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Abstract
In this work, we deal with a class of anisotropic nonlocal type equations, by means of the variational

approach, we prove the existence of infinitely many solutions under suitable assumptions.

1 Introduction

The investigation of the problems concerning anisotropic variable exponent has drawn the attention of many
authors, since there are some physical phenomena which can be modelled by such kind of equations, the
reader can find several models in mathematical physics where this class of problems appears, like those in
electrorheological fluids [8], thermorheological fluids [2] and image restoration [5].
The purpose of the present paper is to study the nonlocal anisotropic p(x)-Laplacian Dirichlet problems

of the form

−
N∑
i=1

Mi

(∫
Ω

|∂xiu|pi(x)

pi(x)
dx

)
∂xi

(
|∂xiu|pi(x)−2∂xiu

)
= f(x, u), for x ∈ Ω

u = 0, for x ∈ ∂Ω,

(1)

where Ω ⊂ RN (N ≥ 3) is a bounded open set with smooth boundary, pi, i = 1, ...N, are continuous functions
on Ω, and for each i = 1, ..., N, Mi : [0,∞) → [0,∞), f : Ω × R → R are continuous functions with the
potential

F (x, t) =

∫ t

0

f(x, s) ds.

This kind of equations with variable exponent growth conditions enable the study of equations with more

complicated nonlinearities since the differential operator ∆~p(x)(u) :=
∑N
i=1 ∂xi

(
|∂xiu|pi(x)−2∂xiu

)
allows a

distinct behavior for partial derivatives in various directions.
Some articles have been interested in the existence of solutions for this kind of problems in the case when

the nonlinearity f verifies the Ambrosetti-Rabinowitz type conditions (AR), (see below), for instance in [3]
and [7], the authors obtained the existence and multiplicity of solutions under the well-known Ambrosetti-
Rabinowitz type condition:

(AR) ∃ν > p+
M , K > 0 such that x ∈ Ω, |t| ≥ K ⇒ 0 ≤ νF (x, t) ≤ f(x, t)t.

The role of (AR) condition is to ensure the boundness of the Palais-Smale sequences of the Euler-Lagrange
functional. This is very crucial in the applications of critical point theory, especially for the nonlocal equa-
tions. A distinguishing feature is that we use (Cc) Cermai condition which is weaker than the (P.S) condition.
Furthermore, problem (1) is related also to the stationary version of a model, the so-called Kirchhoff

equation, which is introduced by Kirchhoff [9]. To be more precise, Kirchhoff established a model given by
the equation

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx)∂2u

∂x2
= 0, (2)
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which extends the classical D’Alembert’s wave equation by considering the effects of the changes in the
length of the strings during the vibrations. A distinct feature is that (2) contains a nonlocal coeffi cient
ρ0
h + E

2L

∫ L
0
|∂u∂x |

2 dx which depends on the average 1
2L

∫ L
0

∣∣∂u
∂x

∣∣2 dx, and hence the equation is no longer a
pointwise equation.
This work is organized as follows: In section 2, we introduce some preliminary results on the anisotropic

variable exponent Sobolev spaces. In section 3, we consider problem (1) and obtain some results on existence
and multiplicity for (1) by using the variational method. Finally, we give the proof of the main results.

2 Preliminaries

In order to deal with the problem (1), we recall some auxiliary results. For convenience, we only recall some
basic facts which will be used later, we refer to [4, 6, 10].
For q ∈ C+(Ω), we introduce the Lebesgue space with variable exponent defined by

Lq(·)(Ω) =

{
u : u is a measurable real-valued function,

∫
Ω

|u(x)|q(x) dx <∞
}
,

where C+(Ω) = {q ∈ C(Ω,R) : infx∈Ω q(x) > 1}. This space, endowed with the Luxemburg norm,

|u|q(.) = ‖u‖Lq(·)(Ω) = inf

{
µ > 0 :

∫
Ω

∣∣∣u(x)

µ

∣∣∣q(x)

dx ≤ 1

}
,

is a separable and reflexive Banach space. We also have an embedding result.

Proposition 1 Assume that Ω is bounded and q1, q2 ∈ C+(Ω) such that q1 ≤ q2 in Ω. Then the embedding
Lq2(·)(Ω) ↪→ Lq1(·)(Ω) is continuous.

Furthermore, the Hölder-type inequality∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ ≤ 2‖u‖Lq(·)(Ω)‖v‖Lq′(·)(Ω) (3)

holds for all u ∈ Lq(·)(Ω) and v ∈ Lq′(·)(Ω), where Lq
′(·)(Ω) the conjugate space of Lq(·)(Ω), with 1/q(x) +

1/q′(x) = 1. Moreover, we denote
q+ = sup

x∈Ω
q(x), q− = inf

x∈Ω
q(x)

and for u ∈ Lq(·)(Ω), we have the following properties:

‖u‖Lq(·)(Ω) < 1 (= 1; > 1) ⇔
∫

Ω

|u(x)|q(x) dx < 1 (= 1; > 1);

‖u‖Lq(·)(Ω) > 1 ⇒ ‖u‖q
−

Lq(·)(Ω)
≤
∫

Ω

|u(x)|q(x) dx ≤ ‖u‖q
+

Lq(·)(Ω)
; (4)

‖u‖Lq(·)(Ω) < 1 ⇒ ‖u‖q
+

Lq(·)(Ω)
≤
∫

Ω

|u(x)|q(x) dx ≤ ‖u‖q
−

Lq(·)(Ω)
; (5)

‖u‖Lq(·)(Ω) → 0 (→∞) ⇔
∫

Ω

|u(x)|q(x) dx→ 0 (→∞).

To recall the definition of the isotropic Sobolev space with variable exponent, W 1,q(·)(Ω), we set

W 1,q(·)(Ω) = {u ∈ Lq(·)(Ω) : ∂xiu ∈ Lq(·)(Ω) for all i ∈ {1, . . . , N}},
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endowed with the norm

‖u‖W 1,q(·)(Ω) = ‖u‖Lq(·)(Ω) +

N∑
i=1

‖∂xiu‖Lq(·)(Ω).

The space
(
W 1,r(·)(Ω), ‖ · ‖W 1,r(·)(Ω)

)
is a separable and reflexive Banach space.

Now, we consider ~p : Ω→ RN to be the vectorial function

~p(x) = (p1(x), . . . , pN (x))

with pi ∈ C+(Ω) for all i ∈ {1, . . . , N} and we put

pM (x) = max{p1(x), . . . , pN (x)}, pm(x) = min{p1(x), . . . , pN (x)}.

The anisotropic space with variable exponent is

W 1,~p(·)(Ω) = {u ∈ LpM (·)(Ω) : ∂xiu ∈ Lpi(·)(Ω) for all i ∈ {1, . . . , N}}

and it is endowed with the norm

‖u‖W 1,~p(·)(Ω) = ‖u‖LpM (·)(Ω) +

N∑
i=1

‖∂xiu‖Lpi(·)(Ω) .

The space
(
W 1,~p(·)(Ω), ‖ · ‖W 1,~p(·)(Ω)

)
is a reflexive Banach space. Furthermore, an embedding theorem takes

place for all the exponents that are strictly less than a variable critical exponent, which is introduced with
the help of the notations

p̄(x) =
N∑N

i=1 1/pi(x)
, q?(x) =

{
Nq(x)/[N − q(x)] if q(x) < N,

∞ if q(x) ≥ N.

Proposition 2 Let Ω ⊂ RN be a bounded open set and pi ∈ C+(Ω) for all i ∈ {1, . . . , N}. If q ∈ C(Ω,R),
1 ≤ q(x) < max{p∗(x), pM (x)} for all x ∈ Ω, then we have the compact and continuous embedding
W 1,~p(·)(Ω) ↪→ Lq(·)(Ω).

We denote by X = W
1,−→p (.)
0 (Ω) the closure of C∞0 (Ω) in W 1,~p(·)(Ω). The space

(
W

1,~p(·)
0 (Ω), ‖u‖

W
1,~p(·)
0 (Ω)

)
is a reflexive Banach space, where

‖u‖ = ‖u‖
W

1,~p(·)
0 (Ω)

=

N∑
i=1

‖∂xiu‖Lpi(·)(Ω) .

3 Main Results

Proposition 3 ([7]) Putting

I(u) =

N∑
i=1

Ii(u) =

N∑
i=1

∫
Ω

1

pi(x)
|∂xiu)|pi(x) dx,

then I ∈ C1(X,R) and the derivative operator I ′ of I is

I ′(u).v =

N∑
i=1

∫
Ω

|∂xiu|pi(x)−2∂xiu ∂xiv dx.

(i) The functional I ′ is of (S+) type, where I ′ is the Gâteaux derivative of the functional I.
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(ii) I ′ is a bounded homeomorphism and strictly monotone operator.

For the function Mi, i = 1, ..., N , we make the following assumptions.

(M0) ∃ m0 > 0 such that
Mi(t) ≥ m0 for all t ≥ 0. (6)

(M1) ∃ 0 < µ < 1 such that
M̂i(t) ≥ (1− µ)Mi(t)t for all t ≥ 0, (7)

where M̂i(t) =
∫ t

0
Mi(s)ds.

(M2) Mi is a differentiable and decreasing function on R+.

For the function f we assume the following conditions are satisfied.

(f0) |f(x, t)| ≤ C(1+|t|q(x)−1) for all (x, t) ∈ Ω×R with C ≥ 0 and 1 < q(x) < p∗(x), where p∗(x) = Np(x)
N−p(x)

if p(x) < N , p∗(x) = +∞ if p(x) ≥ N .

(f1) lim|t|→∞
F (x,t)

|t|
p
+
M

1−µ

= +∞, uniformly for a.e. x ∈ Ω, where F (x, t) =
∫ t

0
f(x, s)ds.

(f2) There exists θ ≥ 1 such that θG(x, t) ≥ G(x, st) for (x, t) ∈ Ω × R and s ∈ [0, 1], where G(x, t) =

f(x, t)t− p+M
1−µF (x, t).

(f3) limt→0
F (x,t)

|t|p
+
M

= 0, uniformly for a.e. x ∈ Ω.

Under (AR), any Palais Smale (PS) sequence of the corresponding energy functional is bounded, which
plays an important role in the application of variational methods. Indeed, there are many superlinear
functions which do not satisfy (AR) condition. For instance the function below does not satisfy (AR)

f(x, t) =
p+
M

1− µ |t|
p
+
M

1−µ−2tln(|t|), (8)

where µ ∈ (0, 1). But it is easy to see the above function (8) satisfies (f0)—(f3).
Now we are ready to state our result.

Theorem 4 Assume that (M0)—(M2) and (f0)—(f3) are satisfied. Moreover, we assume that

(f4) f(x,−t) = −f(x, t) for all x ∈ Ω and t ∈ R.

If q− > p+
M , then problem (1) has a sequence of weak solutions {±uk}∞k=1 such that J(±uk) → +∞ as

k → +∞.

Example 1 For i = 1, ..., N, Mi(t) = 2+ 1
1+t2 , i = 1, ..., N . It is easy to see that Mi satisfies the conditions

(M0)—(M2). It is clear that the above function (8) satisfies (f0)—(f3).

Define

J(u) =

N∑
i=1

M̂i(Ii(u))−
∫

Ω

F (x, u) dx, u ∈ X,

where M̂i(t) =
∫ t

0
Mi(s) ds.

Definition 1 We call the weak solution for problem (1) a function u ∈ X satisfying:

N∑
i=1

Mi

(∫
Ω

1

pi(x)
|∂xiu|pi(x) dx

)∫
Ω

|∂xiu|pi(x)−2∂xiu ∂xiv dx−
∫

Ω

f(x, u)v dx = 0

for all v ∈ X.
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4 Proofs

First of all, we start with the following compactness result which plays a crucial role.

Lemma 5 Under assumptions (M0)—(M2) and (f0)—(f2), J verifies the Cerami condition.

Proof. For all c ∈ R, let’s prove that J satisfies the first assertion (i) of Cerami condition. Let {un} ⊂ X
be bounded, J(un) → c and J ′(un) → 0. Without loss of generality, we assume that un ⇀ u, then
J ′(un)(un − u)→ 0. Thus we have

J ′(un)(un − u) =

N∑
i=1

Mi

(∫
Ω

|∂xiun|
pi(x)

pi(x)
dx

)∫
Ω

|∂xiun|pi(x)−2∂xiun(∂xiun − ∂xiu)dx

−
∫

Ω

f(x, un)(un − u)dx→ 0.

In view of (f0) and Propositions 2, it follows that
∫

Ω
f(x, un)(un − u)dx→ 0. Therefore, we have

N∑
i=1

Mi

(∫
Ω

|∂xiun|pi(x)

pi(x)
dx

)∫
Ω

|∂xiun|pi(x)−2∂xiun(∂xiun − ∂xiu)dx→ 0.

From (M0), we infer that ∫
Ω

|∂xiun|pi(x)−2∂xiun(∂xiun − ∂xiu)dx→ 0.

This shows that un → u in X. Afterwards, we claim that J satisfies the assertion (ii) of Cerami condition.
Otherwise, there exist c ∈ R and {un} ⊂ X such that:

J(un)→ c, ‖un‖ → ∞, ‖J ′(un)‖‖un‖ → 0. (9)

By (9), we have that J(un) − 1−µ
p+M

J ′(un)(un) → c as n → +∞. Denote wn = un
‖un‖ , then {wn} is bounded.

Up to a subsequence, for some w ∈ X, we obtain

wn ⇀ w in X,wn → w in Lq(x)(Ω), wn(x)→ w(x) a.e. in Ω.

If w ≡ 0, we can define a sequence {tn} ⊂ R such that

J(tnun) = max
t∈[0,1]

J(tun).

For any B > 0, putting bn =
(

2BNp−m−1p+
M

) 1

p
−
m wn = Kωn, since bn → 0 in Lq(x)(Ω) and |F (x, t)| ≤

C(1 + |t|q(x)), by the continuity of the Nemytskii operator, we see that F (., bn) → 0 in L1(Ω) as n → +∞,
therefore

lim
n→∞

∫
Ω

F (x, bn)dx = 0. (10)

Putting

σi,n =

{
p+
M if ‖∂xiun‖Lpi(x) < 1,
p−m if ‖∂xiun‖Lpi(x) > 1.
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Similarly, from Remark 2.1 in [11], by using (4) and (5) we have for any n,

N∑
i=1

∫
Ω

|∂xiun|pi(x) dx ≥
N∑
i=1

‖∂xiun‖
σi,n
Lpi(x)(Ω)

≥
N∑
i=1

‖∂xiun‖
p−m
Lpi(x)(Ω)

−
∑

{i: σi,n=p+M}

(
‖∂xiun‖

p−m
Lpi(x)(Ω)

− ‖∂xiun‖
p+M
Lpi(x)(Ω)

)

≥ N

(∑N
i=1 ‖∂xiun‖Lpi(x)

N

)p−m
−N

=
‖un‖p

−
m

Np−m−1
−N.

For n large enough,
(

2BNp−m−1p+
M

) 1

p
−
m /‖un‖ ∈ (0, 1). From (M0) and by virtue of the last inequalities we

obtain

J(tnun) ≥ J(bn)

≥
N∑
i=1

∫ Ii(bn)

0

m0 ds−
∫

Ω

F (x, bn)dx

≥ m0

p+
M

‖bn‖p
−
m

Np−m−1
− N

p+
M

−
∫

Ω

F (x, bn)dx

≥ m0

(
‖Kωn‖p

−
m

p+
MN

p−m−1
− N

p+
M

)
−
∫

Ω

F (x, bn)dx

≥ m0

(
Kp−m

2p+
MN

p−m−1
− N

p+
M

)
.

That is, J(tnun)→ +∞. From J(0) = 0 and J(un)→ c, we know that tn ∈ (0, 1) and

〈J ′(tnun), tnun〉 = tn
d

dt

∣∣∣
t=tn

J(tun) = 0.

According to (M2) and (f2), we get

c = lim
n→+∞

[
J(un)− 1− µ

p+
M

〈J ′(un), un〉
]

= lim
n→+∞

[
N∑
i=1

M̂i

(
Ii(un)

)
− 1− µ

p+
M

N∑
i=1

Mi

(
Ii(un)

)∫
Ω

|∂xiun|pi(x)dx+
1− µ
p+
M

∫
Ω

G(x, un)dx

]

≥ lim
n→+∞

[
N∑
i=1

M̂i

(
Ii(tnun)

)
− 1− µ

p+
M

N∑
i=1

Mi

(
Ii(tnun)

)∫
Ω

tpi(x)
n |∂xiun|pi(x)dx+

1− µ
p+
M

∫
Ω

G(x, tnun)

θ
dx

]

= lim
n→+∞

1

θ

[
J(tnun)− 1− µ

p+
M

〈J ′(tnun), tnun〉
]

= +∞,

which is impossible. If w 6= 0, then the set Λ = {x ∈ Ω : w(x) 6= 0} has positive Lebesgue measure, for x ∈ Λ
we have |un(x)| → +∞ as n→ +∞. Hence by (f1) we deduce

F (x, un)

|un(x)|
p
+
M

1−µ

|wn(x)|
p
+
M

1−µ → +∞ as n→ +∞. (11)
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Noting that 1 <
p+M
1−µ . Then

‖un‖

‖un‖
p
+
M

1−µ

→ 0.

Now, because J(un)→ c, by (11), we deduce via the Fatou Lemma that

C1

(p−m)
1

1−µ
− c+ o(1)

‖un‖
p
+
M

1−µ

≥
∫

Ω

F (x, un)

‖un‖
p
+
M

1−µ

dx

=

∫
wn 6=0

F (x, un)

|un(x)|
p
+
M

1−µ

|wn(x)|
p
+
M

1−µ dx+

∫
wn=0

F (x, un)

|un(x)|
p
+
M

1−µ

|wn(x)|
p
+
M

1−µ dx

=

∫
wn 6=0

F (x, un)

|un(x)|
p
+
M

1−µ

|wn(x)|
p
+
M

1−µ dx→ +∞,

which is absurd.

Because X is a separable and reflexive Banach space [7], there exist {ej}∞j=1 ⊂ X and {fj}∞j=1 ⊂ X∗ such
that

fi(ej) = δi,j =

{
1, if i = j;

0, if i 6= j.

X = span{ej : j = 1, 2, . . . }, X∗ = spanw
∗
{fj : j = 1, 2, . . . }.

For k = 1, 2, . . . denote by

Xj = span{ej}, Yk = ⊕kj=1Xj , Zk = ⊕∞j=kXj .

Lemma 6 ([1]) For q ∈ C+(Ω), q(x) < p∗(x) for any x ∈ Ω, define βk = sup{|u|q(x) : ‖u‖ = 1, u ∈ Zk}.
Then limk→∞ βk = 0.

Proof of Theorem 4. We use the Fountain Theorem. According to Lemma 5 and (f4), J is an even
functional and satisfies condition (C). We show that for k large enough, there exist ρk > rk > 0 such that:

(A1) bk := inf{J(u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k → +∞;

(A2) ak := max{J(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0 as k → +∞.

(A1): Let u ∈ Zk with ‖u‖ = rk > 1 (rk will be specified below), by using condition (f0), we have

J(u) =

N∑
i=1

M̂
(
Ii(u)

)
−
∫

Ω

F (x, u)dx

≥ m0

p+
M

‖u‖p
−
m −

∫
Ω

C(|u|+ |u|q(x))dx

≥ m0

p+
M

‖u‖p
−
m − C‖u‖q(ξ)Lq(x)(Ω) − C‖u‖, where ξ ∈ Ω,

≥


m0

p+M
‖u‖p−m − C − C‖u‖ if ‖u‖Lq(x)(Ω) ≤ 1

m0

p+M
‖u‖p−m − C(βk‖u‖)q

+

if ‖u‖Lq(x)(Ω) > 1

≥ m0

p+
M

‖u‖p
−
m − C(βk‖u‖)q

+

− C‖u‖

= r
p−m
k

(
m0

p+
M

− Cβq
+

k r
q+−p−m
k

)
− Crk.
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Define rk =

(
Cq+βq

+

k

m0

) 1

p
−
m−q+

, therefore

J(u) ≥ m0r
p−m
k

(
1

p+
M

− 1

q+

)
− Crk − C.

The fact 1 < p−m ≤ p+
M < q+ implies that rk → +∞, when k → +∞. Thus, J(u)→ +∞ as ‖u‖ → +∞ with

u ∈ Zk.
(A2): Since dimYk <∞ and all norms are equivalent in the finite-dimensional space, there exists dk > 0,

for all u ∈ Yk with ‖u‖ ≥ 1, we have

Φ(u) =

N∑
i=1

M̂i

(
Ii(u)

)
≤ C1

‖u‖
p
+
M

1−µ

(p−m)
1

1−µ
≤ dk‖u‖

p
+
M

1−µ

L
p
+
M

1−µ (Ω)

. (12)

By conditions (f0), (f1) and (f3) we have

F (x, u) ≥ 2dk|u|
p
+
M

1−µ − ε|u|p
+
M , ∀(x, u) ∈ Ω× R. (13)

Combining (12) and (13), for u ∈ Yk such that ‖u‖ = ρk > rk, we infer that

J(u) ≤ −dk‖u‖
p
+
M

1−µ

L
p
+
M

1−µ (Ω)

+ ε‖u‖p
+
M

Lp
+
M (Ω)

≤ − C2

(p−m)
1

1−µ
‖u‖

p
+
M

1−µ + εC3‖u‖p
+
M .

Therefore, for ρk large enough (ρk > rk), we get from the above that

ak := max{J(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0.

The assertion (A2) holds, and this completes the proof of Theorem 4.
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