Sharp Bounds For The Arc Lemniscate Sine Function*

Horst Alzer ${ }^{\dagger}$, Man Kam Kwong ${ }^{\ddagger}$
Received 2 March 2019

Abstract
The arc lemniscate sine function is given by

$$
\operatorname{arcsl}(x)=\int_{0}^{x} \frac{1}{\sqrt{1-t^{4}}} d t
$$

In 2017, Mahmoud and Agarwal presented bounds for arcsl in terms of the Lerch zeta function

$$
\Phi(z, s, a)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+a)^{s}}
$$

They proved

$$
\frac{1}{8} x \Phi\left(x^{4}, 3 / 2,1 / 4\right)<\operatorname{arcsl}(x)<\frac{1}{4} x \Phi\left(x^{4}, 3 / 2,1 / 4\right) \quad(0<x<1)
$$

We show that the factor $1 / 4$ can be replaced by $\operatorname{arcsl}(1) / \Phi(1,3 / 2,1 / 4)=0.12836 \ldots$. This constant is best possible.

1 Introduction and Statement of Result

Let F_{1} and F_{2} be two points in the plane, with distance $F_{1} F_{2}=2 c$. The lemniscate of Bernoulli is the locus of all points P such that $P F_{1} \cdot P F_{2}=c^{2}$. It is named after the Swiss mathematician Jakob Bernoulli (1655-1705) who was the first who studied the lemniscate in detail. The arc length of the lemniscate curve L is given by the formula

$$
L=4 \sqrt{2} c \operatorname{arcsl}(1)
$$

where arcsl is the so-called arc lemniscate sine function, defined by

$$
\operatorname{arcsl}(x)=\int_{0}^{x} \frac{1}{\sqrt{1-t^{4}}} d t \quad(-1 \leq x \leq 1)
$$

Many interesting information on this subject including historical comments can be found in Ayoub [1] and Langer \& Singer [3].

This note is inspired by a remarkable paper published by Mahmoud and Agarwal [4] in 2017. Among others, the authors offered upper and lower bounds for arcsl in terms of the Lerch zeta function

$$
\Phi(z, s, a)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+a)^{s}}
$$

They proved the elegant double-inequality

$$
\begin{equation*}
\frac{1}{8} x \Phi\left(x^{4}, 3 / 2,1 / 4\right)<\operatorname{arcsl}(x)<\frac{1}{4} x \Phi\left(x^{4}, 3 / 2,1 / 4\right) \quad(0<x<1) \tag{1}
\end{equation*}
$$

It is natural to ask whether the constant factors $1 / 8$ and $1 / 4$ are sharp. In this note, we refine the upper bound given in (1). Indeed, the constant $1 / 4$ can be replaced by a smaller number as the following theorem reveals.

[^0]Theorem 1 For all $x \in(0,1)$ we have

$$
\begin{equation*}
\alpha x \Phi\left(x^{4}, 3 / 2,1 / 4\right)<\operatorname{arcsl}(x)<\beta x \Phi\left(x^{4}, 3 / 2,1 / 4\right) \tag{2}
\end{equation*}
$$

with the best possible constant factors

$$
\begin{equation*}
\alpha=\frac{1}{8} \quad \text { and } \quad \beta=\frac{\operatorname{arcsl}(1)}{\Phi(1,3 / 2,1 / 4)}=0.12836 \ldots \tag{3}
\end{equation*}
$$

In particular, we obtain that for all $x \in(0,1)$ the ratio $\operatorname{arcsl}(x) /\left(x \Phi\left(x^{4}, 3 / 2,1 / 4\right)\right)$ lies between $1 / 8$ and $1 / 7$. The constant β can be expressed in terms of the Euler beta function and the Hurwitz zeta function, respectively, which are given by

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \quad \text { and } \quad \zeta(s, a)=\Phi(1, s, a)=\sum_{k=0}^{\infty} \frac{1}{(k+a)^{s}}
$$

The substitution $t=s^{1 / 4}$ gives

$$
\operatorname{arcsl}(1)=\int_{0}^{1} \frac{1}{\sqrt{1-t^{4}}} d t=\frac{1}{4} \int_{0}^{1} s^{-3 / 4}(1-s)^{-1 / 2} d s=\frac{1}{4} B(1 / 4,1 / 2) .
$$

Thus,

$$
\beta=\frac{B(1 / 4,1 / 2)}{4 \zeta(3 / 2,1 / 4)}=\frac{\Gamma(1 / 4)^{2}}{4 \sqrt{2 \pi} \zeta(3 / 2,1 / 4)}
$$

where Γ denotes the classical gamma function.
Schneider [7] proved in 1937 that the lemniscate constant $\operatorname{arcsl}(1)$ is a transcendental number; see also Todd [8].

2 Proof of Theorem 1

The following lemma plays an important role in the proof of our theorem. It is known in the literature as the monotone form of l'Hopital's rule; see Hardy et al. [2, p. 106] and Pinelis [5, 6].

Lemma 1 Let $u, v:[a, b] \rightarrow R$ be continuous functions. Moreover, let u, v be differentiable on (a, b) and $v^{\prime} \neq 0$ on (a, b). If u^{\prime} / v^{\prime} is strictly increasing on (a, b), then

$$
x \mapsto \frac{u(x)-u(a)}{v(x)-v(a)}
$$

is strictly increasing on (a, b).
Proof of Theorem 1. Let

$$
F(x)=\frac{\operatorname{arcsl}(x)}{x \Phi\left(x^{4}, 3 / 2,1 / 4\right)}
$$

In order to prove that F is strictly increasing on $(0,1)$ we apply the lemma with

$$
u(x)=\operatorname{arcsl}(x) \quad \text { and } \quad v(x)=x \Phi\left(x^{4}, 3 / 2,1 / 4\right)
$$

Let $x \in(0,1)$. We have

$$
u(0)=v(0)=0 \quad \text { and } \quad u^{\prime}(x)=\frac{1}{\sqrt{1-x^{4}}}, \quad v^{\prime}(x)=8 \sum_{k=0}^{\infty} \frac{x^{4 k}}{\sqrt{4 k+1}}
$$

It follows that

$$
\begin{equation*}
\frac{u^{\prime}(x)}{v^{\prime}(x)}=\frac{1}{8 h\left(x^{4}\right)} \tag{4}
\end{equation*}
$$

with

$$
h(s)=\sqrt{1-s} \sum_{k=0}^{\infty} \frac{s^{k}}{\sqrt{4 k+1}} .
$$

Then,

$$
2 \sqrt{1-s} h^{\prime}(s)=2(1-s) \sum_{k=1}^{\infty} \frac{k s^{k-1}}{\sqrt{4 k+1}}-\sum_{k=0}^{\infty} \frac{s^{k}}{\sqrt{4 k+1}}=\sum_{k=0}^{\infty} a_{k} s^{k}
$$

where

$$
a_{k}=\frac{2 k+2}{\sqrt{4 k+5}}-\frac{2 k+1}{\sqrt{4 k+1}}=\frac{-1}{(2 k+2)(4 k+1) \sqrt{4 k+5}+(2 k+1)(4 k+5) \sqrt{4 k+1}} .
$$

Since $a_{k}<0$ for $k=0,1,2, \ldots$, we conclude that $h^{\prime}(s)<0$ for $s \in(0,1)$. Thus, h is strictly decreasing on $(0,1)$. Using (4) yields that u^{\prime} / v^{\prime} is strictly increasing on $(0,1)$, so that the lemma reveals that $F=u / v$ is strictly increasing on $(0,1)$. It follows that

$$
\begin{equation*}
F(0)<F(x)<F(1) \quad \text { for } \quad x \in(0,1) \tag{5}
\end{equation*}
$$

We have

$$
\begin{equation*}
F(1)=\frac{\operatorname{arcsl}(1)}{\Phi(1,3 / 2,1 / 4)} \tag{6}
\end{equation*}
$$

Since

$$
\lim _{x \rightarrow 0} \frac{\operatorname{arcsl}(x)}{x}=\left.\frac{d}{d x} \operatorname{arcsl}(x)\right|_{x=0}=1 \quad \text { and } \quad \Phi(0,3 / 2,1 / 4)=8
$$

we obtain

$$
\begin{equation*}
F(0)=\frac{1}{8} \tag{7}
\end{equation*}
$$

From (5), (6) and (7) we conclude that (2) is valid and that the constant factors α and β as given in (3) are best possible. This completes the proof of the theorem.

References

[1] R. Ayoub, The lemniscate and Fagnano's contributions to elliptic integrals, Arch. Hist. Exact Sci., 29(1984), 131-149.
[2] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Camb. Univ. Press, Cambridge, 1952.
[3] J. C. Langer and D. A. Singer, Reflections on the lemniscate of Bernoulli: The forty-eight faces of a mathematical gem, Milan J. Math., 78(2010), 643-682.
[4] M. Mahmoud and R. P. Agarwal, On some bounds of Gauss arc lemniscate sine and tangent functions, J. Inequal. Spec. Func., 8(2017), 46-58.
[5] I. Pinelis, L'Hospital type rules for monotonicity, with applications, JIPAM, J. Inequal. Pure Appl. Math., 3(2002), Article 5, 5 pp.
[6] I. Pinelis, L'Hospital type rules for monotonicity: applications to probability inequalities for sums of bounded random variables, JIPAM. J. Inequal. Pure Appl. Math., 3(2002), Article 7, 9 pp.
[7] T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann., 113(1937), 1-13.
[8] J. Todd, The lemniscate constants, Collection of articles honoring Alston S. Householder. Comm. ACM, 18(1975), 14-19.

[^0]: *Mathematics Subject Classifications: 11M35, 26D07, 33B15, 33E20.
 ${ }^{\dagger}$ Morsbacher Straße 10, 51545 Waldbröl, Germany, email: h. alzer@gmx.de
 ${ }^{\ddagger}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Hong Kong, email: mankwong@connect.polyu.hk

