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Sharp Bounds For The Arc Lemniscate Sine Function®
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Abstract
The arc lemniscate sine function is given by
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arcsl = dt.
resl(e) /0 Ji g

In 2017, Mahmoud and Agarwal presented bounds for arcsl in terms of the Lerch zeta function
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They proved
%$'I’(w4,3/2, 1/4) < arcsl(z) < iw@(m473/2, 1/4)  (0<z<1).

We show that the factor 1/4 can be replaced by arcsl(1)/®(1,3/2,1/4) = 0.12836.... This constant is
best possible.

1 Introduction and Statement of Result

Let F; and F5 be two points in the plane, with distance F1F> = 2c¢. The lemniscate of Bernoulli is the
locus of all points P such that PF, - PF, = ¢%. It is named after the Swiss mathematician Jakob Bernoulli
(1655-1705) who was the first who studied the lemniscate in detail. The arc length of the lemniscate curve
L is given by the formula

L = 4V/2carcsl(1),

where arcsl is the so-called arc lemniscate sine function, defined by

¢ 1
= —dt -1<z<1).
)= e Asesy
Many interesting information on this subject including historical comments can be found in Ayoub [1] and
Langer & Singer [3].
This note is inspired by a remarkable paper published by Mahmoud and Agarwal [4] in 2017. Among
others, the authors offered upper and lower bounds for arcsl in terms of the Lerch zeta function

arcsl(z

(o) = 3
®(z,s,a) = —_—.
pors (k+a)®
They proved the elegant double-inequality
1 1
gx@(m4,3/2, 1/4) < arcsl(z) < Zx@(x473/2,1/4) 0<z<1). (1)

It is natural to ask whether the constant factors 1/8 and 1/4 are sharp. In this note, we refine the upper
bound given in (1). Indeed, the constant 1/4 can be replaced by a smaller number as the following theorem
reveals.
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Theorem 1 For all x € (0,1) we have
ax®(z?,3/2,1/4) < arcsl(z) < Bz ®(2?,3/2,1/4) (2)

with the best possible constant factors

1 (1
a=c and = (I)(am( ) 0.12836.... (3)

1,3/2,1/4)

In particular, we obtain that for all z € (0,1) the ratio arcsl(z)/(z®(z*,3/2,1/4)) lies between 1/8 and
1/7. The constant 8 can be expressed in terms of the Euler beta function and the Hurwitz zeta function,
respectively, which are given by

1 o0
1
B(x,y) = / t* 11 —t)v"dt and ((s,a) = ®(1,s,a) = g —_—
0 = (k+a)®
The substitution t = s'/* gives

1 1
1 1 - 1

arcsl(1) = | ——dt == [ s 341 —s)"Y2ds = =B(1/4,1/2).

W= [ =g [ - 1B(1/4,1/2)
Thus,

g= BU/AL2) L(1/4)?
40(3/2,1/4)  4v2m((3/2,1/4)°
where I' denotes the classical gamma function.
Schneider [7] proved in 1937 that the lemniscate constant arcsl(1) is a transcendental number; see also

Todd [8].

2 Proof of Theorem 1

The following lemma plays an important role in the proof of our theorem. It is known in the literature as
the monotone form of 'Hopital’s rule; see Hardy et al. [2, p. 106] and Pinelis [5, 6].

Lemma 1 Let u,v : [a,b] — R be continuous functions. Moreover, let u,v be differentiable on (a,b) and
v #0 on (a,b). If /v is strictly increasing on (a,b), then

u(z) — u(a)

(a)
is strictly increasing on (a,b).

Proof of Theorem 1. Let
arcsl(x)

IR TERTE

In order to prove that F' is strictly increasing on (0, 1) we apply the lemma with
u(z) = arcsl(z) and wv(z) = 2®(x*,3/2,1/4).
Let « € (0,1). We have

1

o Ak
w(0)=v(0)=0 and u'(z)= WinrT v (z) = SkZ:OT—}—l'
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It follows that

u'(z) 1
= 4
v'(x)  8h(x?) )
with
o k
s
h(s) =1 - —
(#) ° ;J Vi +1
Then,
, =\ ksl = 5P = k
2v1—sh'(s) =2(1—s — = ags”,
() =2( )kzl VIk+1 &= Vit 1 kzzo g
where

2k + 2 2k +1 -1

T VAk+5 VAE+1  (2k+2)(A4k+ VA + 5+ (2k + 1)(4k +5)VAE + T

Since ar < 0 for K = 0,1,2,..., we conclude that h'(s) < 0 for s € (0,1). Thus, h is strictly decreasing on
(0,1). Using (4) yields that u’/v’ is strictly increasing on (0, 1), so that the lemma reveals that F = u/v is
strictly increasing on (0,1). It follows that

ag

F(0) < F(z) < F(1) for z € (0,1). (5)
We have 1)
arcs
PO =532, 171 ©)
Since () p
. arcsl(z)  d _ _
ill% e dxarcsl(x) . 1 and @(0,3/2,1/4) =8,
we obtain )
F(0) = 3 (7)

From (5), (6) and (7) we conclude that (2) is valid and that the constant factors « and § as given in (3) are
best possible. This completes the proof of the theorem. m
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