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Abstract

In this paper, we have introduced three generalized classes of sequences. In addition, we have studied
the L1-convergence of sine series whose coeffi cients belong to them. Finally, we show that our results
covers some results proved previously by others.

1 Introduction

We consider trigonometric sine series

g(x) =

∞∑
k=1

ak sin kx,

with its partial sums

Ssn(x) =

n∑
k=1

ak sin kx,

and
lim
n→∞

Ssn(x) = g(x).

It is a well-known fact that if a trigonometric series converges in L1-norm, then it is a Fourier series. In
general, the converse of this statement is not always true. So, the question to be considered is how to make
possible that the converse statement to be true? For this purpose a lot of researchers have introduced the
so-called modified trigonometric cosine sums or modified trigonometric sine sums or both as well as some
classes of sequences to which the coeffi cients of a trigonometric series belong to.
The most famous modified trigonometric sums appearing in literature are

fn(x) =
1

2

n∑
k=0

∆ak +

n∑
k=1

n∑
j=k

∆aj cos kx,

introduced in [4], and then the modified cosine and sine sums

gcn(x) =
a0
2

+

n∑
k=1

n∑
j=k

∆

(
aj
j

)
k cos kx

and

gsn(x) =

n∑
k=1

n∑
j=k

∆

(
aj
j

)
k sin kx,
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Xh. Z. Krasniqi 97

introduced in [11], where ∆ai := ai−ai+1. We do not recall here all modified trigonometric sums introduced
by others, however we suggest the interested reader to consult the references [5]-[9] of the present paper and
references therein to find other modified trigonometric sums.
Seemingly, it was S. A. Telyakovskii [13] who introduced the class S̃ of sequences and F. Móricz [10] who

introduced the classes B̃V and C̃ of sequences.
Very recently, the authors of [2] introduced the following modified sine sums

zsn(x) =

n∑
k=1

 ak+1
k + 1

+

n∑
j=k

∆2

(
aj
j

) k sin kx,

where ∆2ai := ∆(∆ai) = ai − 2ai+1 + ai+2, and the following classes of sequences:

Definition 1 A sequence (ak) tending to zero belongs to the class C̃r, r = 0, 1, 2, . . . , if for every ε > 0,
there exists δ > 0 independent on n and such that for all n,∫ δ

0

∣∣∣∣∣
∞∑
k=n

∆bkD
(r+1)
k (x)

∣∣∣∣∣ dx ≤ ε,
where bk = ak

k and D(r+1)
k (x) denotes the (r + 1)-th derivative of the Dirichlet’s kernel

Dk(x) =
1

2
+

k∑
j=1

cos jx =
sin
(
k + 1

2

)
x

2 sin x
2

.

Definition 2 A sequence (ak) tending to zero belongs to the class S̃r, r = 0, 1, 2, . . . , if there exists a non-
increasing sequence (Bk) of numbers so that, |∆bk| ≤ Bk, ∀k ∈ {1, 2, . . . }, and

∑∞
k=1 k

r+1Bk < ∞, where
bk = ak

k .

Definition 3 A sequence (ak) tending to zero belongs to the class B̃V r, r = 0, 1, 2, . . . , if

∞∑
k=1

kr+1|∆bk| <∞,

where bk = ak
k .

In the same paper there has been proved the following results.

Theorem 1 ([2]) S̃r ⊂ C̃r ∩ B̃V r for each r ∈ {0, 1, 2, . . . }.

Theorem 2 ([2]) Let (an) ∈ C̃ ∩ B̃V and limn→∞ an log n = 0. Then

lim
n→∞

‖zsn − g‖ = 0.

Theorem 3 ([2]) Let (an) ∈ C̃ ∩ B̃V and limn→∞ an log n = 0. Then

lim
n→∞

‖Ssn − g‖ = 0.

Theorem 4 ([2]) Let (an) ∈ C̃r ∩ B̃V r and limn→∞ nran log n = 0, r ∈ {0, 1, 2, . . . }. Then

lim
n→∞

‖(zsn)(r) − g(r)‖ = 0.
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Theorem 5 ([2]) Let (an) ∈ C̃r ∩ B̃V r and limn→∞ nran log n = 0, r ∈ {0, 1, 2, . . . }. Then

lim
n→∞

‖(Ssn)(r) − g(r)‖ = 0.

Corollary 1 ([2]) Let (an) ∈ S̃r and limn→∞ nran log n = 0, r ∈ {0, 1, 2, . . . }. Then

(i) limn→∞ ‖(zsn)(r) − g(r)‖ = 0.

(ii) limn→∞ ‖(Ssn)(r) − g(r)‖ = 0.

Now we introduce the following generalized modified sine sums

zsn,m(x) =

n∑
k=1

 ak+1
(k + 1)m

+

n∑
j=k

∆2

(
aj
jm

) km sin kx, m ∈ {1, 2, . . . },

where again ∆2ci := ∆(∆ci) := ci − 2ci+1 + ci+2.

Remark 1 Note that zsn,1(x) ≡ zsn(x) which have been introduced for the fist time in [3].

Further we generalize the classes C̃r, S̃r, and B̃V r, (r ∈ {0, 1, 2, . . . }) as follows:

Definition 4 A sequence (ak) tending to zero belongs to the class C̃r,m, (r = 0, 1, 2, . . . ; m = 1, 2, . . . ), if
for every ε > 0, there exists δ > 0 independent on n and such that for all n,∫ δ

0

∣∣∣∣∣
∞∑
k=n

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx ≤ ε,
where bk = ak

km , D
(r+m)
k (x) denotes the (r +m)-th derivative of the Dirichlet kernel

Dk(x) =
1

2
+

k∑
j=1

cos jx =
sin
(
k + 1

2

)
x

2 sin x
2

.

Remark 2 It is clear that C̃r+1,m ⊂ C̃r,m, (r = 0, 1, 2, . . . ; m = 1, 2, . . . ), however, the converse inclusion
need not be true in general as shown in the next example.

Example 1 Define bn,m =
∑∞
k=n

1
kr+m+2 , (r = 0, 1, 2, . . . ; m = 1, 2, . . . ), then ∆bn,m = 1

nr+m+2 and

an = nbn,m = n

∞∑
k=n

1

kr+m+2
≤
∞∑
k=n

k

kr+m+2
=

∞∑
k=n

1

kr+m+2
→ 0, when n→∞.

So, using Bernstein’s inequality, the integral∫ δ

0

∣∣∣∣∣
∞∑
k=n

∆bk,mD
(r+1+m)
k (x)

∣∣∣∣∣ dx ≤
∫ π

0

∣∣∣∣∣
∞∑
k=n

∆bk,mD
(r+1+m)
k (x)

∣∣∣∣∣ dx
≤

∞∑
k=n

|∆bk,m|
∫ π

0

∣∣∣D(r+1+m)
k (x)

∣∣∣ dx
≤

∞∑
k=n

kr+1+m

kr+m+2

∫ π

0

|Dk(x)| dx = O
( ∞∑
k=1

log k

k

)
,
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is divergent, which means (an) 6∈ C̃r+1,m. On the other side, the integral∫ δ

0

∣∣∣∣∣
∞∑
k=n

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx ≤
∫ π

0

∣∣∣∣∣
∞∑
k=n

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx
≤

∞∑
k=n

|∆bk,m|
∫ π

0

∣∣∣D(r+m)
k (x)

∣∣∣ dx
≤

∞∑
k=n

kr+m

kr+m+2

∫ π

0

|Dk(x)| dx = O
( ∞∑
k=1

log k

k2

)
,

is convergent, which means (an) ∈ C̃r,m.

Definition 5 A sequence (ak) tending to zero belongs to the class S̃r,m, (r = 0, 1, 2, . . . ; m = 1, 2, . . . ), if
there exists a non-increasing sequence (Bk) so that, |∆bk,m| ≤ Bk, ∀k ∈ {1, 2, . . . }, and

∑∞
k=1 k

r+mBk <∞,
where bk = ak

km .

Remark 3 It is clear that S̃r+1,m ⊂ S̃r,m, (r = 0, 1, 2, . . . ; m = 1, 2, . . . ), however, the converse inclusion
need not to be true as shown in the next example.

Example 2 Define bn,m =
∑∞
k=n

1
kr+m+2 , (r = 0, 1, 2, . . . ; m = 1, 2, . . . ), then ∆bn,m = 1

nr+m+2 and

an = nbn,m = n

∞∑
k=n

1

kr+m+2
≤
∞∑
k=n

k

kr+m+2
=

∞∑
k=n

1

kr+m+1
→ 0, when n→∞.

Choosing Bn = 1
nr+m+2 , (r = 0, 1, 2, . . . ; m = 1, 2, . . . ), then Bn ↓ 0 and |∆bn,m| ≤ Bn. Now, the series

∞∑
k=1

kr+mBk =

∞∑
k=1

kr+m
1

kr+m+2
=

∞∑
k=1

1

k2
<∞

is convergent, which means (an) ∈ S̃r,m. However, the series
∞∑
k=1

kr+1+mBk =

∞∑
k=1

kr+1+m
1

kr+m+2
=

∞∑
k=1

1

k

is divergent, which means (an) 6∈ S̃r+1,m.

Definition 6 A zero sequence (ak) belongs to the class B̃V r,m, (r = 0, 1, 2, . . . ; m = 1, 2, . . . ), if

∞∑
k=1

kr+m|∆bk,m| <∞,

where bk,m = ak
km .

Remark 4 It is clear that B̃V r+1,m ⊂ B̃V r,m, (r = 0, 1, 2, . . . ; m = 1, 2, . . . ), however, the converse
inclusion may not be true.

Remark 5 We note that C̃r,m ≡ C̃r, S̃r,m ≡ S̃r, and B̃V r,m ≡ B̃V r for m = 1, and C̃r,m ≡ C̃, S̃r,m ≡ S̃,
and B̃V r,m ≡ B̃V for m = 1 and r = 0.

The objective of this paper is to prove some theorems more general than Theorems 1—5 and Corollary
1 involving new classes C̃r,m, S̃r,m, and B̃V r,m. To achieve this objective we need to recall some lemmas
which have already proved elsewhere. Throughout this paper, for two positive quantities u and v, we write
u = O(v), if there exists a positive constant C so that u ≤ Cv.
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2 Helpful Lemmas

Lemma 1 ([15]) Let m be a non-negative integer. Then for all 0 < |x| ≤ π and all n ≥ 1 the estimate
|D̃(m)

n (x)| ≤ 4nrπ
|x| holds true, where D̃(m)

n (x) denotes m-th derivative of the conjugate Dirichlet kernel

D̃k(x) =

k∑
j=1

sin jx =
cos x2 − cos

(
k + 1

2

)
x

2 sin x
2

.

Lemma 2 ([12]) Let m be a non-negative integer. Then for all 0 < ε ≤ x ≤ π and all n ≥ 1 the estimate
|D(m)

n (x)| ≤ Cnr

x holds true, where C denotes a positive absolute constant.

Lemma 3 ([12]) ‖D(m)
n (x)‖L1 = O (nm log n), m ∈ {0, 1, 2, . . . }, holds true, where D(m)

n (x) denotes m-th
derivative of the Dirichlet kernel.

Lemma 4 ([7]) If Dn(x), D̃n(x), and Fn(x) are the Dirichlet, the conjugate Dirichlet and the Fejér kernel
respectively, then D̃′n(x) = (n+ 1)Dn(x)− (n+ 1)Fn(x).

Lemma 5 ([14]) Let the real numbers αi, i = 1, 2, . . . , k, satisfy conditions |αi| ≤ 1. Then the following
estimations hold true ∫ π

0

∣∣∣∣∣
k∑
i=0

αi
sin
(
i+ 1

2

)
x

2 sin x
2

∣∣∣∣∣ dx ≤ C(k + 1),

where C is a positive constant.

3 Main Results

At first, pertaining to the B̃V r,m class, r ∈ {0, 1, 2, . . . } and m ∈ {1, 2, . . . }, we can raise the following
natural question: What about inclusion of classes B̃V r,m with respect to m? The answer is given in next
simple proposition.

Proposition 1 If

∞∑
k=1

(k + 1)r|∆ak| <∞,

then

B̃V r,m ⊂ B̃V r,m+1,

for all r ∈ {0, 1, 2, . . . } and m ∈ {1, 2, . . . }.
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Proof. We have

∞∑
k=1

kr+m+1|∆bk,m+1| ≤
∞∑
k=1

kr+m+1
∣∣∣∣ ak
km+1

− ak+1
k(k + 1)m

∣∣∣∣
+

∞∑
k=1

kr+m+1
∣∣∣∣ ak+1
k(k + 1)m

− ak+1
(k + 1)m+1

∣∣∣∣
≤

∞∑
k=1

kr+m
∣∣∣∣ akkm − ak+1

(k + 1)m

∣∣∣∣+

∞∑
k=1

kr−1 |ak+1|

≤
∞∑
k=1

kr+m |∆bk,m|+
∞∑
k=1

kr−1
∞∑

j=k+1

|∆aj |

=

∞∑
k=1

kr+m |∆bk,m|+
∞∑
j=1

|∆aj |
j+1∑
k=1

kr−1

≤
∞∑
k=1

kr+m |∆bk,m|+
∞∑
j=1

(j + 1)r |∆aj | ,

which implies that B̃V r,m ⊂ B̃V r,m+1, for all r ∈ {0, 1, 2, . . . } and m ∈ {1, 2, . . . }. The proof is completed.

Theorem 6 The following relation holds true S̃r,m ⊂ C̃r,m ∩ B̃V r,m for each r ∈ {0, 1, 2, . . . } and m ∈
{1, 2, . . . }.

Proof. Let (ak) ∈ S̃r,m, (r = 0, 1, 2, . . . ; m = 1, 2, . . . ). Then there exists a non-increasing sequence (Bk) of
numbers so that, |∆bk,m| ≤ Bk, ∀k ∈ {1, 2, . . . }, and

∑∞
k=1 k

r+mBk <∞. Whence, we clearly have

∞∑
k=1

kr+m|∆bk,m| ≤
∞∑
k=1

kr+mBk <∞, (1)

which means that S̃r,m ⊂ B̃V r,m for each r ∈ {0, 1, 2, . . . } and m ∈ {1, 2, . . . }. So, it remains to prove the
inclusion S̃r,m ⊂ C̃r,m for each r ∈ {0, 1, 2, . . . } and m ∈ {1, 2, . . . }. Let (ak) ∈ S̃r,m. Then applying Abel’s
transformation we get

∫ π

0

∣∣∣∣∣
∞∑
k=n

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx ≤ lim
s→∞

[
s−1∑
k=n

∆Bk

∫ π

0

∣∣∣∣∣∣
k∑
j=0

∆bj,m
Bj

D
(r+m)
j (x)

∣∣∣∣∣∣ dx
+Bs

∫ π

0

∣∣∣∣∣∣
s∑
j=0

∆bj,m
Bj

D
(r+m)
j (x)

∣∣∣∣∣∣ dx
+Bn

∫ π

0

∣∣∣∣∣∣
n−1∑
j=0

∆bj,m
Bj

D
(r+m)
j (x)

∣∣∣∣∣∣ dx
]
.
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Applying, in last inequality, the well-known Bernstein’s inequality and Lemma 5, we obtain∫ π

0

∣∣∣∣∣
∞∑
k=n

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx ≤ lim
s→∞

[
s−1∑
k=n

kr+m∆Bk

∫ π

0

∣∣∣∣∣∣
k∑
j=0

∆bj,m
Bj

Dj(x)

∣∣∣∣∣∣ dx
+sr+mBs

∫ π

0

∣∣∣∣∣∣
s∑
j=0

∆bj,m
Bj

Dj(x)

∣∣∣∣∣∣ dx
+(n− 1)r+mBn

∫ π

0

∣∣∣∣∣∣
n−1∑
j=0

∆bj,m
Bj

Dj(x)

∣∣∣∣∣∣ dx
]

≤ C lim
s→∞

[
s−1∑
k=n

(k + 1)r+m+1∆Bk

+sr+m+1Bs + nr+m+1Bn

]
.

Since (Bk) is a non-increasing sequence and
∑∞
k=1 k

r+mBk < ∞, we see that kr+m+1Bk → 0 as k → ∞,
and thus ∫ π

0

∣∣∣∣∣
∞∑
k=n

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx ≤ C

[ ∞∑
k=n

(k + 1)r+m+1∆Bk + nr+m+1Bn

]

≤ C

{ ∞∑
k=n

Bk
[
(k + 1)r+m+1 − kr+m+1

]
+ nr+m+1Bn

}

≤ C(r,m)

{ ∞∑
k=n

kr+mBk + nr+m+1Bn

}
≤ ε

2
,

for n large enough, say s ≥ n > n0.
Finally, using the fact that∣∣∣D(r+m)

k (x)
∣∣∣ =

∣∣∣∣∣∣
k∑
j=1

j(r+m) sin

(
jx+

(r +m)π

2

)∣∣∣∣∣∣ ≤ kr+m+1,
for any 1 ≤ n ≤ s, we can write as follows∫ δ

0

∣∣∣∣∣
s∑

k=n

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx ≤
∫ δ

0

∣∣∣∣∣
n0∑
k=n

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx
+

∫ π

0

∣∣∣∣∣
s∑

k=n0+1

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx
≤ δ

n0∑
k=n

kr+m+1 |∆bk,m|

+

∫ π

0

∣∣∣∣∣
∞∑

k=n0+1

∆bk,mD
(r+m)
k (x)

∣∣∣∣∣ dx
≤ ε

2
+
ε

2
= ε,

for δ small enough. This means that S̃r,m ⊂ C̃r,m for each r ∈ {0, 1, 2, . . . } and m ∈ {1, 2, . . . }. The proof
is completed.
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Remark 6 For m = 1 Theorem 6 reduces to Theorem 1.

Theorem 7 Let (an) ∈ C̃m ∩ B̃V m for each m ∈ {1, 2, . . . }, and limn→∞ an log n = 0. Then

lim
n→∞

‖zsn,m − g‖ = 0.

Proof. We have

zsn,m(x) =

n∑
k=1

 ak+1
(k + 1)m

+

n∑
j=k

∆2

(
aj
jm

) km sin kx

=

n∑
k=1

ak sin kx+

[
an+2

(n+ 2)m
− an+1

(n+ 1)m

] n∑
k=1

km sin kx

= Ssn(x)−∆ (bn+1,m)

n∑
k=1

km sin kx (2)

After some transformation we have found that

Ssn(x) =


−
∑n
k=1 bk,m(cos kx)(m), if m = 4p− 3;

−
∑n
k=1 bk,m(sin kx)(m), if m = 4p− 2;

+
∑n
k=1 bk,m(cos kx)(m), if m = 4p− 1;

+
∑n
k=1 bk,m(sin kx)(m), if m = 4p,

(3)

and

n∑
k=1

km sin kx =


−D(m)

n (x), if m = 4p− 3;

−D̃(m)
n (x), if m = 4p− 2;

+D
(m)
n (x), if m = 4p− 1;

+D̃
(m)
n (x), if m = 4p,

(4)

where in all cases p ∈ N. Combining (2) along with (3) and (4) we obtain

zsn,m(x) =



−
∑n
k=1 bk,m(cos kx)(m) + ∆ (bn+1,m)D

(m)
n (x), if m = 4p− 3;

−
∑n
k=1 bk,m(sin kx)(m) + ∆ (bn+1,m) D̃

(m)
n (x), if m = 4p− 2;

+
∑n
k=1 bk,m(cos kx)(m) −∆ (bn+1,m)D

(m)
n (x), if m = 4p− 1;

+
∑n
k=1 bk,m(sin kx)(m) −∆ (bn+1,m) D̃

(m)
n (x), if m = 4p,

(5)

for all p ∈ N. The use of Abel’s transformation in (5), implies

zsn,m(x) =



−
∑n
k=1 ∆bk,mD

(m)
k (x)

−bn,mD(m)
n (x) + ∆ (bn+1,m)D

(m)
n (x), if m = 4p− 3;

−
∑n
k=1 ∆bk,mD̃

(m)
k (x)

−bn,mD̃(m)
n (x) + ∆ (bn+1,m) D̃

(m)
n (x), if m = 4p− 2;∑n

k=1 ∆bk,mD
(m)
k (x)

+bn,mD
(m)
n (x)−∆ (bn+1,m)D

(m)
n (x), if m = 4p− 1;∑n

k=1 ∆bk,mD̃
(m)
k (x)

+bn,mD̃
(m)
n (x)−∆ (bn+1,m) D̃

(m)
n (x), if m = 4p,

(6)
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for all p ∈ N. Applying Abel’s transformation in (3), we also get

Ssn(x) =


−
∑n
k=1 ∆bk,mD

(m)
k (x)− bn,mD(m)

n (x), if m = 4p− 3;

−
∑n
k=1 ∆bk,mD̃

(m)
k (x)− bn,mD̃(m)

n (x), if m = 4p− 2;

+
∑n
k=1 ∆bk,mD

(m)
k (x) + bn,mD

(m)
n (x), if m = 4p− 1;

+
∑n
k=1 ∆bk,mD̃

(m)
k (x) + bn,mD̃

(m)
n (x), if m = 4p,

(7)

for all p ∈ N. Using Lemmas 1 and 2, in (6) and (7), we have that

|zsn,m(x)| ≤ O
(
x−1

)( n∑
k=1

km|∆bk,m|+ |an|+ |an+1|+ |an+2|
)
, (8)

and

|Ssn(x)| ≤ O
(
x−1

)( n∑
k=1

km|∆bk,m|+ |an|
)
, (9)

for all m ∈ N.
Whence, letting n → ∞ in (8) and (9), and taking into account that (ak) ∈ B̃V r,m, m = 1, 2, . . . ), we

conclude that series
∑∞
k=1 ∆bk,mD

(m)
k (x) and

∑∞
k=1 ∆bk,mD̃

(m)
k (x) converge absolutely, and

lim
n→∞

zsn,m(x) = lim
n→∞

Ssn(x) = g(x)

exists for all x ∈ [ε, π], where ε > 0 as small as. Now, we have

g(x)− zsn,m(x) =



−
∑∞
k=n+1 ∆bk,mD

(m)
k (x)

+bn,mD
(m)
n (x)−∆ (bn+1,m)D

(m)
n (x), if m = 4p− 3;

−
∑∞
k=n+1 ∆bk,mD̃

(m)
k (x)

+bn,mD̃
(m)
n (x)−∆ (bn+1,m) D̃

(m)
n (x), if m = 4p− 2;

+
∑∞
k=n+1 ∆bk,mD

(m)
k (x)

−bn,mD(m)
n (x) + ∆ (bn+1,m)D

(m)
n (x), if m = 4p− 1;

+
∑∞
k=n+1 ∆bk,mD̃

(m)
k (x)

−bn,mD̃(m)
n (x) + ∆ (bn+1,m) D̃

(m)
n (x), if m = 4p,

(10)

for all p ∈ N. Thus, based on (10), we have

‖g − zsn,m‖ ≤



∫ π
0

∣∣∣∑∞k=n+1 ∆bk,mD
(m)
k (x)

∣∣∣ dx
+|bn,m|

∫ π
0

∣∣∣D(m)
n (x)

∣∣∣ dx
+|∆ (bn+1,m) |

∫ π
0

∣∣∣D(m)
n (x)

∣∣∣ dx, if m = 4p− 3 ∨m = 4p− 1;∫ π
0

∣∣∣∑∞k=n+1 ∆bk,mD̃
(m)
k (x)

∣∣∣ dx
+|bn,m|

∫ π
0

∣∣∣D̃(m)
n (x)

∣∣∣ dx
+|∆ (bn+1,m) |

∫ π
0

∣∣∣D̃(m)
n (x)

∣∣∣ dx, if m = 4p− 2 ∨m = 4p,

(11)

for all p ∈ N. Let us estimate the terms in right hand side of (11). Namely, since (an) ∈ C̃m ∩ B̃V m for each
m ∈ {1, 2, . . . }, then for ε > 0 there exists δ > 0, such that∫ δ

0

∣∣∣∣∣
∞∑

k=n+1

∆bk,mD
(m)
k (x)

∣∣∣∣∣ dx ≤ ε

2
,
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for all n ≥ 0. Consequently, for m = 4p− 3 ∨m = 4p− 1 and Bernstein’s inequality we get

∫ π

0

∣∣∣∣∣
∞∑

k=n+1

∆bk,mD
(m)
k (x)

∣∣∣∣∣ dx =

∫ δ

0

∣∣∣∣∣
∞∑

k=n+1

∆bk,mD
(m)
k (x)

∣∣∣∣∣ dx (12)

+

∫ π

δ

∣∣∣∣∣
∞∑

k=n+1

∆bk,mD
(m)
k (x)

∣∣∣∣∣ dx
≤ ε

2
+

∞∑
k=n+1

|∆bk,m|
∫ π

δ

∣∣∣D(m)
k (x)

∣∣∣ dx
≤ ε

2
+

∞∑
k=n+1

km−1|∆bk,m|
∫ π

δ

|D′k(x)| dx

≤ ε

2
+ C

∞∑
k=n+1

km|∆bk,m|
∫ π

δ

dx

x2

≤ ε

2
+
C

δ

∞∑
k=n+1

km|∆bk,m|

<
ε

2
+
ε

2
= ε, (13)

and in a similar way, for m = 4p− 2 ∨m = 4p,

∫ π

0

∣∣∣∣∣
∞∑

k=n+1

∆bk,mD̃
(m)
k (x)

∣∣∣∣∣ dx < ε. (14)

The other terms also tend to zero, since they can be estimated as an log n (using Lemma 3). Using these
facts, (11), (12) and (14), we have proved that

lim
n→∞

‖zsn,m − g‖ = 0.

The proof is completed.

Remark 7 For m = 1 Theorem 7 reduces to Theorem 2.

Theorem 8 Let (an) ∈ C̃m ∩ B̃V m for each m ∈ {1, 2, . . . }, and limn→∞ an log n = 0. Then

lim
n→∞

‖Ssn − g‖ = 0.

Proof. Using Theorem 7, equalities (6), and equalities (7), we get

‖Ssn − g‖ = ‖Ssn − zsn,m + zsn,m − g‖
≤ ‖zsn,m − Ssn‖+ ‖zsn,m − g‖

≤
{
|∆ (bn+1,m) |

∫ π
0

∣∣D(m)
n (x)

∣∣dx+ o(1), if m = 4p− 3 ∧m = 4p− 1;

|∆ (bn+1,m) |
∫ π
0

∣∣D̃(m)
n (x)

∣∣dx+ o(1), if m = 4p− 2 ∧m = 4p;
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for all p ∈ N. Now applying Lemma 3, Bernstein’s inequality, Lemma 4, and conditions of our theorem, we
obtain

‖Ssn − g‖

≤


C(n+ 1)m|∆ (bn+1,m) | log(n+ 1) + o(1), if m = 4p− 3 ∧m = 4p− 1;

(n+ 1)|∆ (bn+1,m) |
×
(∫ π

0

∣∣D(m−1)
n (x)

∣∣dx+
∫ π
0

∣∣F (m−1)n (x)
∣∣dx)+ o(1), if m = 4p− 2 ∧m = 4p;

≤


C(n+ 1)m|∆ (bn+1,m) |

∫ π
0

∣∣Dn(x)
∣∣dx+ o(1), if m = 4p− 3 ∧m = 4p− 1;

(n+ 1)m|∆ (bn+1,m)

×|
(∫ π
0

∣∣Dn(x)
∣∣dx+

∫ π
0

∣∣Fn(x)
∣∣dx)+ o(1), if m = 4p− 2 ∧m = 4p;

= O(an+1 log(n+ 1) + an+2 log(n+ 2) + o(1)) = o(1) as n→∞.

The proof is completed.

Remark 8 For m = 1 Theorem 8 reduces to Theorem 3.

The following statements also hold true.

Theorem 9 Let (an) ∈ C̃r,m ∩ B̃V r,m, r ∈ {0, 1, . . . }, m ∈ {1, 2, . . . }, and lim→∞ nran log n = 0. Then

lim
n→∞

‖[zsn,m](r) − g(r)‖ = 0.

Proof. The proof is similar to the proof of Theorem 7. Therefore, we omit it.

Remark 9 For r = 0, Theroem 8 reduces to Theorem 4

Theorem 10 Let (an) ∈ C̃r,m ∩ B̃V r,m, r ∈ {0, 1, . . . }, m ∈ {1, 2, . . . }, and limn→∞ nran log n = 0. Then

lim
n→∞

‖[Ssn](r) − g(r)‖ = 0.

Proof. The proof is similar to the proof of Theorem 8. Therefore, we omit it.

Remark 10 For r = 0, Theorem 10 reduces to Theorem 5.

Using Theorems 9 and 10, we obtain next consequence.

Corollary 2 Let (an) ∈ S̃r,m, r ∈ {0, 1, . . . }, m ∈ {1, 2, . . . }, and limn→∞ nran log n = 0. Then

(i) limn→∞ ‖[zsn,m](r) − g(r)‖ = 0.

(ii) limn→∞ ‖[Ssn](r) − g(r)‖ = 0.

For m = 1 we have:

Corollary 3 ([2]) Let (an) ∈ S̃r, r ∈ {0, 1, . . . }, and limn→∞ nran log n = 0. Then

(i) limn→∞ ‖[zsn](r) − g(r)‖ = 0.

(ii) limn→∞ ‖[Ssn](r) − g(r)‖ = 0.
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