On A General Huygens-Wilker Inequality*

Antoine Mhanna ${ }^{\dagger}$

Received 28 Feburary 2019

Abstract

This note will present an extension of a general Wilker type inequality. The proofs rely basically on iteration of derivations for real functions.

1 Introduction

We set

$$
f(x):=a\left(\frac{x}{\sin (x)}\right)^{m}+b\left(\frac{x}{\tan (x)}\right)^{n}
$$

for any $x \in] 0, \frac{\pi}{2}[$ where a and b are two positive real numbers, m and $n \neq 0$. The inequality $f(x)>a+b$ for $a=2, b=1, m=-1$ and $n=-1$ is known as Huygens inequality and for $a=b=1, m=-2, n=-1$ we obtain Wilker's inequality $([2,4,5])$. These and more related inequalities were extensively studied, reproved and generalized see $[9,3,1,8,10,6,7]$.

Our main focus is on the general inequality $f(x)>a+b$ where it is proved that $f(x)$ is strictly increasing on $] 0, \frac{\pi}{2}$ [under some conditions on the parameters a, b, m and n. Inverse inequality cases of $f(x)<a+b$ are also derived.

Lemma 1 The derivative $f^{\prime}(x)$ is equal to:

$$
P(x)\left[a m(\sin (x)-x \cos (x))-b n\left(\frac{x}{\sin (x)}\right)^{n-m} \cos (x)^{n-1}(x-\cos (x) \sin (x))\right]
$$

where $P(x)=\frac{1}{\sin (x) x \cos (x)^{2}}\left(\frac{x}{\sin (x)}\right)^{m}$ and $f^{\prime}(x)=0$ on $] 0, \frac{\pi}{2}[$ if and only if:
1.

$$
\begin{equation*}
\frac{a m}{b n}=\left(\frac{x}{\sin (x)}\right)^{n-m} \cos (x)^{n-1}\left(\frac{x-\cos (x) \sin (x)}{\sin (x)-x \cos (x)}\right)=L(x), \tag{1}
\end{equation*}
$$

2.

$$
\begin{equation*}
\frac{a m}{b n}=\left(\frac{x}{\tan (x)}\right)^{n-1}\left(\frac{x}{\sin (x)}\right)^{1-m}\left(\frac{x-\cos (x) \sin (x)}{\sin (x)-x \cos (x)}\right)=L(x), \tag{2}
\end{equation*}
$$

3.

$$
\begin{equation*}
\frac{a m}{b n}=\left(\frac{x}{\sin (x)}\right)^{n-m} \cos (x)^{n}\left(\frac{\frac{x}{\cos (x)}-\sin (x)}{\sin (x)-x \cos (x)}\right)=H(x), \tag{3}
\end{equation*}
$$

4.

$$
\begin{equation*}
\frac{a m}{b n}=\left(\frac{x}{\tan (x)}\right)^{n}\left(\frac{\sin (x)}{x}\right)^{m}\left(\frac{\frac{x}{\cos (x)}-\sin (x)}{\sin (x)-x \cos (x)}\right)=H(x) . \tag{4}
\end{equation*}
$$

[^0]Of course the four expressions are all equivalent but it is mandatory to separate them to conclude.
It is worth mentioning that when $0<n<1, f(x)$ isn't an increasing function on $] 0, \frac{\pi}{2}$ [as it can be shown that $f(x)$ is at least decreasing on $] \xi, \frac{\pi}{2}[$ for some ξ (from Lemma 1). However with the boundary condition $a\left(\left(\frac{\pi}{2}\right)^{m}-1\right) \geq b$ added to $a m \geq 2 b n$ the inequality $f(x)>a+b$ on $] 0, \frac{\pi}{2}[$ seems to hold for any m and n of same sign. In fact with $a m \geq 2 b n>0$ studying the case $a m=2 b n$ is sufficient and for $a=b$ the inequality is already proven in [11]. Some special cases for particular values of a, b, m and n are proved among others in [12] and [13].

2 Main Results

Before stating the main theorem we have the following:
Lemma 2 The function $D(x):=\frac{x-\cos (x) \sin (x)}{\sin (x)-x \cos (x)}$ is strictly decreasing on $] 0, \frac{\pi}{2}[$.
Proof. First by applying a succession of Hospital's rule one can show that

$$
\lim _{x \rightarrow 0} D(x)=2 \text { and } D^{\prime}(x)=\frac{-\sin (x)\left(-2+x^{2}+2 \cos (x)^{2}+\sin (x) x \cos (x)\right)}{(\sin (x)-x \cos (x))^{2}}
$$

Then

$$
\left.S(x):=-2+x^{2}+2 \cos (x)^{2}+\sin (x) x \cos (x)>0 \text { for } x \in\right] 0, \frac{\pi}{2}[
$$

since $S(0)=S^{\prime}(0)=S^{\prime \prime}(0)=S^{\prime \prime \prime}(0)=0$ and $S^{\prime \prime \prime}(x)=2(\sin (2 x)-2 x \cos (2 x))>0$ on $] 0, \frac{\pi}{2}[$.
Lemma 3 The function $I(x):=\frac{\frac{x}{\cos (x)}-\sin (x)}{\sin (x)-x \cos (x)}$ is strictly increasing on $] 0, \frac{\pi}{2}[$.
Proof. Similarly to the precedent proof we have $\lim _{x \rightarrow 0} I(x)=2$ and

$$
I^{\prime}(x)=\frac{-\sin (x)\left(\cos (x)^{3}-\cos (x)+2 x^{2} \cos (x)-x \sin (x)\right)}{\cos (x)^{2}(\sin (x)-x \cos (x))^{2}}
$$

If $C(x):=\cos (x)^{3}-\cos (x)+2 x^{2} \cos (x)-x \sin (x)$, then we need to show that $x \tan (x)+1-\cos (x)^{2}-2 x^{2} \geq 0$ for all $x \in] 0, \frac{\pi}{2}\left[\right.$. Set $R(x):=x \tan (x)+1-\cos (x)^{2}-2 x^{2}, R(0)=R^{\prime}(0)=R^{\prime \prime}(0)=0$, upon computing $R^{(3)}(x)$ we get $R^{(3)}(x)>0$ on $] 0, \frac{\pi}{2}[$ since

$$
3 \tan (x)+3 x \tan (x)^{2}+x>3 \cos (x)^{3} \sin (x)+\cos (x)^{3} \sin (x)
$$

and the result follows.
Theorem 1 Let $a \geq 0$ and $b \geq 0$. If $a m \geq 2 b n$, m and n are of same sign not equal to zero and $0>$ $\min (m, n)$ or $\min (m, n) \geq 1$, then $f(x)$ is strictly increasing on $] 0, \frac{\pi}{2}[$ consequently:

$$
\left.f(x):=a\left(\frac{x}{\sin (x)}\right)^{m}+b\left(\frac{x}{\tan (x)}\right)^{n}>a+b \text { for all } x \in\right] 0, \frac{\pi}{2}[
$$

Proof. The inequality when $0>\min (m, n), m<0$ and $n<0$ was already proved in [1], $\frac{a m}{b n} \leq 2$ and $H(x)$ as in (3) or (4) is strictly increasing on $] 0, \frac{\pi}{2}\left[\right.$ with $\lim _{x \rightarrow 0} H(x)=2$, to see this from Lemma 3 consider (3) when $n \geq m$ and (4) for any $m<0, n<0$. If $\min (m, n) \geq 1, \frac{a m}{b n} \geq 2$ but $L(x)<2$ on $] 0, \frac{\pi}{2}[$ as in (1) when $m \geq n \geq 1$. Also $L(x)<2$ on $] 0, \frac{\pi}{2}[$ as in (2) when $n \geq m \geq 1$ (by Lemma 2).

Corollary 1 For the function $f(x)$ given, if $0<n<1, m \geq 1$, $a m \geq 2 b$, then $f(x)>a+b$ on $] 0, \frac{\pi}{2}[$.
Corollary 2 Let $a \geq 0$ and $b \geq 0$. If am $\leq 2 b n, a\left(\left(\frac{\pi}{2}\right)^{m}-1\right) \leq b$, m and n are of same sign not equal to zero and $0>\min (m, n)$ or $\min (m, n) \geq 1$, then

$$
\left.f(x):=a\left(\frac{x}{\sin (x)}\right)^{m}+b\left(\frac{x}{\tan (x)}\right)^{n}<a+b \text { for all } x \in\right] 0, \frac{\pi}{2}[
$$

Proof. From Lemma 1 and Theorem 1, it is easy to see that: under stated conditions f has at most one single critical point (minimum) on $] 0, \frac{\pi}{2}[$; by the regularity of f and its boundary limit values $f(x)<a+b$ for all $x \in] 0, \frac{\pi}{2}[$.

Acknowledgment. Computations were assisted through Maple software. I should thank Prof. Hari M. Srivastava and Prof Shan-H. Wu for motivation and correspondence.

References

[1] S-H. Wu , H-M. Srivastava, A weighted and exponential generalization of Wilker's inequality and its applications, Integral Transforms Spec. Funct., 18(2007), 529-535.
[2] H. L. Montgomery, J. D. Vaaler, J. Delany, D. E. Knuth, D. Vialetto, M. S. Klamkin and J. B. Wilker, Problems and solutions: elementary problems: E3301-E3306, Amer. Math. Monthly, 96(1989), 54-55.
[3] L. Zhang and L. Zhu, A new elementary proof of Wilker's inequalities, Math. Inequal. Appl., 11(2008), 149-151.
[4] B-N. Guo, B-M. Qiao, F. Qi and W. Li, On new proofs of Wilker inequalities involving trigonometric functions, Math. Inequal. Appl., 6(2003), 19-22.
[5] C. Huygens, Oeuvres Completes, Société Hollondaise des Sciences, Haga, 1888-1940.
[6] L. Zhu, Some new inequalities of the Huygens type, Comput. Math. Appl., 58(2009), 1180-1182.
[7] L. Zhu, A source of inequalities for circular functions, Comput. Math. Appl., 58(2009), 1998-2004.
[8] E. Neuman and J. Sándor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities, Math. Inequal. Appl., 13(2010), 715723.
[9] S-H. Wu, On extension and refinement of Wilker's inequality, Rocky Mount. J. Math., 39(2009), 683687.
[10] E. Neuman, Wilker and Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions, Appl. Math. Comput., 230(2014), 211-217.
[11] L. Matejíčka, Note on two new Wilker-type inequalities, Int. J. Open Probl. Comput. Sci. Math., 4(2011), 79-85.
[12] Z-H. Yang and Y-M. Chu, Sharp Wilker-type inequalities with applications, J. Inequal. Appl., 2014, 2014:166, 17 pp.
[13] H-H. Chu, Z-H. Yang, Y-M. Chu and W. Zhang, Generalized Wilker-type inequalities with two parameters, J. Inequal. Appl. 2016, Paper No. 187, 13 pp.

[^0]: *Mathematics Subject Classifications: 26D05, 26A06, 33B10.
 ${ }^{\dagger}$ Kfardebian, Lebanon

