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Abstract

In this paper, we study some mathematical properties of the gamma Gumbel distribution. We
provide explicit expressions for the moments, quantile function, Rényi entropy, and order statistics. We
also discuss the estimation of the model parameters using the maximum likelihood technique, method
of moments and Bayesian method. We provide an application to a real data set which illustrates the
usefulness of the model.

1 Introduction

The Gumbel distribution is one of the most widely applied statistical distributions in the engineering prob-
lems. A book written by Kotz and Nadarajah [21] lists over 50 applications of the Gumbel distribution. The
probability density function (pdf) of this distribution is

f(x) =
u

σ
exp {−u} , x ∈ R, σ > 0,

where u = exp
(
−x−µσ

)
and µ ∈ R. The corresponding cumulative distribution function (cdf) of this

distribution is
F (x) = exp {−u} ,

where µ and σ are the location and scale parameters.
Nadarajah and Kotz [27] introduced a generalization of the Gumbel distribution, called the beta Gumbel

(BG) distribution, whose pdf is given by

fBG(x) =
u exp(−αu){1− exp(−u)}β−1

σB(α, β)
, x ∈ R, α, β, σ > 0, (1)

where u = exp(−x−µσ ), µ ∈ R, and B(·, ·) is the complete beta function. The corresponding cdf of the BG
distribution is

FBG(x) = Iexp(−u)(α, β), −∞ < x < +∞,

where Ix(a, b) = 1
B(a,b)

∫ x
0
ta−1(1− t)b−1dt is the incomplete beta ratio function.
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A special case of the BG distribution is the exponentiated Gumbel (EG) distribution (set α = 1 in (1)),
discussed by [26], with the following pdf

fEG(x) =
βu

σ
exp (−u) {1− exp(−u)}β−1, x ∈ R, β, σ > 0, (2)

where u is defined as before and µ ∈ R. The corresponding cdf of the EG distribution is

FEG(x) = 1− {1− exp(−u)}β .

Gholami [15] worked on the Bayesian estimation of the shape and scale parameters of the EG distribution
(The location parameter was taken to be zero).
Cordeiro et al. [9] discussed the properties of the Kumaraswamy Gumbel (KG) distribution, proposed

by [8], with the following pdf

f∗KG(x) =
αβu

σ
exp(−αu){1− exp(−αu)}β−1, x ∈ R, α, β, σ > 0, (3)

where u is defined as before and µ ∈ R.
We can rewrite (3) as

fKG(x) =
β

σ
α exp

(µ
σ

)
exp

(
−x
σ

)
exp

[
−α exp

(µ
σ

)
exp

(
−x
σ

)]
×
{

1− exp

[
−α exp

(µ
σ

)
exp

(
−x
σ

)]}β−1

. (4)

Take η = α exp
(
µ
σ

)
in (4), then we have

fKG(x) =
βη

σ
exp

(
−x
σ

)
exp

[
−η exp

(
−x
σ

)]{
1− exp

[
−η exp

(
−x
σ

)]}β−1

.

Therefore f∗KG(x) is not identifiable and we may eliminate either parameter α or µ from (3) to attain an
identifiable distribution. Setting α = 1 in (3), we can eliminate parameter α from the model and then we
arrive at the pdf of the EG distribution. Summing up, we conclude that the KG distribution is not a new
distribution and it is in fact the EG distribution.
Another generalization of the Gumbel distribution is the exponentiated generalized Gumbel (EEG) dis-

tribution, that was introduced by [10]. The mathematical properties of the EEG distribution and estimation
of its parameters were discussed by [2]. The pdf of the EEG is given by

fEEG(x) =
αβu e−u

σ
{1− exp(−u)}α−1{1− (1− exp(−u))α}β−1, x ∈ R, α, β, σ > 0,

where u is defined as before and µ ∈ R.
The McDonald Gumbel (MG) distribution was also proposed by [11]. The pdf of this model is given by

fMG(x;µ, σ, α, β, λ) =
λu exp(−αλu){1− exp(−λu)}β−1

σB(α, β)
, x ∈ R, λ, α, β, σ > 0, (5)

where u is defined as before and µ ∈ R.
We can rewrite (5) as

f∗MG(x) =
1

σB(α, β)
λ exp

(µ
σ

)
exp

(
−x
σ

)
exp

[
−αλ exp

(µ
σ

)
exp

(
−x
σ

)]
×
{

1− exp

[
−αλ exp

(µ
σ

)
exp

(
−x
σ

)]}β−1

. (6)
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Take η = λ exp
(
µ
σ

)
in (6), then we have

f∗MG(x) =
η exp

(−x
σ

)
σB(α, β)

exp

[
−αη exp

(
−x
σ

)]{
1− exp

[
−αη exp

(
−x
σ

)]}β−1

.

Therefore fMG(x) is not identifiable and either parameter λ or µ may be eliminated from (5) to obtain an
identifiable distribution. We can eliminate parameter λ from the MG model by means of setting λ = 1 in
(5) and then we arrive at the pdf of the BG distribution. Therefore, we conclude that the MG distribution
is not new and it is in fact the BG distribution.
Moreover, Aryal and Tsokos [3] and Deka et al. [12] introduced the transmuted Gumbel (TG) distribution

and the transmuted exponentiated Gumbel (TEG) distribution, respectively. The pdf and cdf of the TEG
distribution are given by

fTEG(x) =
αu e−u

σ
{1− exp(−u)}α−1{1− β + 2β(1− exp(−u))α}, x ∈ R, α, σ > 0, (7)

and
FTEG(x) = 1− (1− exp(−u))α{1− β + β(1− exp(−u))α},

respectively, where u is defined as before, µ ∈ R and −1 < β < 1. The TG distribution is a special case of
the TEG distribution, whose pdf is obtained by setting α = 1 in (7). In addition, the five-parameter beta
exponentiated Gumbel distribution was recently introduced by [28].
Recently, Amini et al. [1] discussed a family of distributions, called the log-gamma generated family of

distributions. Suppose that g(x) and G(x) are the pdf and cdf of a random variable X, respectively, then
the pdf of the log-gamma generated-G distribution is given by

fG(x) =
βα

Γ(α)
[− log(G(x))]α−1[G(x)]β−1g(x), α, β > 0. (8)

One member of the log-gamma generated-G family of distributions, as hinted by [1], is the gamma Gumbel
(GG) distribution, that can be obtained by letting g(x) and G(x) in (8) to be the pdf and cdf of the Gumbel
distribution, respectively. Consequently, the pdf of the GG distribution is given by

f∗(x) =
βα

σΓ(α)
exp

{
−α(x− µ)

σ
− β exp

(
−x− µ

σ

)}
, x ∈ R, α, β, σ > 0, µ ∈ R. (9)

As f∗(x) is not identifiable, we may eliminate parameter β from the model by setting β = 1 in (9) and
therefore, we arrive at the following pdf

f(x) =
1

σΓ(α)
exp

{
−α(x− µ)

σ
− exp

(
−x− µ

σ

)}
, x ∈ R, α, σ > 0, µ ∈ R. (10)

We write X ∼ GG(µ, σ, α) if the pdf of X can be expressed as (10). The Gumbel distribution is recovered
as a submodel of the GG distribution by setting α = 1 in (10). As [1] stated, log-gamma generated-G family
of distributions are suitable for modelling highly skewed and heavy-tailed data. Therefore, we hope that the
GG distribution can be a proper model for skewed data sets that arise in many engineering applications.
We note that Amini et al. [1] did not focus on the special case, the GG distribution and they studied
several properties of the log-gamma generated-G family of distributions in general. In other words, the
mathematical properties and application of the GG distribution were not discussed in detail by [1]. Here,
we want to work on some properties of the GG distribution more specifically using both properties of the
Gumbel distribution and the properties of the log-gamma generated-G family of distributions. In addition,
Amini et al. [1] discussed the problem of parameter estimation for the log-gamma generated-G family of
distributions with the help of two classical methods, namely the maximum likelihood (ML) approach and
method of moments, in general. Here, we discuss the problem of estimation of the parameters of the GG
distribution using a Bayesian approach as well as the ML technique and method of moments.
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The rest of the paper is organized as follows: The mathematical properties of the GG model are presented
in Section 2. Section 3 is devoted to the estimation of the parameters of the GG distribution using the ML
technique, method of moments and Bayesian procedure. An application of the GG distribution is given in
Section 4.

2 Mathematical Properties

In this section, we derive various mathematical properties of the GG distribution.

2.1 Distribution Function

The cdf of the GG model is

F (x) =
1

σΓ(α)

∫ x

−∞
exp

(
−α(t− µ)

σ

)
exp

(
− exp

(
− t− µ

σ

))
dt.

Taking z = exp
(
− t−µσ

)
, we have

F (x) =
1

Γ(α)

∫ ∞
u

zα−1 exp(−z)dz = 1− 1

Γ(α)

∫ u

0

zα−1 exp(−z) dz

= 1− Γ(α, u)

Γ(α)
= 1− 1

Γ(α)

∞∑
m=0

(−1)mum+α

m!(m+ α)
, (11)

where u is defined as before and Γ(a, x) =
∫ x

0
ta−1e−tdt is the incomplete gamma function.

2.2 Shape Characteristics of the Pdf and Hazard Function

It follows from (10) that
∂f(x)

∂x
=

uα

σ2Γ(α)
exp(−u) (u− α) . (12)

Equating (12) with zero, we arrive at x0 = µ− σ log(α). Now, the second derivative of f(x) with respect to
x is

∂2f(x)

∂x2
=

uα

σ3Γ(α)
exp (−u)

[
α2 − 2αu− u+ u2

]
.

Therefore we have
∂2f(x)

∂x2

∣∣∣∣
x=x0

= −α
α+1 exp(−α)

σ3Γ(α)
< 0.

So we conclude that the pdf of the GG distribution is unimodal and attains its maximum at x0.
Next, we consider the hazard rate function (hrf) that is defined by h(x) = f(x)

1−F (x) . For the GG distribu-
tion, we have

h(x) =
uα exp(−u)

σΓ(α, u)
.

Figure 1 plots f(x) and h(x) for selected values α when µ = 0 and σ = 1. From Figure 1, we can see that
the pdf is unimodal and the hrf can be an increasing function of x.
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Figure 1: Pdfs (left) and hrfs (right) of the GG distribution for selected values α when µ = 0 and σ = 1.

2.3 Moments

Let X ∼ GG(µ, σ, α). The moment generating function of X is

MX(t) =
1

σΓ(α)

∫ ∞
−∞

exp(tx) exp

(
−α(x− µ)

σ
− exp

(
− x− µ

σ

))
dx

=
exp(tµ)

Γ(α)

∫ ∞
0

uα−tσ−1 exp(−u)du

=
exp(tµ)

Γ(α)
Γ(α− tσ), t <

α

σ
.

The n-th moment of X can be derived as

E(Xn) =
1

σΓ(α)

∫ ∞
0

xn exp

(
−α(x− µ)

σ

)
exp

(
− exp(−x− µ

σ
)

)
dx

=
1

Γ(α)

∫ ∞
0

(µ− σ lnu)nuα−1 exp(−u)du.

If n is an integer value, then using the binomial expansion, we have

E(Xn) =
1

Γ(α)

n∑
k=0

(
n

k

)
µn−k(−σ)k

∫ ∞
0

(lnu)kuα−1 exp(−u)du

=
1

Γ(α)

n∑
k=0

(
n

k

)
µn−k(−σ)k

∂k

∂αk
{Γ(α)},

where the last equality is obtained from Equation (4.358.5) in [18]. The first, second, third and fourth
moments of X are simplified as

E(X) = µ− σΨ(α), (13)

E(X2) = µ2 − 2µσΨ(α) + σ2 Γ′′(α)

Γ(α)
, (14)

E(X3) = µ3 − 3µ2 σΨ(α) + 3µσ2 Γ′′(α)

Γ(α)
− σ3 Γ′′′(α)

Γ(α)
, (15)
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E(X4) = µ4 − 4µ3 σΨ(α) + 6µ2 σ2 Γ′′(α)

Γ(α)
− 4µσ3 Γ′′′(α)

Γ(α)
+ σ4 Γ′′′′(α)

Γ(α)
,

respectively, where Ψ(α) = Γ′(α)
Γ(α) is the digamma function and Γ′(α),Γ′′(α),Γ′′′(α) and Γ′′′′(α) are the first,

second, third and fourth derivatives of the gamma function, respectively.
The variance, skewness and kurtosis of X ∼ GG(µ, σ, α) can be computed using the following relations:

V ar(X) = E(X2)− E2(X),

Skewness(X) =
E(X3)− 3E(X)E(X2) + 2E3(X)

V ar
3
2 (X)

,

Kurtosis(X) =
E(X4)− 4E(X)E(X3) + 6E(X2)E2(X)− 3E4(X)

V ar2(X)
.

2.4 Quantile Function

The quantile function of X can be determined as

F−1(z) = µ− σ log
(
Q−1(1− z;α)

)
,

for 0 < z < 1, where Q−1(y;α) is the inverse function of Q(y;α) = Γ(α,y)
Γ(α) .

2.5 Entropies

The entropy represents a measure of uncertainty of a random variable. The Rényi entropy of a random
variable X is defined as

IR(γ) =
1

1− γ log

∫ ∞
−∞

fγ(x)dx,

where γ > 0 and γ 6= 1. For the GG distribution, we have∫ ∞
−∞

fγ(x) =
1

σγ (Γ(α))
γ

∫ ∞
−∞

exp

(
−αγ(x− µ)

σ

)
exp

(
−γ exp(−x− µ

σ
)

)
dx

=
1

σγ−1 (Γ(α))
γ

∫ ∞
0

uαγ−1 exp(−γu)du

=
Γ(αγ)

γαγ (Γ(α))
γ
σγ−1

.

Therefore, the Rényi entropy of X ∼ GG(µ, σ, α) is

IR(γ) =
1

1− γ

(
log[Γ(αγ)]− αγ log γ − γ log[Γ(α)]− (γ − 1) log σ

)
.

The Shannon entropy is a special case of the Rényi entropy when γ ↑ 1 that is defined for a random variable
X as E[− log f(X)]. For the GG distribution, we can write

E[− log f(X)] = log σ + log[Γ(α)] +
α

σ
(E(X)− µ) + E

[
exp

(
− X − µ

σ

)]
= log σ + log[Γ(α)] + α(1−Ψ(α)).
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2.6 Order Statistics

Let X1, · · · , Xn be a random sample from the GG distribution with parameters µ, σ and α, and let Xi:n

denote the ith order statistic, then its pdf is given by

fi:n(x) =
n!

(i− 1)!(n− i)!f(x)
(
1− F (x)

)i−1 (
F (x)

)n−i
=

n!

(i− 1)!(n− i)!f(x)

i−1∑
j=0

(
i− 1

j

)
(−1)j

(
F (x)

)n+j−i
.

From (11), we find

fi:n(x) =
n! exp(−u)

(i− 1)!(n− i)!σΓ(α)

i−1∑
j=0

(
i− 1

j

)
(−1)j

u(n+j−i+1)α

[Γ(α)]n+j−i

( ∞∑
m=0

(−1)mum

m!(m+ α)

)n+j−i

.

For any positive integer q, we have (see [18], section 0.314)( ∞∑
i=0

aix
i

)q
=

∞∑
i=0

cq,ix
i,

where the coeffi cients cq,i (for i = 1, 2, ...) are easily obtained from the following recurrence equation:

cq,i = (ia0)−1
i∑

k=1

(kq − i+ k)akcq,i−k,

with cq,0 = aq0. Therefore, we can write( ∞∑
m=0

(−1)mum

m!(m+ α)

)n+j−i

=

∞∑
m=0

cn+j−i,m(−u)m,

where

cn+j−i,m =
α

m

m∑
k=1

k(n+ j − i+ 1)−m
k!(k + α)

cn+j−i,m−k,

and cn+j−i,0 = α−(n+j−i). The quantity cn+j−i,m can be obtained from cn+j−i,0, ..., cn+j−i,m−1 and then
from w0, ..., wm where wr = 1/[r!(r + α)] for r = 0, ...,m. Combining the terms, we have

fi:n(x) =
n! exp(−u)

(i− 1)!(n− i)!σ

i−1∑
j=0

∞∑
m=0

(
i−1
j

)
(−1)j+m

[Γ(α)]n+j−i+1
cn+j−i,mu

(n+j−i+1)α+m,

where u = exp
(
−x−µσ

)
and x ∈ R.

3 Estimation of the Parameters

In this section, we discuss how to estimate the parameters of the GG distribution by means of employing
three well-known methods, namely the ML method, method of moments and Bayesian method.
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3.1 Maximum Likelihood Estimation

In this subsection, we consider the estimation of the unknown parameters using the ML method. Let
x = (x1, x2, ..., xn) be a set of an observed random sample of size n from the GG distribution with the set
of parameters θθθ = (µ, σ, α). Then the likelihood function of θθθ, given x, is

L(θθθ|x) = σ−n [Γ(α)]−n exp

{
−nα(x̄− µ)

σ
−

n∑
i=1

exp

(
−xi − µ

σ

)}
. (16)

The log-likelihood function of θθθ based on the given sample is also given by

`(θθθ) = −n log σ − n log (Γ(α))− α

σ

n∑
i=1

xi +
nαµ

σ
−

n∑
i=1

exp

(
−xi − µ

σ

)
. (17)

The ML estimates of µ, σ and α are obtained by maximizing (17) with respect to the parameters. In this
paper, we used the Maximize function in the package Optimization in Maple 17 to find the ML estimates. We
note that the Maximize function does not need initial values to maximize real-valued functions.
In addition, upon differentiating the log-likelihood function with respect to the parameters and equating

them with zero, we have

∂`(θθθ)

∂µ
=

nα

σ
− 1

σ

n∑
i=1

exp

(
−xi − µ

σ

)
= 0,

∂`(θθθ)

∂σ
=

α

σ2

n∑
i=1

xi −
n

σ
− nαµ

σ2
−

n∑
i=1

(xi − µ)

σ2
exp

(
−xi − µ

σ

)
= 0,

∂`(θθθ)

∂α
= −nΨ(α)− 1

σ

n∑
i=1

xi +
nµ

σ
= 0,

where Ψ(α) = ∂(log Γ(α))
∂α is the digamma function. Solving the above nonlinear equations numerically can

help us find the ML estimates of the parameters as well. One can use the nleqslv function in the R contributed
package nleqslv [19] to solve the above equations. A system of nonlinear equations can be solved by either a
Broyden or a full Newton method using the nleqslv function, see [19] for more details.

3.2 Method of Moments

Here, we consider another well-known method of estimation, namely the method of moments (MM). Given
the random sample x1, x2, ..., xn from the GG distribution with the set of parameters θθθ = (µ, σ, α), the
r-th sample moment is given by 1

n

∑n
i=1 x

r
i . The MM estimates of the parameters of the three-parameter

GG distribution are obtained by equating the first three theoretical moments with the first three sample
moments. Therefore from (13), (14) and (15), the MM estimates of the parameters will be obtained by
solving the following nonlinear equations

1

n

n∑
i=1

xi = µ− σΨ(α),

1

n

n∑
i=1

x2
i = µ2 − 2µσΨ(α) + σ2 Γ′′(α)

Γ(α)
,

1

n

n∑
i=1

x3
i = µ3 − 3µ2 σΨ(α) + 3µσ2 Γ′′(α)

Γ(α)
− σ3 Γ′′′(α)

Γ(α)
.

We can use the nleqslv function in the R contributed package nleqslv to solve the above equations, see [19].
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3.3 Bayesian Estimation

In this section, we perform a Bayesian analysis for the GG model. To do so, one should adopt a prior density
for the parameters, denoted as π(θθθ), and then combine it with the likelihood function, L(θθθ|xxx). Then, the
posterior density of the parameters can be determined as follows

π(θθθ|xxx) ∝ L(θθθ|xxx)π(θθθ).

The remaining of the estimation process is achieved based on the obtained posterior distribution. De-
pending on the considered loss function, one can use the mean, median and other measures of the posterior
distribution to estimate the parameters, see for example [7, 14, 22] for more details.
Considering the nature of parameters, namely µ is the location parameter, σ is the scale parameter and

α is the shape parameter, we set the priors to be

µ ∼ N (µ0, σ
2
0), α ∼ Ga(a1, b1), , σ ∼ IG(a2, b2), (18)

where N , Ga and IG stand for the normal, gamma and inverse-gamma distributions, respectively. The
parameters of the prior density are called hyperparameters which can be considered to be fixed before the
analysis. In order to guarantee that the posterior distribution is a valid distribution and the priors have
an ignorable effect on the posterior distribution, following many authors (see for example [22]), we fix the
hyperparameters as µ0 = 0, σ2

0 = 104, a1 = b1 = 0.00001 and a2 = b2 = 0.001. These values produce priors
with large variances and consequently, they have a small impact on the resulting posterior distribution.
Furthermore, we suppose that the parameters are apriori independent. From (16) and (18), the posterior
density of the parameters is given by

π(α, σ, µ|xxx) ∝ exp

{
−

n∑
i=1

exp

(
−xi − µ

σ

)}
αa1−1σ−n−a2−1[Γ(α)]−n

× exp

{
−b1α−

b2 + nα(x̄− µ)

σ
− (µ− µ0)2

2σ2
0

}
.

This posterior distribution does not admit a closed form and therefore it cannot be employed in the inference
directly. Thus, we may perform an approximate analysis by means of obtaining random samples from this
distribution via Gibbs sampler. Gibbs sampler draws samples from the desired distribution of the parameters
using a process of sequential sampling from the full conditional distributions of the parameters, see [31] for
more details.
The full conditional distribution of α can be derived as

π(α|σ, µ,xxx) ∝ [Γ(α)]−n αa1−1 exp

{
−α

(
b1 +

n(x̄− µ)

σ

)}
, (19)

which is not a convenient density and needs more delicate methods to sample. Depending on different values
of parameters, (19) could be either log-concave or log-convex. Here, we use the adaptive Metropolis rejection
sampling (ARMS) method, stated in [16], in order to sample from (19). The ARMS method is used to
sample from complicated univariate distributions effi ciently. This method is a generalization of the adaptive
rejection sampling (ARS) method (see [17]) which involves a Metropolis step [24] to consider non-concavity
in the log density. The ARMS method constructs an envelope function for the log of the target density, like
the ARS method, which will be used in the rejection sampling. If a proposed sample is rejected by the ARS
method, then the envelope is updated to be more close to the true log density. Whenever the log-concavity
is not obtained, the ARMS method performs a Metropolis step on each point accepted at an ARS rejection
step. For more details, see [16].

The joint conditional posterior density of σ and µ is given by

π(σ, µ|α,xxx) ∝ σ−n−a2−1 exp

{
−b2 + nα(x̄− µ)

σ
− (µ− µ0)2

2σ2
0

−
n∑
i=1

exp

(
−xi − µ

σ

)}
.

(20)
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Model µ σ α β W ∗ A∗ K-S p-value
GG(µ, σ, α) 3.5971 1.8757 2.7207 – 0.0395 0.2846 0.0728 0.8681

Gumbel(µ, σ) 1.4937 1.0594 – – 0.0725 0.4631 0.0981 0.5469

EG(µ, σ, β) 2.3329 1.5614 – 2.1094 0.0407 0.2905 0.0734 0.8616

TEG(µ, σ, α, β) 1.8258 1.8372 2.4558 -1.0000 0.0415 0.2951 0.0743 0.8523

Table 1: Parameter ML estimates and the goodness-of-fit test statistics for the windshield data.

To sample from the bivariate distribution (20), we use the adaptive Metropolis-Hastings algorithm in which
the covariance matrix of the Gaussian proposal distribution is updated adaptively for effi cient mixing of the
algorithm, see for example [32] for more details. Therefore, we can generate the required samples with the
help of running a two-step Gibbs sampler and then approximate the posterior distribution.

4 Application

Each proposed distribution should be compared with its competitive (rival) distributions and its submodels
as well. It is customary to select several other generalizations of the same distribution (usually with the same
number of parameters) as well as the submodels and then compare them with each other. Here, we chose
two generalizations of the Gumbel distribution such as the EG and TEG distributions with pdfs (2) and
(7), respectively, (the TEG distribution has 4 parameters) as well as the Gumbel distribution (the submodel
of the GG distribution) as the competitive distributions. We expect that as the number of parameters
increases, the flexibility of the distribution gets more improved. But as we will see later, the 3-parameter
GG distribution possesses a better fit than the 4-parameter TEG distribution.
Here, we consider the service times for a particular model windshield given in Table 16.11 of [25] and

studied later by [30]. The data were measured in 1000 hours and are as follows:
0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 2.819, 0.313,
1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 2.053, 3.102, 0.952, 2.065,
3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092, 2.183, 3.695,
1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140.
Table 4.1 includes the ML estimates of the parameters, the values of Cramer-Von Mises (W ∗) and Anderson-
Darling (A∗) statistics (see [6] for more details regarding theW ∗ and A∗ statistics), the values of Kolmogorov-
Smirnov (K-S) test statistics with the corresponding p-values determined by fitting the models. The unknown
parameters of each model were estimated by the ML method using the Maximize function in the package
Optimization in Maple 17. The goodness of fit statistics were computed using the goodness.fit function in the
R contributed package AdequacyModel, see [23] and [29].
From Table 4.1, we see that the GG distribution has the smallest values ofW ∗, A∗ and K-S statistics, and

the largest p-value related to the K-S test and therefore it provides the best fit among the other considered
models. The plots of the fitted densities and the probability plots shown in Figures 4.1 and 4.2, respectively,
confirm this conclusion.
Next, we focus on estimating the parameters of the GG distribution using the method of moments and

Bayesian procedure. We obtained the MM estimates using the nleqslv function in the R contributed package
nleqslv, see [29] and [19]. In the context of Bayesian estimation, the analysis was performed using the Gibbs
sampling with 200, 000 iterations. We discarded 100, 000 of the generated samples to reduce the impact of
warming up effects of the Markov chains and then followed sampling steps of sizes 20,000 from the remaining
of the chain trajectories to reduce the correlation, see [31] for more details on the theory and application of the
Markov chain Monte Carlo method and Gibbs sampling. We considered the absolute error loss function and
approximated the medians of the marginal posterior densities of the parameters as the approximate Bayes
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Figure 2: Histogram of the windshield data and the fitted pdfs of the GG, Gumbel, EG and TEG distribu-
tions.

Figure 3: Probability plots for the fits of the GG, Gumbel, EG and TEG distributions.

(AB) estimates. Figure 4 shows the trajectories of the Gibbs sampling and convergence of the estimates.
Figure 4 indicates that the produced chains mix very well. The ML, MM and AB estimates of the parameters
of the GG model for the windshield data are given in Table 4.2. The computations related to the Bayesian
estimation were done in R [29] using the arms function in the package armspp, see [4] (see also [13]) and
the Metro−Hastings function in the package MHadaptive, see [5]. We also used the R contributed package
invgamma, see [20]. Summing up, we may conclude that the GG distribution is a flexible model for the
windshield data.
Acknowledgment. We would like to thank the referee for his/her valuable comments which helped us
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