψ′(s)(ψ(t)−ψ(s))α−1

Γ(α) f(s, u(s))ds is convergent and uniformly bounded for t ∈ [0, b].

The necessity is a consequence of Lemma 1. In view of Corollary 9, suppose that u ∈ C[0, b] is a solution
of Cauchy problem (3)—(4). Applying Iα;ψ

0+ on both sides of Eq. (3) and according to Lemma 1, we deduce
that

u(t) = u0 +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, u(s))ds. (19)

On the other hand, assume that u ∈ C[0, b] satisfying the Volterra integral equation Eq. (18), and we prove
that u also satisfies the nonlinear fractional differential equation Eq. (3). Applying the fractional derivative
operator cDα;ψ

0+ on both sides of Eq. (19) with using Lemma 8 and Eq. (13), we get

cDα;ψ
0+ u(t) = cDα;ψ

0+

[
u0 +

1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, u(s))ds

]
= cDα;ψ

0+ u0 + cDα;ψ
0+ I

α;ψ
a+ f(t, u(t))

= f(t, u(t)). (20)

Since f(t, .) ∈ C[0, b], the Lemma 3 shows that Iα,ψ0+ f(t, u(t)) in Eq.(19) vanishes at the initial point t = 0,
and thus u(0) = u0. So this completes the proof.

Next, we prove the existence and uniqueness of solution for the Cauchy problem (3)—(4) in C[0, b] by
means of the modified Picard’s iterative.

Theorem 11 Assume that the hypotheses (A1) and (A2) are fulfilled, then there exists a uniquely defined
function x ∈ C[0, b] solving the Cauchy problem (3)—(4).
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Proof. In view of Lemma 10, we know that it suffi ces to prove that the integral equation (3) has a unique
solution. To this end, the equation (18) makes sense in any interval [0, t1] ⊂ [0, b], ( t1 = t0 + h0, h0 > 0,
t1 < b ). Thus, we choose t1 such that the inequality

L
Γ(−k + 1)

Γ(α− k + 1)
[ψ(t1)− ψ(0)]

α−k
<

1

2
(21)

holds, and then prove the existence of a unique solution x ∈ C[0, t1] to the equation (18) on the interval
[0, t1]. We define a function sequence by

x
(1)
0 (t) = u0, t ∈ [0, t1] (22)

and

x(1)
n (t) = u0 +

1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, x
(1)
n−1(s))ds, t ∈ [0, t1], n ∈ N. (23)

It is clear that x(1)
n ∈ C[0, t1]. Hence, it follows from the proof of Lemma 10 that the functions sequence

x
(1)
n are well-defined for all n = 1, 2, · · ·. Furthermore, according to hypotheses (A1), (A2) and Lemma 6, we
conclude that ∣∣∣x(1)

n (t)− x(1)
n−1(t)

∣∣∣
≤ 1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1
∣∣∣f(s, x

(1)
n−1(s))− f(s, x

(1)
n−2(s))

∣∣∣ ds
≤ L

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1(ψ(s)− ψ(0))−k
∣∣∣x(1)
n−1(s)− x(1)

n−2(s)
∣∣∣ ds

=
L

Γ(α)
B(α,−k + 1) [ψ(t)− ψ(0)]

α−k
∥∥∥x(1)

n−1 − x
(1)
n−2

∥∥∥
∞

≤ LΓ(−k + 1)

Γ(α− k + 1)
[ψ(t1)− ψ(0)]

α−k
∥∥∥x(1)

n−1 − x
(1)
n−2

∥∥∥
∞
.

Therefore, by Eq. (21), we get

∣∣∣x(1)
n (t)− x(1)

n−1(t)
∣∣∣ ≤ 1

2

∥∥∥x(1)
n−1 − x

(1)
n−2

∥∥∥
∞
.

It follows, ∣∣∣x(1)
n (t)− x(1)

n−1(t)
∣∣∣ ≤ 1

2n−1

∥∥∥x(1)
1 − x

(1)
0

∥∥∥
∞
, for all n = 2, 3, · · ·.

Thus, we have that the series
∑∞
n=1

[
x

(1)
n (t)− x(1)

n−1(t)
]
is uniformly convergent on the interval [0, t1]. It

then follows that
{
x

(1)
n (t)

}∞
n=1

is uniformly convergent on [0, t1]. Denote x(1)(t) = lim
n→∞

x
(1)
n (t). Then x(1) ∈

C[0, t1], since x(1)
n is continuous on [0, t1] for all n. Now, we show that x(1) is the unique continuous solution

of Cauchy problem (3)—(4) on the interval [0, t1]. From (A2), we see that the expression

[ψ(t)− ψ(0)]
k
∣∣∣f(t, x(1)

n (t))− f(t, x(1)(t))
∣∣∣ ≤ L ∣∣∣x(1)

n (t)− x(1)(t)
∣∣∣→ 0
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uniformly as n→∞ on the interval [0, t1]. Hence by Eqs.(22) and (23), we obtain

x(1)(t) = lim
n→∞

x(1)
n (t)

= lim
n→∞

[
x

(1)
0 (t) +

1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, x
(1)
n−1(s))ds

]
= x

(1)
0 (t) + lim

n→∞

1

Γ(α)

∫ t

0

(
ψ′(s)(ψ(t)− ψ(s))α−1(ψ(s)− ψ(0))−k

×(ψ(s)− ψ(0))kf(s, x
(1)
n−1(s))

)
ds

= x
(1)
0 (t) +

1

Γ(α)

∫ t

0

(
ψ′(s)(ψ(t)− ψ(s))α−1(ψ(s)− ψ(0))−k

× lim
n→∞

(ψ(s)− ψ(0))kf(s, x
(1)
n−1(s))

)
ds

= x
(1)
0 (t) +

1

Γ(α)

∫ t

0

(
ψ′(s)(ψ(t)− ψ(s))α−1(ψ(s)− ψ(0))−k

×(ψ(s)− ψ(0))kf(s, x(1)(s))

)
ds

= x
(1)
0 (t) +

1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, x(1)(s))ds.

This means that Eq.(18) holds. From Lemma 10, we conclude that x(1) is a continuous solution of the
problem (3)—(4) on [0, t1]. Assume that y ∈ C[0, t1] is also a solution of the problem (3)—(4). Then for all
t ∈ [0, t1],

y(t) = u0 +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, y(s))ds.

In light of hypothesis (A2), and Lemma 6, then for t ∈ [0, t1], we have∣∣∣x(1)(t)− y(t)
∣∣∣ ≤ 1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1
∣∣∣f(s, x(1)(s))− f(s, y(s))

∣∣∣ ds
≤ L

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1 [ψ(s)− ψ(0)]
−k
∣∣∣x(1)(s)− y(s)

∣∣∣ ds
≤ L

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1 [ψ(s)− ψ(0)]
−k
∥∥∥x(1) − y

∥∥∥
∞
ds

=
L

Γ(α)
B(α,−k + 1) [ψ(t)− ψ(0)]

α−k
∥∥∥x(1) − y

∥∥∥
∞

≤ LΓ(−k + 1)

Γ(α− k + 1)
[ψ(t1)− ψ(0)]

α−k
∥∥∥x(1) − y

∥∥∥
∞
.

The last inequality with Eq.(21) lead us to∥∥∥x(1) − y
∥∥∥
∞
≤ 1

2

∥∥∥x(1) − y
∥∥∥
∞
.

This is a contradiction, and hence x(1) ≡ y on [0, t1]. Therefore, x(1) is the unique continuous solution of the
problem (3)-(4) on [0, t1].
Next, we discuss the solution on the interval [t1, t2] where t2 = t1 + h1, h1 > 0 and t2 < b. Thus, we

choose t2 such that

L
Γ(−k + 1)

Γ(α− k + 1)
[ψ(t2)− ψ(t1)]

α−k
<

1

2
(24)



Wahash et al. 223

holds and we prove the existence of unique solution x ∈ C[t1, t2]. Set

φ(t) = u0 +

∫ t1

0

ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)
f(s, x(1)(s))ds, t ∈ [t1, t2].

For n = 1, 2, · · ·, we define
x

(2)
0 (t) = φ(t), t ∈ [t1, t2]

and

x(2)
n (t) = φ(t) +

∫ t

t1

ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)
f(s, x

(2)
n−1(s))ds, t ∈ [t1, t2].

As seen above, x(1) is uniquely defined and continuous on [0, t1], φ is uniquely defined on [t1, t2] and φ(t1) =

x(1)(t1). Moreover, one can easily conclude from (A1)—(A2) that φ is bounded on [t1, t2], and hence x(2)
0 is

bounded on [t1, t2]. Now assume that x(2)
n−1 is bounded on [t1, t2], i.e. there exists a constant L1 ≥ 0 such that∣∣∣x(2)

n−1(t)
∣∣∣ ≤ L1, for every t ∈ [t1, t2]. Since f is continuous on [t1, t2] × [−L1, L1], then

∣∣∣f(t, x
(2)
n−1(t))

∣∣∣ ≤ L∗

for some constant L∗ > 0 and for all t ∈ [t1, t2]. Therefore, for every t ∈ [t1, t2]∣∣∣x(2)
n (t)

∣∣∣ ≤ |φ(t)|+
∫ t

t1

ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)

∣∣∣f(s, x
(2)
n−1(s))

∣∣∣ ds
≤ ‖φ‖∞ +

[ψ(t2)− ψ(t1)]
α

Γ(α+ 1)
L∗ := `.

This means that x(2)
n is also bounded on interval [t1, t2]. So we can conclude by mathematical inductive that

x
(2)
n is bounded and continuous on [t1, t2] for every n = 1, 2, · · ·, and hence the function sequence

{
x

(2)
n

}
is

well-defined. We now show that
{
x

(2)
n

}
is convergent uniformly for each t ∈ [t1, t2]. In fact, since∣∣∣x(2)

n (t)− x(2)
n−1(t)

∣∣∣
≤ 1

Γ(α)

∫ t

t1

ψ′(s)(ψ(t)− ψ(s))α−1
∣∣∣f(s, x

(2)
n−1(s))− f(s, x

(2)
n−2(s))

∣∣∣ ds
≤ L

Γ(α)

∫ t

t1

ψ′(s)(ψ(t)− ψ(s))α−1 [ψ(s)− ψ(0)]
−k
∣∣∣x(2)
n−1(s)− x(2)

n−2(s)
∣∣∣ ds

≤ L

Γ(α)

∫ t

t1

ψ′(s)(ψ(t)− ψ(s))α−1 [ψ(s)− ψ(0)]
−k
∥∥∥x(2)

n−1 − x
(2)
n−2

∥∥∥
∞
ds

≤ LΓ(−k + 1)

Γ(α− k + 1)
[ψ(t2)− ψ(t1)]

α−k
∥∥∥x(2)

n−1 − x
(2)
n−2

∥∥∥
∞

≤ 1

2

∥∥∥x(2)
n−1 − x

(2)
n−2

∥∥∥
∞
,

which implies that ∣∣∣x(2)
n (t)− x(2)

n−1(t)
∣∣∣ ≤ 1

2n−1

∥∥∥x(1)
1 − x

(1)
0

∥∥∥
∞
, for all n = 2, 3, · · ·.

Thus, we have that the series
∑∞
n=1

[
x

(2)
n (t)− x(2)

n−1(t)
]
is uniformly convergent on the interval [t1, t2], similar

with the proof of interval [0, t1], we know that
{
x

(2)
n (t)

}∞
n=1

are uniformly convergent on [t1, t2]. Hence, we

denote by x(2)(t) = lim
n→∞

x
(2)
n (t). Then x(2) ∈ C[t1, t2], since x(2)

n ∈ C[t1, t2] for all n = 1, 2, · · ·. Using the
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same arguments as above, we can deduce that x(2) is the unique continuous function satisfying

x(2)(t) = φ(t) +
1

Γ(α)

∫ t

t1

ψ′(s)(ψ(t)− ψ(s))α−1f(s, x(2)(s))ds

= u0 +
1

Γ(α)

∫ t1

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, x(1)(s))ds

+
1

Γ(α)

∫ t

t1

ψ′(s)(ψ(t)− ψ(s))α−1f(s, x(2)(s))ds,

for t ∈ [t1, t2], which is the unique solution to (3)—(4) on [t1, t2].
Taking the following interval [t2, t3], where t3 = t2 + h2, h2 > 0 such that t3 < b. By reiterating this

proceeding, we conclude that there exists a unique solution x(i) to the equation (18) on each interval [ti−1, ti],.
Let us we set

x(t) =


x(1)(t); t ∈ [0, t1],
x(2)(t); t ∈ [t1, t2],

...
x(N)(t); t ∈ [tN−1, tN ].

Since x(i) ∈ C[ti−1, ti] (for i = 1, 2, · · ·,N , and 0 = t0 < t1 < t2 < · · · < tN = b) and by definition of x(i),
i = 1, 2, · · ·, N , we notice that x(t) is the unique continuous solution of the problem (3)-(4) on [0, b]. This
completes the proof.

Corollary 12 Assume that the hypotheses (A1)—(A2) hold. Then the Cauchy problem (3)—(4) has a unique
solution on [0,∞).

4 Continuous Dependence

In this section, we study the data continuous dependence of the fractional differential equation including
ψ-Caputo derivative via the generalized Gronwall inequality. To this end, under conditions of Theorem 11,
we consider that Cauchy problem

cDα−ε,ψ
0+ u∗(t) = f(t, u∗(t)), (25)

u∗(0) = u∗0, (26)

has a unique solution

u∗(t) = u∗0 +
1

Γ(α− ε)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−ε−1f(s, u∗(s))ds,

where 0 < α− ε < α < 1.

Theorem 13 Let ψ, f ∈ C([0, b],R) two functions such that ψ is increasing function and ψ′(t) 6= 0, for all
t ∈ [0, b] and f satisfying Lipschitz condition Eq.(17) in R. Let α > 0, ε > 0 such that 0 < α − ε < α ≤ 1.
Assume that u is the solution of Cauchy problem (3)—(4) and u∗ is the solution of Cauchy problem (25)—(26).
Then for 0 < t ≤ b,

|u∗(t)− u(t)|

≤ A(t) +

∫ t

0

[ ∞∑
k=1

(
LρΓ(α− ε)

Γ(α)

)k
ψ′(s)(ψ(t)− ψ(s))(α−ε)k−1

Γ((α− ε)k)
A(s)

]
ds,

where

ρ :=
Γ(α− k + 1)

2LΓ(−k + 1)
,
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A(t) = |u∗0 − u0|+ ‖f‖
∣∣∣∣ (ψ(t)− ψ(0))α−ε

Γ(α− ε+ 1)
− (ψ(t)− ψ(0))α−ε

Γ(α)Γ(α− ε)

∣∣∣∣
+ ‖f‖

∣∣∣∣ (ψ(t)− ψ(0))α−ε

Γ(α)Γ(α− ε) − (ψ(t)− ψ(0))α

Γ(α+ 1)

∣∣∣∣ , (27)

and ‖f‖ = sup
(t,u)∈(0,b]×R

|f(t, u)|.

Proof. The problems (3)—(4) and (25)—(26), have similar integral solutions and are given by

u(t) = u0 +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, u(s))ds, t > 0

and

u∗(t) = u∗0 +
1

Γ(α− ε)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−ε−1f(s, u∗(s))ds, t > 0,

respectively. It follows that

|u∗(t)− u(t)| ≤ |u∗0 − u0|

+

∣∣∣∣ 1

Γ(α− ε)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−ε−1f(s, u∗(s))ds

− 1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, u(s))ds

∣∣∣∣
≤ |u∗0 − u0|

+

∣∣∣∣∫ t

0

ψ′(s)

[
(ψ(t)− ψ(s))α−ε−1

Γ(α− ε) − (ψ(t)− ψ(s))α−ε−1

Γ(α)

]
f(s, u∗(s))ds

+
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−ε−1 [f(s, u∗(s))− f(s, u(s))] ds

+

∫ t

0

ψ′(s)

[
(ψ(t)− ψ(s))α−ε−1

Γ(α)
− (ψ(t)− ψ(s))α−1

Γ(α)

]
f(s, u(s))ds

∣∣∣∣
≤ |u∗0 − u0|+ ‖f‖

∣∣∣∣ (ψ(t)− ψ(0))α−ε

Γ(α− ε+ 1)
− (ψ(t)− ψ(0))α−ε

Γ(α)Γ(α− ε)

∣∣∣∣
+

L

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−ε−1 [ψ(s)− ψ(0)]
−k |u∗(s)− u(s)| ds

+ ‖f‖
∣∣∣∣ (ψ(t)− ψ(0))α−ε

Γ(α)Γ(α− ε) − (ψ(t)− ψ(0))α

Γ(α+ 1)

∣∣∣∣ .
From Eq.(21) we note that, for s ∈ (0, b],

[ψ(s)− ψ(0)]
−k

< [ψ(s)− ψ(0)]
α−k

<
Γ(α− k + 1)

2LΓ(−k + 1)
:= ρ.

Hence

|u∗(t)− u(t)| ≤ A(t) +
Lρ

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−ε−1 |u∗(s)− u(s)| ds,

where A(t) is defined as in Eq.(27). In view of Lemma 4, we conclude that

|u∗(t)− u(t)|

≤ A(t) +

∫ t

0

[ ∞∑
k=1

(
LρΓ(α− ε)

Γ(α)

)k
ψ′(s)(ψ(t)− ψ(s))(α−ε)k−1

Γ((α− ε)k)
A(s)

]
ds.
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Next, we discuss the continuous dependence of solution of (3)—(4) with small change in the initial condi-
tion. Consider the following fractional differential equation

cDα,ψ0+ u(t) = f(t, u(t)), t > 0, (28)

u(0) = u0 + δ, (29)

where δ is an arbitrary positive constant.

Theorem 14 Assume that hypotheses of Theorem 11 hold. Let u and u∗ are solutions of the problems
(3)—(4) and (28)—(29) respectively. Then

|u(t)− u∗(t)| ≤ |δ|Eα−k
(

Γ(−k + 1)L [ψ(t)− ψ(0)]
α−k

)
, t ∈ [0, b].

Proof. In view of Theorem 11, we have u(t) = lim
n→∞

un(t) with

u0(t) = u0 (30)

and

un(t) = u0(t) +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, un−1(s))ds.

= u0 +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, un−1(s))ds. (31)

Clearly, we can write u∗(t) = lim
n→∞

u∗n(t) with

u∗0(t) = u0 + δ, (32)

and

u∗n(t) = u∗0(t) +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, u∗n−1(s))ds

= u0 + δ +
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, u∗n−1(s))ds, (33)

By Eq.(30) and Eq.(32) we get

|u0(t)− u∗0(t)| = |u0 − u0 − δ|
≤ |δ| . (34)

Using relations Eqs.(30), (31), (32), (33), the Lipschitz condition Eq.(17) and the inequality Eq.(34), we get

|u1(t)− u∗1(t)|

≤ |δ|+ 1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1 |f(s, u0(s))− f(s, u∗0(s)| ds

≤ |δ|+ L

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1 [ψ(s)− ψ(0)]
−k |u0(t)− u∗0(t)| ds

≤ |δ|+ L |δ| B(α,−k + 1)

Γ(α)
[ψ(t)− ψ(0)]

α−k

= |δ|+ L |δ|Γ(−k + 1)
[ψ(t)− ψ(0)]

α−k

Γ(α− k + 1)
.
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Hence,

|u1(t)− u∗1(t)| ≤ |δ|
1∑
i=0

(Γ(−k + 1)L)
i [ψ(t)− ψ(0)]

(α−k)i

Γ((α− k)i+ 1)
. (35)

On the other hand, we have

|u2(t)− u∗2(t)|
≤ |δ|

+
1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1 |f(s, u1(s))− f(s, u∗1(s)| ds

≤ |δ|+ L

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1 [ψ(s)− ψ(0)]
−k |u1(t)− u∗1(t)| ds

≤ |δ|+ L

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1 [ψ(s)− ψ(0)]
−k

×
[
|δ|+ B(α,−k + 1)

L |δ|
Γ(α)

[ψ(s)− ψ(0)]
α−k

]
ds

= |δ|+ L |δ|
Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1 [ψ(s)− ψ(0)]
−k
ds

+
B(α,−k + 1)

Γ(α)

L2 |δ|
Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1
[
[ψ(s)− ψ(0)]

α−2k
]
ds

= |δ|+ L |δ| Γ(−k + 1)

Γ((α− k + 1)
[ψ(t)− ψ(0)]

α−k
+

[
Γ(−k + 1)

Γ((α− k + 1)

]2

L2 |δ| [ψ(t)− ψ(0)]
2(α−k)

= |δ|
2∑
i=0

(Γ(−k + 1)L)
i [ψ(t)− ψ(0)]

(α−k)i

Γ((α− k)i+ 1)
.

Using the induction, we get

|un(t)− u∗n(t)| ≤ |δ|
n∑
i=0

(Γ(−k + 1)L)
i [ψ(t)− ψ(0)]

(α−k)i

Γ((α− k)i+ 1)
(36)

Taking the limit n→∞ in Eq.(36), we obtain

|u(t)− u∗(t)| ≤ |δ|Eα−k
(

Γ(−k + 1)L [ψ(t)− ψ(0)]
α−k

)
.

5 An Example

Fix a kernel ψ : [0, 1]→ R. Consider the singular fractional differential equation

cD
2
3 ,ψ

0+ u(t) = [ψ(t)− ψ(0)]
− 1
2 (1 +

1

9
u(t)), , t ∈ (0, 10], (37)

with the initial condition
u(0) = 4, (38)

where α = 2
3 , u0 = 4, f(t, u) = [ψ(t)− ψ(0)]

− 1
2 (1 + 1

9u), for (t, u) ∈ (0, 10] × R, and limt→0+ f(t, .) = ∞.
Set k = 1

2 , then [ψ(t)− ψ(0)]
k
f(t, u) = (1 + 1

9u) is continuous on [0, 10]. So the hypothesis (A1) is satisfied.
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For all u, u∗ ∈ R, and t ∈ (0, 10], we have

|f(t, u)− f(t, u∗)| = [ψ(t)− ψ(0)]
−1
2

∣∣∣∣(1 +
1

9
u)− (1 +

1

9
u∗)

∣∣∣∣
=

1

9
[ψ(t)− ψ(0)]

−1
2 |u− u∗| .

Consider ψ(t) =
√
t+ 1, for t ∈ [0, 10], we get

|f(t, u)− f(t, u∗)| = 1

9

[√
t+ 1− 1

]− 1
2 |u− u∗| .

So, the hypothesis (A2) is also satisfied with L = 1
9 and k = 1

2 . Moreover,

LΓ(−k + 1)

Γ(α− k + 1)
[ψ(b)− ψ(0)]

α−k
=

√
π
[√

11− 1
] 1
6

9Γ( 7
6 )

<
1

2
.

Therefore, all the assumptions in Theorem 1 are fulfilled. This implies that the Cauchy problem (37)-(38)
has a uniquely continuous solution on [0, 10].

Acknowledgment. The authors are grateful to the referees for the careful reading of the paper and for
their remarks.
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