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Abstract

The sampling theory and its applications and extensions have been the subject of intensive research,
both by mathematicians and by communication engineers. In this paper, we give an extension of this
sampling theory to the Hahn difference operator. In other words, we state and prove the sampling
theorem associated with q, ω-Dirac system. As a special case, we give two examples.

1 Introduction

The sampling theory showed up in communication systems and signal processing. Shannon [22] was the
first who introduced the sampling theorem to information theory, but the basis for the theorem was laid by
several others. Whittaker [27] studied the problem of finding an analytic expression of a function, whose
values are known. In the Russian literature an equivalent statement was given by Kotelnikov [20]. Therefore
the sampling theorem is sometimes referred as the WKS sampling theorem. This WKS sampling theorem
states that if f ∈ PWπ (R) , which is known as the Paley-Wiener space, then f can be determined from its
values at the integers via the sampling series

f (t) =

∞∑
n=−∞

f (n)
sinπ (t− n)

π (t− n)
, t ∈ C.

This series is absolutely and uniformly convergent on compact subsets of C, uniformly convergent on R, (see
[10, 11, 18, 28]).
This theorem has been extended in many different ways. Sampling theory associated with boundary value

problems was first observed by Weiss in [26] and outlined in general terms by Kramer in [21]. But a more
systematic approach to this subject was first introduced by Zayed et al. in [29]. Since then, many authors
have studied on sampling theory associated with discontinuous Sturm-Liouville problems [5, 16, 17, 23], and
Dirac systems [1, 24, 25]. In recent years, these results have been extended to several types of difference
operators, like the q-difference operators [2, 3, 4, 9, 14, 19], and the q, ω-Hahn difference operators [8]. In
this paper, we present another example of extending the q, ω-Hahn difference operators. That is, we derive
sampling theory associated with q, ω-Dirac system defined below. Finally, as a special case, we give two
examples showing sampling formula. Consider the q, ω-Dirac system −

1

q
D 1

q ,
−ω
q
y2 + p (t) y1 = λy1,

Dq,ωy1 + r (t) y2 = λy2,
(1)

with the boundary conditions
B1 (y) := k11y1 (ω0) + k12y2 (ω0) = 0, (2)

B2 (y) := k21y1 (a) + k22y2

(
h−1 (a)

)
= 0, (3)
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where ω0 ≤ t ≤ a < ∞, kij (i, j = 1, 2) are real numbers, λ ∈ C, p (.) and r (.) are real-valued continuous
functions and h (t) is a function defined below. Here Dq,ω is the Hahn difference operator which is defined
by

Dq,ωf (t) :=


f (qt+ ω)− f (t)

(qt+ ω)− t , t 6= ω0,

f ′ (ω0) , t = ω0,

where q ∈ (0, 1) , ω > 0 are fixed and ω0 := ω/ (1− q), (see [12, 13]). This is valid if f is differentiable at ω0.
The function f needs to be defined on I; an interval of R containing ω0. The q, ω-Dirac system (1)-(3) was
introduced in [15]. The author investigated the existence and uniqueness of solutions and also obtained some
spectral properties such as the eigenvalues {λn}∞n=−∞ are real and simple, the eigenfunctions that belong to
different eigenvalues are orthogonal. The function h is defined by

h (t) := qt+ ω, t ∈ I.

The kth order iteration of h (t) is given by

hk (t) = qkt+ ω [k]q , t ∈ I,

where the sequence hk (t) is uniformly convergent to ω0 on I and

[k]q =
1− qk
1− q ,

are the q-numbers.
There exists the following relation between Dq,ω and its adjoint operator

(Dq,ωf)
(
h−1 (t)

)
= D1

q
,
−ω
q

f (t) .

The q, ω-type product formula is given by

Dq,ω (fg) (t) = Dq,ω (f (t)) g (t) + f (qt+ ω)Dq,ωg (t) .

The q, ω-integral is introduced in [6] to be the Jackson-Nörlund sum

b∫
a

f (t) dq,ωt =

b∫
ω0

f (t) dq,ωt−
a∫

ω0

f (t) dq,ωt,

where ω0 < a < b, a, b ∈ I, and
x∫

ω0

f (t) dq,ωt = (x (1− q)− ω)

∞∑
k=0

qkf
(
xqk + ω [k]q

)
, x ∈ I,

provided that the series converges. The fundamental theorem of q, ω- calculus given in [6] states that if
f : I → R is continuous at ω0, and

F (t) :=

t∫
ω0

f (x) dq,ωx, x ∈ I,

then F is continuous at ω0. Furthermore, Dq,ωF (t) exists for every t ∈ I and

Dq,ωF (t) = f (t) .



F. Hıra 117

Conversely,
b∫
a

Dq,ωf (t) dq,ωt = f (b)− f (a) , for all a, b ∈ I.

The q, ω-integration by parts for continuous functions f, g is given by

b∫
a

f (t)Dq,ωg (t) dq,ωt = f (t) g (t)
∣∣b
a −

b∫
a

Dq,ω (f (t)) g (qt+ ω) dq,ωt, a, b ∈ I.

Trigonometric functions of q, ω-cosine and sine are defined by

Cq,ω (t, µ) :=

∞∑
n=0

(−1)
n
qn

2

(µ (t (1− q)− ω))
2n

(q; q)2n

, t ∈ C,

Sq,ω (t, µ) :=

∞∑
n=0

(−1)
n
qn(n+1) (µ (t (1− q)− ω))

2n+1

(q; q)2n+1

, t ∈ C.

Here (q; q)k is the q-shifted factorial

(q; q)k :=


1, k = 0,
k∏
j=1

(
1− qj

)
, k = 1, 2, ....

Furthermore, these functions have real and simple zeros {±xn}∞n=1 and {±yn}
∞
n=1 , respectively,

xn = ω0 + q−n+1/2 (1− q)−1
(1 +O (qn)) ,

yn = ω0 + q−n (1− q)−1
(1 +O (qn)) ,

where n ≥ 1, see [7].
Let C2

q,ω (ω0, a) be the subspace of L2
q,ω (ω0, a), which consists of all functions y (.) for which y (.) and

Dq,ωy (.) are continuous at ω0. Let Hq,ω be the Hilbert space

Hq,ω :=

{
y (.) =

(
y1 (.)
y2 (.)

)
, y1, y2 ∈ C2

q,ω (ω0, a)

}
.

The inner product of Hq,ω is defined by

〈y (.) , z (.)〉 :=

a∫
ω0

y> (t) z (t)dq,ωt,

where > denotes the matrix transpose. Let

y (.) =

(
y1 (.)
y2 (.)

)
, z (.) =

(
z1 (.)
z2 (.)

)
∈ Hq,ω.

Then the q, ω-Wronskian of these functions is defined by

W (y, z) (t) := y1 (t) z2

(
h−1 (t)

)
− z1 (t) y2

(
h−1 (t)

)
. (4)

Let

y1 (t, λ1) =

(
y11 (t, λ1)
y12 (t, λ1)

)
and y2 (t, λ2) =

(
y21 (t, λ2)
y22 (t, λ2)

)
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be two solutions of (1): hence  −
1

q
D 1

q ,
−ω
q
y12 + {p (t)− λ1} y11 = 0,

Dq,ωy11 + {r (t)− λ1} y12 = 0,
(5)

and  −
1

q
D 1

q ,
−ω
q
y22 + {p (t)− λ2} y21 = 0,

Dq,ωy21 + {r (t)− λ2} y22 = 0.
(6)

Multiplying (5) by y21 and y22 and (6) by −y11 and −y22, respectively, and adding together, we have

Dq,ω

{
y11 (t, λ1) y22

(
h−1 (t) , λ2

)
− y12

(
h−1 (t) , λ1

)
y21 (t, λ2)

}
= (λ1 − λ2) {y11 (t, λ1) y21 (t, λ2) + y12 (t, λ1) y22 (t, λ2)} . (7)

Let us consider the q, ω-Dirac equation (1) together with the following initial conditions

y1 (ω0, λ) = k12, y2 (ω0, λ) = −k11. (8)

By virtue of Theorem 2.3 in [15], this problem has a unique solution φ (t, λ) =

(
φ1 (t, λ)
φ2 (t, λ)

)
. It is obvious

that φ (t, λ) satisfies the boundary condition (2) and this function is uniformly bounded on the subsets of
the form [ω0, a] × Ω where Ω ⊂ C is compact set. To find the eigenvalues of the q, ω-Dirac system (1)—(3)
we have to insert this function into the boundary condition (3) and find the roots of the obtained equation.
So, putting the function φ (t, λ) into the boundary condition (3) we get the following equation whose zeros
are the eigenvalues which are all real and simple (see [15])

∆ (λ) = −k21φ1 (a, λ)− k22φ2

(
h−1 (a) , λ

)
. (9)

It is also known that if {φn (.)}∞n=−∞ denotes a set of vector-valued eigenfunctions corresponding {λn}
∞
n=−∞ ,

then {φn (.)}∞n=−∞ is a complete orthogonal set of Hq,ω. Since the eigenvalues are real, we can take the
eigenfunctions to be real vector-valued.

2 The Sampling Theory

In this section, we state and prove q, ω-analogue of sampling theorem associated with q, ω-Dirac system
(1)—(3).

Theorem 1 Let g (t) =

(
g1 (t)
g2 (t)

)
∈ Hq,ω and F (λ) be the q, ω-type transform

F (λ) =

a∫
ω0

g> (t)φ (t, λ) dq,ωt, λ ∈ C, (10)

where φ (t, λ) is the solution defined above. Then F (λ) can be reconstructed using its values at the points
{λn}∞n=−∞ by means of the sampling form

F (λ) =

∞∑
n=−∞

F (λn)
∆ (λ)

(λ− λn) ∆′ (λn)
, (11)

where ∆ (λ) is defined in (9). The sampling series (11) converges absolutely on C and uniformly on compact
subsets of C.
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Proof. Since φ (t, λ) is in Hq,ω for any λ, we have

φ (t, λ) =

∞∑
n=−∞

φ̂n
φn (t)

‖φn‖
2 ,

where

φ̂n =

a∫
ω0

φ> (t, λ)φn (t) dq,ωt

=

a∫
ω0

{
φ1 (t, λ)φn,1 (t) + φ2 (t, λ)φn,2 (t)

}
dq,ωt, (12)

φ>n (t) =
(
φn,1 (t) , φn,2 (t)

)
is the vector-valued eigenfunction corresponding to the eigenvalue λn and

‖φn‖
2

=

a∫
ω0

φ>n (t)φn (t) dq,ωt =

a∫
ω0

(
φ2
n,1 (t) + φ2

n,2 (t)
)
dq,ωt.

Since g is in Hq,ω, it has the Fourier expansion

g (t) =

∞∑
n=−∞

ĝn
φn (t)

‖φn‖
2 ,

where

ĝn =

a∫
ω0

g> (t)φn (t) dq,ωt =

a∫
ω0

{
g1 (t)φn,1 (t) + g2 (t)φn,2 (t)

}
dq,ωt.

By Parseval’s equality, (10) turns out to be

F (λ) =

∞∑
n=−∞

F (λn)
φ̂n

‖φn‖
2 . (13)

Let λ ∈ C, λ 6= λn and n ∈ N be fixed. From relation (7), with y11 (t, λ1) = φ1 (t, λ) , y12 (t, λ1) = φ2 (t, λ) and
y21 (t, λ2) = φn,1 (t) , y22 (t, λ2) = φn,2 (x) , we obtain

(λ− λn)

a∫
ω0

{
φ1 (t, λ)φn,1 (t) + φ2 (t, λ)φn,2 (t)

}
dq,ωt

= W (φ, φn) (t)|t=a − W (φ, φn) (t)|x=ω0
.

Since φ (., λ) and φn (.) satisfy the same initial conditions (8) and from (4), we have

(λ− λn)

a∫
ω0

{
φ1 (t, λ)φn,1 (t) + φ2 (t, λ)φn,2 (t)

}
dq,ωt

= φ1 (a, λ)φn,2
(
h−1 (a)

)
− φn,1 (a)φ2

(
h−1 (a) , λ

)
. (14)

Assume that k22 6= 0. Since φn (.) is an eigenfunction, then it satisfies (3). Hence

φn,2
(
h−1 (a)

)
= −k21

k22
φn,1 (a) . (15)
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Substituting from (15) in (14), we obtain

(λ− λn)

a∫
ω0

{
φ1 (t, λ)φn,1 (t) + φ2 (t, λ)φn,2 (t)

}
dq,ωt

= −φn,1 (a)

{
k21

k22
φ1 (a, λ) + φ2

(
h−1 (a) , λ

)}
=

∆ (λ)φn,1 (a)

k22
(16)

provided that k22 6= 0. Similarly, we can show that

(λ− λn)

a∫
ω0

{
φ1 (t, λ)φn,1 (t) + φ2 (t, λ)φn,2 (t)

}
dq,ωt =

∆ (λ)φn,2
(
h−1 (a)

)
k21

(17)

provided that k21 6= 0. Differentiating with respect to λ and taking the limit as λ→ λn, we obtain

‖φn‖
2

=

a∫
ω0

φ>n (t)φn (t) dq,ωt =
∆′ (λn)φn,1 (a)

k22
, (18)

and

‖φn‖
2

=

a∫
ω0

φ>n (t)φn (t) dq,ωt =
∆′ (λn)φn,2

(
h−1 (a)

)
k21

. (19)

From (12), (16) and (18), we have for k22 6= 0,

φ̂n

‖φn‖
2 =

∆ (λ)

(λ− λn) ∆′ (λn)
, (20)

and if k21 6= 0, we use (12), (17) and (19) to obtain the same result. Therefore from (13) and (20) we get (11)
when λ is not an eigenvalue. Now we investigate the convergence of (11). Using Cauchy-Schwarz inequality
for λ ∈ C.

∞∑
n=−∞

∣∣∣∣F (λn)
∆ (λ)

(λ− λn) ∆′ (λn)

∣∣∣∣
=

∞∑
n=−∞

∣∣∣∣∣ĝn φ̂n

‖φn‖
2

∣∣∣∣∣
≤

( ∞∑
n=−∞

∣∣∣∣ ĝn
‖φn‖

∣∣∣∣2
)1\2

 ∞∑
n=−∞

∣∣∣∣∣ φ̂n‖φn‖
∣∣∣∣∣
2
1\2

<∞,

since g (.) , φ (., λ) ∈ Hq,ω. Thus (11) converge absolutely on C. As for uniform convergence on Ω where Ω is
a compact subsets of C. Using Cauchy-Schwarz’inequality, we obtain that for λ ∈ Ω,

ΓN (λ) =

∣∣∣∣∣F (λ)−
N∑

n=−N
F (λn)

∆ (λ)

(λ− λn) ∆′ (λn)

∣∣∣∣∣
≤

(
N∑

n=−N

|ĝn|2

‖φn‖
2

)1\2
 N∑
n=−N

∣∣∣φ̂n∣∣∣2
‖φn‖

2


1\2

.
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In view of Bessel’s inequality

N∑
n=−N

∣∣∣φ̂n∣∣∣2
‖φn‖

2 ≤ ‖φ (., λ)‖2 .

Since the function φ (., λ) is uniformly bounded on the subsets of C, we can find a positive constant CΩ

which is independent of λ such that ‖φ (., λ)‖ ≤ CΩ, λ ∈ Ω. Thus

ΓN (λ) ≤ CΩ

(
N∑

n=−N

|ĝn|2

‖φn‖
2

)1\2

→ 0 as N →∞.

Hence (11) converges uniformly on compact subsets of C, thus the proof is complete.

3 Examples

Example 1 Consider q, ω-Dirac system (1)—(3) in which p (t) = 0 = r (t) : −
1

q
D 1

q ,
−ω
q
y2 = λy1,

Dq,ωy1 = λy2,
(21)

y1 (ω0) = 0, (22)

y2

(
h−1 (π)

)
= 0. (23)

It is easy to see that a solution of (21) and (22) is given by

φᵀ (t, λ) = (−Sq,ω (t, λ) , − Cq,ω (t,
√
qλ)) .

By substituting this solution into (23), we obtain ∆ (λ) = Cq,ω
(
h−1 (π) ,

√
qλ
)
, hence, the eigenvalues are

λn =
q−n+1

(1− q) (π − ω0)
(1 +O (qn)) . Applying Theorem 1, the q, ω-transforms

F (λ) =

π∫
ω0

{g1 (t)Sq,ω (t, λ) + g2 (t)Cq,ω (t,
√
qλ)} dq,ωt,

for some g1, g2 ∈ C2
q (ω0, π) , then it has the sampling formula

F (λ) =

∞∑
n=−∞

F (λn)
Cq,ω

(
h−1 (π) ,

√
qλ
)

√
q (λ− λn)C ′q,ω

(
h−1 (π) ,

√
qλn

) ,
where C ′q,ω

(
h−1 (π) ,

√
qλn

)
=
(
d
dλCq,ω

(
h−1 (π) ,

√
qλ
))∣∣

λ=λn
.

Example 2 Consider q, ω-Dirac equation (21) together with the following boundary conditions

y2 (ω0) = 0,

y2

(
h−1 (π)

)
= 0.
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In this case φᵀ (t, λ) =
(
Cq,ω (t, λ) , −√qSq,ω

(
t,
√
qλ
))
. Since ∆ (λ) =

√
qSq,ω

(
h−1 (π) ,

√
qλ
)
, then the

eigenvalues are given by λn =
q−n+1/2

(1− q) (π − ω0)
(1 +O (qn)). Applying Theorem 1 above to the q, ω-transform

F (λ) =

π∫
ω0

{g1 (t)Cq,ω (t, λ)− g2 (t)
√
qSq,ω (t,

√
qλ)} dq,ωt, (55)

for some g1, g2 ∈ C2
q (ω0, π) , then we obtain

F (λ) =

∞∑
n=−∞

F (λn)
Sq,ω

(
h−1 (π) ,

√
qλ
)

√
q (λ− λn)S′q,ω

(
h−1 (π) ,

√
qλn

) , (56)

where

S′q,ω
(
h−1 (π) ,

√
qλn

)
=

(
d

dλ
Sq,ω

(
h−1 (π) ,

√
qλ
))∣∣∣∣

λ=λn

.
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