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Abstract

In this paper, we consider Hadamard fractional differential equations on an infinite interval with the
nonlinearity depending on fractional derivatives of lower order. We establish a new compactness criterion
in a special space. We employ Schauder fixed point theorem and Banach contraction principle to show
the existence and uniqueness of solutions for the proposed equation. Finally, we provide an example to
illustrate our results.

1 Introduction

In recent years, fractional differential equations have drawn much attention due to its applications in a
number of fields such as physics, mechanics, chemistry, biology, economics, biophysics, control theory, signal
and image processing, etc [14, 15, 20].
In contrast to integer-order differential and integral operators, fractional order differential operators are

nonlocal in nature and thus provide the possibility to look into hereditary properties of several materials
and processes. The monographs [8, 10, 12, 16, 18, 21] are commonly cited of the theory of fractional
derivatives and integrals and their applications. However, it has been noticed that most of the works on this
topic is concerned with either Riemann-Liouville or Caputo type fractional differential equations. Besides
these fractional derivatives, another kind of fractional derivatives found in the literature is the Hadamard
fractional derivative [16, 19] which differs from the aforementioned derivatives in the sense that the kernel
of the integral contains logarithmic function of arbitrary exponent. It should be mensioned that most of
the results on fractional calculus are devoted to the solvability of fractional differential equations on finite
interval.
Recently, there have been few papers concerning the fractional differential equations with various bound-

ary conditions on infinite interval [6, 11, 17, 22, 24]. Boundary value problem on infinite intervals appear
often in applied mathematics and physics, such as in unsteady flow of gas through a semi-infinite porous
medium, the theory of drain flows, etc.
Zhao and Ge [24] studied the existence of unbounded solutions for the following boundary value problem

on the infinite interval 
Dαu(t) + f(t, u(t)) = 0, t ∈ (0,+∞),

u(0) = 0,

lim
t→+∞

Dαu(t) = βu(ξ),

where 1 < α < 2, Dα is the Riemann-Liouville fractional derivative and 0 < β, ξ < ∞. By means of fixed
point theorems, suffi cient conditions were obtained that guarantee the existence of solutions to the boundary
value problem.
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56 Existence and Uniqueness of Solution

Thiramanus et al. [17] investigated the existence of nonnegative multiple solutions for nonlinear Hadamard
fractional differential equations, with nonlocal fractional integral boundary conditions on an unbounded do-
main 

Dαu(t) + a(t)f(u(t)) = 0, t ∈ (1,+∞),

u(1) = 0,

Dα−1u(+∞) =
m∑
i=1

λiI
βiu(η),

where 1 < α 6 2, Dα is the Hadamard fractional derivative, η ∈ (1,∞) and Iβi is the Hadamard fractional
integral of order βi > 0, i = 1, 2, ...,m and λi ≥ 0, i = 1, 2, ...,m, are given constants. The authors applyied
Leggett-Williams fixed point theorem to obtain the existence of at least three distinct nonnegative solutions
under some conditions. Then, to prove the existence of at least one positive solution they used Guo-
Krasnoselskii fixed point theorem.
Wang, Pei and Baleanu [21] considered the following Hadamard fractional integro-differential equations

with Hadamard fractional integral boundary conditions on an infinite interval
Dαu(t) + f(t, u(t), Iβu(t)) = 0, t ∈ (1,+∞),

u(1) = u′(1) = 0,

Dα−1u(+∞) =
m∑
i=1

λiI
βiu(η), ,

where 2 < α 6 3, β > 0, η ≥ 1, f ∈ C((1,+∞)× R2,R), Dα denote the Hadamard fractional derivative, Iβ

is the Hadamard fractional integral and λi ≥ 0, i = 1, 2, ...,m, are given constants. The authors investigates
the existence of the unique solution with the monotone iterative technique. Inspired by the aforementioned
works, in this paper, we investigate the boundary value problem (BVP) on an infinite interval

Dαu(t) + f(t, u(t), Dα−2u(t), Dα−1u(t)) = 0, t ∈ J = [1,+∞),

u(1) = u′(1) = 0,

Dα−1u(+∞) = ξIβu(η),

(1)

where 2 < α 6 3, β > 0, ξ ≥ 0, η ≥ 1, Γ(α + β) 6= ξ (log η)
α+β−1

, f ∈ C(J × R3,R), Dα, Dα−1 and Dα−2

denote the Hadamard fractional derivatives, Iβ is the Hadamard fractional integral.
Under suitable growth conditions on the nonlinear term f, we show the existence and uniqueness results

of solutions for problem (1) by using Schauder’s fixed point theorem and Banach contraction principle.
The paper is organized as follows. In Section 2, we begin with some definitions and lemmas that will be

used to prove our main result. Section 3 is devoted to existence and uniqueness of a solution to boundary
value problem (1) and an example illustrating our results is presented. In Section 4, brief conclusion is given.

2 Preliminaries

In this section, we introduce some notations and definitions of fractional calculus and present preliminary
results needed in our proofs later.

Definition 1 ([13]) The Hadamard derivative of fractional order q for a Cn−1 function g : [1,∞) → R is
defined by

Dqg(t) =
1

Γ(n− q)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−q−1
g(s)

s
ds n− 1 < q < n, n = [q] + 1.

Definition 2 ([13]) The Hadamard fractional integral of order q for a continuous function g is defined as
a function

Iqg(t) =
1

Γ(q)

∫ t

1

(
log

t

s

)q−1
g(s)

s
ds, q > 0,

provided the integral exists.
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Lemma 1 ([13]) If a, α, β > 0, then(
Dα
a

(
log

t

a

)β−1
)

(x) =
Γ(β)

Γ(β − α)

(
log

x

a

)β−α−1

,

and (
Iαa

(
log

t

a

)β−1
)

(x) =
Γ(β)

Γ(β + α)

(
log

x

a

)β+α−1

.

Lemma 2 ([13]) Let q > 0 and u ∈ C[1,+∞) ∩ L1[1,+∞). Then the Hadamard fractional differential
equation

Dqu(t) = 0,

has a solution

u(t) =

n∑
k=1

ck(log t)α−k,

and the following formula holds

IqDqu(t) = u(t)−
n∑
k=1

ck(log t)α−k,

where ck ∈ R, k = 1, 2, ..., n and n− 1 < q < n.

Now, we give the exact expression of the Green’s function associated to the fractional order differential
equation with nonlocal boundary value conditions

Dαu(t) + h(t) = 0, t ∈ J,
u(1) = u′(1) = 0,

Dα−1u(+∞) = ξIβu(η).

(2)

Lemma 3 Let 2 < α ≤ 3, h ∈ C[1,+∞), 0 <
∞∫
1

h(s)dss < +∞ and

Ω = Γ(α)− ξΓ(α)

Γ(α+ β)
(log η)

α+β−1
. (3)

Then problem (2) has a solution u given by the integral equation

u(t) =

∫ ∞
1

G(t, s)h(s)
ds

s
, (4)

where

G(t, s) = g(t, s) +
ξ (log t)

α−1

ΩΓ(α+ β)
g(η, s), (5)

with

g(t, s) =
1

Γ(α)

{
(log t)

α−1 −
(
log t

s

)α−1
for 1 ≤ s ≤ t <∞,

(log t)
α−1 for 1 ≤ t ≤ s <∞,

and

g(η, s) =

{
(log η)

α+β−1 −
(
log η

s

)α+β−1
for 1 ≤ s ≤ η <∞,

(log η)
α−1 for 1 ≤ η ≤ s <∞.
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Proof. Applying the result of Lemma 2, we get the general solution of (2)

u(t) = c1(log t)α−1 + c2(log t)α−2 + c3(log t)α−3 − 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
h(s)

s
ds, (6)

where c1, c2, c3 ∈ R. Using the first boundary conditions of the problem (2) we obtain c2 = c3 = 0. Therefore,

u(t) = c1(log t)α−1 − 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
h(s)

s
ds.

In accordance with Lemma 1, we have

Dα−1u(t) = c1Γ(α)−
∫ t

1

h(s)

s
ds.

By the second condition of (2), we get

c1 =
1

Ω

(∫ ∞
1

h(s)

s
ds− ξ

Γ(α+ β)

∫ η

1

(
log

η

s

)α+β−1 h(s)

s
ds

)
,

where Ω is defined by (3).
Therefore, the unique solution of the fractional boundary value problem (2) is

u(t) =
(log t)α−1

Ω

[∫ ∞
1

h(s)

s
ds− ξ

Γ(α+ β)

∫ η

1

(
log

η

s

)α+β−1 h(s)

s
ds

]
− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
h(s)

s
ds

=
(log t)α−1Γ (α)

Γ (α)− ξΓ(α)
Γ(α+β) (log η)

α+β−1

∫ ∞
1

h(s)

Γ (α)

ds

s
− ξ(log t)α−1

ΩΓ(α+ β)

∫ η

1

(
log

η

s

)α+β−1 h(s)

s
ds

− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
h(s)

s
ds

=
(log t)α−1

(
Γ (α)− ξ Γ(α)

Γ(α+β) (log η)
α+β−1

+ ξ Γ(α)
Γ(α+β) (log η)

α+β−1
)

Γ (α)− ξ Γ(α)
Γ(α+β) (log η)

α+β−1

∫ ∞
1

h(s)

Γ (α)

ds

s

− 1

Γ(α)

∫ t

1

(
log

t

s

)α−1
h(s)

s
ds− ξ(log t)α−1

ΩΓ(α+ β)

∫ η

1

(
log

η

s

)α+β−1 h(s)

s
ds

=
1

Γ(α)

∫ t

1

(
(log t)

α−1 −
(

log
t

s

)α−1
)
h(s)

s
ds+

1

Γ(α)

∫ ∞
t

(log t)
α−1 h(s)

s
ds

+
ξ(log t)α−1

ΩΓ(α+ β)

∫ η

1

(
(log η)

α+β−1 −
(

log
η

s

)α+β−1
)
h(s)

s
ds

+
ξ(log t)α−1

ΩΓ(α+ β)

∫ ∞
η

(log η)
α+β−1 h(s)

s
ds.

=

∫ ∞
1

g(t, s)
h(s)

s
ds+

ξ (log t)
α−1

ΩΓ(α+ β)

∫ ∞
1

g(η, s)
h(s)

s
ds =

∫ ∞
1

G(t, s)h(s)
ds

s
.

The proof is completed.

Lemma 4 The Green’s function G(t, s) defined by (5) satisfies the following conditions

(A1) G(t, s) is a continuous function for (t, s) ∈ [1,+∞)× [1,+∞).
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(A2) G(t, s) ≥ 0 for all s, t ∈ [1,∞).

(A3)
G(t,s)

1+(log t)α−1 ≤
1

Γ(α) + ξg(η,s)
ΩΓ(α+β) for t, s ∈ [1,+∞).

(A4) min
η≤t≤kη

G(t,s)
1+(log t)α−1 ≥

ξ(log η)α−1g(η, s)

ΩΓ(α+ β) (1 + (log η)α−1)
for k > 1 and s ∈ [1,+∞).

Proof. It is easy to check that (A1) and (A2) hold, we only prove (A3) and (A4). To prove (A3), we have,
for s, t ∈ [1,∞),

G(t, s)

1 + (log t)α−1
=

g(t, s)

1 + (log t)α−1
+

ξ(log t)α−1g(η, s)

ΩΓ(α+ β) (1 + (log η)α−1)

≤ (log t)α−1

Γ(α) (1 + (log t)α−1)
+

ξg(η, s)

ΩΓ(α+ β)
.

(log t)α−1

1 + (log t)α−1

≤ 1

Γ(α)
+

ξg(η, s)

ΩΓ(α+ β)
.

To prove (A4), from g(t, s) ≥ 0 and g(η, s) ≥ 0, for all s, t ∈ [1,∞), for k > 1, we have

min
η≤t≤kη

G(t, s)

1 + (log t)α−1
= min

η≤t≤kη

[
g(t, s)

1 + (log t)α−1
+

ξ(log t)α−1g(η, s)

ΩΓ(α+ β) (1 + (log η)α−1)

]
≥ min

η≤t≤kη

(
g(t, s)

1 + (log t)α−1

)
+ min
η≤t≤kη

(
ξ(log t)α−1g(η, s)

ΩΓ(α+ β) (1 + (log η)α−1)

)
≥ min

η≤t≤kη

(
ξ(log t)α−1g(η, s)

ΩΓ(α+ β) (1 + (log η)α−1)

)
≥ ξ(log η)α−1g(η, s)

ΩΓ(α+ β) (1 + (log η)α−1)
, for s ∈ [1,∞).

The proof is completed.

In this paper, we will use the Banach space E defined by

E =

{
u ∈ C(J,R), sup

t∈J

(
|u(t)|

1 + (log t)α−1

)
<∞

}
,

equipped with the norm

‖u‖E = sup
t∈J

(
|u(t)|

1 + (log t)α−1

)
.

Set

F =

{
u(t) ∈ E,Dα−1u(t), Dα−2u(t) ∈ C(J,R), sup

t∈J

∣∣Dα−2u(t)
∣∣

1 + log t
< +∞, sup

t∈J

∣∣Dα−1u(t)
∣∣ < +∞

}
,

and

‖u‖F = max

{
sup
t∈J

|u(t)|
1 + (log t)α−1

, sup
t∈J

∣∣Dα−2u(t)
∣∣

1 + log t
, sup
t∈J

∣∣Dα−1u(t)
∣∣} .

Lemma 5 (F, ‖.‖F ) is a Banach space.

Proof. Let (un) be a cauchy sequence in the space F , so (un) is a Cauchy sequence in the space E.Moreover,
(Dα−1un) and (Dα−2un) converge uniformly to some v, w ∈ C(J,R) where

sup
t∈J
|v(t)| < +∞, sup

t∈J
|w(t)| < +∞.
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Define
M0

2
= sup

t∈J

|u(t)|
1 + (log t)α−1

.

Then for M0

2 > 0, ∃N > 0 such that∣∣∣∣ un(t)

1 + (log t)α−1
− u(t)

1 + (log t)α−1

∣∣∣∣ < M0, ∀t ∈ J.

Setting

Mi = sup
t∈J

|ui(t)|
1 + (log t)α−1

, i = 1, ..., N

and
M = max{Mi, i = 0, 1, ..., N},

we can arrive at
|un(t)|

1 + (log t)α−1
≤M, n = 1, 2, ....

Therefore, for any t ∈ J and 2 < α ≤ 3, we get∣∣∣∣∫ t

1

(log
t

s
)2−α[1 + (log s)α−1](

un(s)

1 + (log s)α−1
)
ds

s

∣∣∣∣
≤ M

∫ t

1

(log
t

s
)2−α[1 + (log s)α−1]

ds

s

≤ M

∫ t

1

(log t− log s)2−α[1 + (log s)α−1]
ds

s

≤ M
(log t)3−α

3− α +M(log t)2B(α, 3− α),

where B(α, 3 − α) is the beta-function. According to the uniform convergence of Dα−1un(t) and Lebesgue
dominated convergence theorem, we obtain

w(t) = lim
n→+∞

Dα−2un(t)

= lim
n→+∞

1

Γ(3− α)

(
t
d

dt

)∫ t

1

(
log

t

s

)2−α
[1 + (log s)α−1]

(
un(s)

1 + (log s)α−1

)
ds

s

=

(
t
d

dt

)
1

Γ(3− α)

∫ t

1

(
log

t

s

)2−α
[1 + (log s)α−1]

(
u(s)

1 + (log s)α−1

)
ds

s

= Dα−2u(t).

On the other hand, if α = 3, then

w(t) = lim
n→+∞

u′n(t) =
d

dt
lim

n→+∞
un(t) = u′(t).

Similary, we obtain
v(t) = Dα−1un(t)→ Dα−1u(t).

We conclude that (F, ‖.‖F ) is a Banach space.

Remark 1 Note that to applied the Arzela-Ascoli theorem in basic space F , we need to establish the following
modified compactness criterion.

Lemma 6 Let U ⊆ F be a bounded set. Then, U is relatively compact in F if the following conditions hold



A. Berhail and N. Tabouche 61

(i) for any u(t) ∈ U, |u(t)|
1+(log t)α−1 ,

|Dα−2u(t)|
1+log t ,

∣∣Dα−1u(t)
∣∣ are equicontinuous on any compacts interval of J,

(ii) for any ε > 0, there exists a constant T = T (ε) > 0 such that∣∣∣∣ u(t1)

1 + (log t1)α−1
− u(t2)

1 + (log t2)α−1

∣∣∣∣ < ε,

∣∣∣∣Dα−2u(t1)

1 + log t1
− Dα−2u(t2)

1 + log t2

∣∣∣∣ < ε,∣∣Dα−1u(t1)−Dα−1u(t2)
∣∣ < ε,

for any t1, t2 < T and u(t) ∈ U.

Proof. Obviously, it is suffi cient to show that U is totally bounded.
Step 1 The case t ∈ [1, T ] . We define the set

U[1,T ] = {u(t), u(t) ∈ U ; t ∈ [1, T ]},

which is a Banach space with the norm

‖u‖[1,T ] = sup
t∈[1,∞)

∣∣∣∣ u(t)

1 + (log t)α−1

∣∣∣∣ .
It follows from condition (i) and Arzela-Ascoli theorem that U[1,T ] is relatively compact. Thus, for any ε > 0,
there exist finite balls {Bε(ui)}; i = 1, ..., n such that

U[1,T ] ⊂
n
∪
i=1
Bε(ui),

where

Bε(ui) =

{
u(t) ∈ U[1,T ], ‖u− ui‖[1,T ] = sup

t∈[1,∞)

∣∣∣∣ u(t)

1 + (log t)α−1
− ui(t)

1 + (log t)α−1

∣∣∣∣ < ε

}
.

Similarly,
Uα−2

[1,T ] = {Dα−2u(t), u(t) ∈ U[1,T ], t ∈ [1, T ]},

is a Banach space with the norm ∥∥Dα−2u
∥∥

[1,T ]
= sup
t∈[1,∞)

∣∣∣∣Dα−2u(t)

1 + log t

∣∣∣∣ .
The set Uα−2

[1,T ] is totally bounded, thus, for any ε > 0, there exist balls {Bε(Dα−2vj)}, j = 1, ...,m such that

Uα−2
[1,T ] ⊂

m
∪
j=1

Bε(D
α−2vj) where

Bε(D
α−2vj) =

{
Dα−2u(t) ∈ Uα−2

[1,T ],
∥∥Dα−2u−Dα−2vj

∥∥
[1,T ]

= sup
t∈[1,∞)

∣∣∣∣Dα−2u(t)

1 + log t
− Dα−2vj(t)

1 + log t

∣∣∣∣ < ε

}
.

In a similar manner, the space

Uα−1
[1,T ] = {Dα−1u(t), u(t) ∈ U[1,T ], t ∈ [1, T ]},

is a Banach space with the norm ∥∥Dα−1u
∥∥

[1,T ]
= sup
t∈[1,∞)

∣∣Dα−1u(t)
∣∣ .
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The set Uα−1
[1,T ] is totally bounded, thus, for any ε > 0, there exist balls {Bε(Dα−1wp)}, p = 1, ..., k such that

Uα−1
[1,T ] ⊂

k
∪
p=1

Bε(D
α−1wp) where

Bε(D
α−1wp) =

{
Dα−1u(t) ∈ Uα−1

[1,T ],
∥∥Dα−1u−Dα−1wp

∥∥
[1,T ]

= sup
t∈[1,∞)

∣∣Dα−1u(t)−Dα−1wp(t)
∣∣ < ε

}
.

Step 2 We define

Uijp =
{
u(t) ∈ U, u[1,T ] ∈ Bε(ui), Dα−2u[1,T ] ∈ Bε(Dα−2vj), D

α−1u[1,T ] ∈ Bε(Dα−1wp)
}
.

Clearly,

U[1,T ] ⊂ ∪
1 ≤ i ≤ n,
1 ≤ j ≤ m,
1 ≤ p ≤ k

Uijp[1,T ] =⇒



U ⊂ ∪
1 ≤ i ≤ n,
1 ≤ j ≤ m,
1 ≤ p ≤ k

B4ε(uijp), uijp ∈ Uijp

B4ε(uijp) =
{
u(t) ∈ U, ‖u− uijp‖F ≤ 4ε

}
So U can be covered by the balls B4ε(uijp). Hence, U is totally bounded.

3 Main Results

We define the operator T : F → F by

Tu(t) =

∫ ∞
1

G(t, s)f(t, u(t), Dα−2u(t), Dα−1u(t))
ds

s
, t ∈ J.

By Lemma 3, if u is a fixed point of operator T , then u is a solution of BVP (1). Direct computations show
that

Dα−2Tu(t) =

∫ ∞
1

G2(t, s)f(s, u(s), Dα−2u(s), Dα−1u(s))
ds

s
, t ∈ J,

Dα−1Tu(t) =

∫ ∞
1

G1(t, s)f(s, u(s), Dα−2u(s), Dα−1u(s)
ds

s
, t ∈ J,

where

G1(t, s) =


ζΓ(α)g(η,s)
ΩΓ(α+β) , 1 ≤ s ≤ t,

1 + ζΓ(α)g(η,s)
ΩΓ(α+β) , 1 ≤ t ≤ s,

and

G2(t, s) =
1

Γ(2)

 log s+ ζg(η,s)
ΩΓ(α+β) (log t) , 1 ≤ s ≤ t,(

1 + ζg(η,s)
ΩΓ(α+β)

)
log t. 1 ≤ t ≤ s.

Throughout this paper, we assume that the following conditions hold

(H1) There exist nonnegative functions a(t), b(t), c(t), p(t) ∈ L1(J) with (log t)α−1a(t), (log t) b(t) ∈ L1(J)
such that:

|f(t, u, v, w)| ≤ a(t) |u|+ b(t) |v|+ c(t) |w|+ p(t), (t, u, v, w) ∈ J × R3.

(H2) There exist nonnegative functions a(t), b(t), c(t) ∈ L1(J) with (log t)α−1a(t), (log t) b(t) ∈ L1(J) such
that for t ∈ J and u1, v1, w1, u2, v2, w2 ∈ R, we have

|f(t, u1, v1, w1)− f(t, u2, v2, w2)| ≤ a(t) |u1 − u2|+ b(t) |v1 − v2|+ c(t) |w1 − w2| .
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Denote

a∗ =

∫ +∞

1

(
1 + (log t)

α−1
)
a(t)dt, b∗ =

∫ +∞

1

(1 + log t) b(t)dt, c∗ =

∫ +∞

1

c(t)dt, p∗ =

∫ +∞

1

p(t)dt.

Lemma 7 Assume that (H1) holds. Then∫ +∞

1

∣∣f(s, u(s), Dα−2u(s), Dα−1u(s)
∣∣ ds ≤ (a∗ + b∗ + c∗) ‖u‖F + p∗, ∀u ∈ F.

Proof. By (H1) , for any u ∈ F , we have∫ +∞

1

∣∣f(s, u(s), Dα−2u(s), Dα−1u(s)
∣∣ ds

≤
∫ +∞

1

[
a(s) |u(s)|+ b(s)

∣∣Dα−2u(s)
∣∣+ c(s)

∣∣Dα−1u(s)
∣∣+ p(s)

]
ds

=

∫ +∞

1

[
a(s)

(
1 + (log s)

α−1
) |u(s)|

1 + (log s)
α−1 + b(s) (1 + log s)

∣∣Dα−2u(s)
∣∣

(1 + log s)
+ c(s)

∣∣Dα−1u(s)
∣∣+ p(s)

]
ds

≤
(∫ +∞

1

a(s)
(

1 + (log s)
α−1

)
ds

)
‖u‖F +

(∫ +∞

1

b(s) (1 + log s) ds

)
‖u‖F

+

(∫ +∞

1

c(s)ds

)
‖u‖F +

∫ +∞

1

p(s)ds = (a∗ + b∗ + c∗) ‖u‖F + p∗.

Lemma 8 Assume that (H1) holds. Then the operator T : F → F is completely continuous.

Proof. We divide this proof into the following four steps.
Step 1. We prove that T : F → F is continuous.

Let U be bounded subset of F . Then there exists constant C > 0 such that ||u||F ≤ C, ∀u ∈ U . Let (un) ∈ U
and lim

n→+∞
‖un − u‖F = 0. We have

‖un − u‖F = max

{
sup
t∈J

|un(t)− u(t)|
1 + (log t)α−1

, sup
t∈J

∣∣Dα−2un(t)−Dα−2u(t)
∣∣

1 + log t
, sup
t∈J

∣∣Dα−1un(t)−Dα−1u(t)
∣∣} .

Then

lim
n→+∞

|un(t)− u(t)| = 0, lim
n→+∞

∣∣Dα−2un(t)−Dα−2u(t)
∣∣ = 0 and lim

n→+∞

∣∣Dα−1un(t)−Dα−1u(t)
∣∣ = 0.

Therefore, for any t ∈ J and n > N, we get∣∣∣∣Tun(t)− Tu(t)

1 + (log t)α−1

∣∣∣∣
=

∣∣∣∣ Tun(t)

1 + (log t)α−1
− Tu(t)

1 + (log t)α−1

∣∣∣∣
≤

∫ +∞

1

G(t, s)

1 + (log t)α−1

∣∣f(s, un(s), Dα−2un(s), Dα−1un(s))− f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤
(

1

Γ(α)
+
ζ (log η)

α+β−1

ΩΓ (α+ β)

)
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×
∫ +∞

1

∣∣f(s, un(s), Dα−2un(s), Dα−1un(s))− f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤ 1

Ω

∫ +∞

1

∣∣f(s, un(s), Dα−2un(s), Dα−1un(s))
∣∣ ds
s

+
1

Ω

∫ +∞

1

∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤ 2

Ω
[(a∗ + b∗ + c∗)C + p∗] .

Similarly, there exists Q > 0 such that, for n > Q and t ∈ J,∣∣∣∣Dα−2Tun(t)−Dα−2Tu(t)

1 + log t

∣∣∣∣
=

∣∣∣∣Dα−2Tun(t)

1 + log t
− Dα−2Tu(t)

1 + log t

∣∣∣∣
≤

∫ +∞

1

G2(t, s)

1 + log t

∣∣f(s, un(s), Dα−2un(s), Dα−1un(s))− f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤
(

1 +
ζ (log η)

α+β−1

ΩΓ (α+ β)

)

×
∫ +∞

1

∣∣f(s, un(s), Dα−2un(s), Dα−1un(s))− f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤ 2

(
1 +

1

Ω
− 1

Γ(α)

)
[(a∗ + b∗ + c∗)C + p∗] ,

and ∣∣Dα−1Tun(t)−Dα−1Tu(t)
∣∣

≤
∫ +∞

1

G1(t, s)
∣∣f(s, un(s), Dα−2un(s), Dα−1un(s))− f(s, u(s), Dα−2u(s), Dα−1u(s))

∣∣ ds
s

≤
(

1 +
ζΓ (α) (log η)

α+β−1

ΩΓ (α+ β)

)
∫ +∞

1

∣∣f(s, un(s), Dα−2un(s), Dα−1un(s))− f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤ 2Γ (α)

Ω
[(a∗ + b∗ + c∗)C + p∗] .

Then Lebesgue’s dominated convergence theorem asserts that limn→+∞ ‖Tun(t)− Tu(t)‖ = 0. Hence,
T : F → F is continuous.
Step 2. We show that T : F → F is uniformly bounded.

For any u ∈ U and t ∈ J , we obtain∣∣∣∣ Tu(t)

1 + (log t)α−1

∣∣∣∣ ≤ ∫ +∞

1

G(t, s)

1 + (log t)α−1

∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤
(

1

Γ(α)
+
ζ (log η)

α+β−1

ΩΓ (α+ β)

)∫ +∞

1

∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤ 1

Ω
[(a∗ + b∗ + c∗)R+ p∗] = C1.

Similarly, ∣∣∣∣Dα−2Tu(t)

1 + log t

∣∣∣∣ ≤ (1 +
1

Ω
− 1

Γ (α)

)
[(a∗ + b∗ + c∗)R+ p∗] = C2,
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∣∣Dα−1Tu(t)
∣∣ ≤ Γ (α)

Ω
[(a∗ + b∗ + c∗)R+ p∗] = C3.

Consequently, T (U) is uniformly bounded.
Step 3. We show that T (U) is equicontinuous on J.

Let I ⊆ J be any compact interval. For any t1, t2 ∈ I, t1 < t2 and u ∈ U , we deduce∣∣∣∣ Tu(t2)

1 + (log t2)α−1
− Tu(t1)

1 + (log t1)α−1

∣∣∣∣
≤

∫ +∞

1

∣∣∣∣ G(t2, s)

1 + (log t2)α−1
− G(t1, s)

1 + (log t1)α−1

∣∣∣∣ ∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤
∫ +∞

1

(
g(t2, s)

1 + (log t2)α−1
− g(t1, s)

1 + (log t1)α−1

) ∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

+

∫ +∞

1

(
(log t2)α−1

1 + (log t2)α−1
− (log t1)α−1

1 + (log t1)α−1

)
ζg(η, s)

ΩΓ (α+ β)

∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤ 1

Γ (α)

t1∫
1

(log t2)α−1 − (log t1)α−1 + (log t2
s )α−1 − (log t1

s )α−1

1 + (log t2)α−1
f(s, u(s), Dα−2u(s), Dα−1u(s))

ds

s

+
1

Γ (α)

t2∫
t1

(log t2)α−1 − (log t1)α−1 + (log t2
s )α−1

1 + (log t2)α−1
f(s, u(s), Dα−2u(s), Dα−1u(s))

ds

s

+
1

Γ (α)

+∞∫
t2

(log t2)α−1 − (log t1)α−1

1 + (log t2)α−1
f(s, u(s), Dα−2u(s), Dα−1u(s))

ds

s
.

Then ∣∣∣∣ Tu(t2)

1 + (log t2)α−1
− Tu(t1)

1 + (log t1)α−1

∣∣∣∣→ 0 uniformly as t1 → t2.

Similarly, we have ∣∣∣∣Dα−2Tu(t2)

1 + log t2
− Dα−2Tu(t1)

1 + log t1

∣∣∣∣→ 0 uniformly as t1 → t2,

and ∣∣Dα−1Tu(t2)−Dα−1Tu(t1)
∣∣→ 0 uniformly as t1 → t2.

Thus, T (U) is equicontinuous on J .
Step 4. We show that T is equiconvergent at ∞.

lim
t→∞

∣∣∣∣ Tu(t)

1 + (log t)α−1

∣∣∣∣ = lim
t→∞

∣∣∣∣ 1

1 + (log t)α−1

∫ +∞

1

G(t, s)f(s, u(s), Dα−2u(s), Dα−1u(s))
ds

s

∣∣∣∣
= lim

t→∞

∣∣∣∣ 1

1 + (log t)α−1

∫ +∞

1

(
g(t, s) + (log t)α−1 ζg(η, s)

ΩΓ (α+ β)

)
f(s, u(s), Dα−2u(s), Dα−1u(s))

ds

s

∣∣∣∣
≤

(
1

Γ (α)
+

ζg(η, s)

ΩΓ (α+ β)

)∫ +∞

1

∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤
(

1

Γ (α)
+

ζg(η, s)

ΩΓ (α+ β)

)
[(a∗ + b∗ + c∗)C + p∗] < +∞.

Similarly, we have

lim
t→∞

∣∣∣∣Dα−2Tu(t)

1 + log t

∣∣∣∣ = lim
t→∞

∣∣∣∣ 1

1 + log t

∫ +∞

1

G2(t, s)f(s, u(s), Dα−2u(s), Dα−1u(s))
ds

s

∣∣∣∣
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≤
(

1 +
Γ (α) ζ(log η)α+β−1

ΩΓ (α+ β)

)∫ +∞

1

∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤
(

1 +
Γ (α) ζ(log η)α+β−1

ΩΓ (α+ β)

)
[(a∗ + b∗ + c∗)C + p∗] < +∞.

and

lim
t→∞

∣∣Dα−1Tu(t)
∣∣ = lim

t→∞

∣∣∣∣∫ +∞

1

G1(t, s) f(s, u(s), Dα−2u(s), Dα−1u(s))
ds

s

∣∣∣∣
≤

(
1 +

Γ (α) ζ(log η)α+β−1

ΩΓ (α+ β)

)∫ +∞

1

∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤
(

1 +
Γ (α) ζ(log η)α+β−1

ΩΓ (α+ β)

)
[(a∗ + b∗ + c∗)C + p∗] < +∞.

Hence, T (V ) is equiconvergent at infinity. Thus, the operator T is completely continuous. The proof is
completed.

Theorem 9 Assume that (H1) holds. If Ω > Γ (α) (a∗ + b∗ + c∗) , then problem (1) has at least one solution.

Proof. Let U = {u ∈ F, ‖u‖F ≤ C} with

C ≥ Γ (α)

Ω− Γ (α) (a∗ + b∗ + c∗)
.

For any u ∈ U and t ∈ J, we deduce∣∣∣∣ Tu(t)

1 + (log t)α−1

∣∣∣∣ ≤ ∫ +∞

1

∣∣∣∣ G(t, s)

1 + (log t)α−1

∣∣∣∣ ∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤ 1

Ω
[(a∗ + b∗ + c∗)R+ p∗] ≤ C,

∣∣∣∣Dα−2Tu(t)

1 + log t

∣∣∣∣ ≤ ∫ +∞

1

∣∣∣∣ G2(t, s)

1 + log t

∣∣∣∣ ∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))
∣∣ ds
s

≤
(

1 +
1

Ω
− 1

Γ (α)

)
[(a∗ + b∗ + c∗)C + p∗] ≤ C,

and ∣∣Dα−1Tu(t)
∣∣ ≤ ∫ +∞

1

|G1(t, s)|
∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))

∣∣ ds
s

≤ Γ (α)

Ω
[(a∗ + b∗ + c∗)C + p∗] ≤ C.

Then T (U) ⊂ U and T : U → U is completely continuous (from Lemma 8). Therefore, by the Schauder
fixed point theorem, we conclude that BVP (1) has at least one solution in U. The proof is completed.

Theorem 10 Assume that (H2) holds. If Ω > Γ (α) (a∗ + b∗ + c∗) , then problem (1) has a unique solution
in F.

Proof. By (H2), we conclude that, for any u, v ∈ F and t ∈ J∣∣∣∣Tu(t)− Tv(t)

1 + (log t)α−1

∣∣∣∣
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≤
∫ +∞

1

∣∣∣∣ G(t, s)

1 + (log t)α−1

∣∣∣∣ ∣∣f(s, u(s), Dα−2u(s), Dα−1u(s))− f(s, v(s), Dα−2v(s), Dα−1v(s))
∣∣ ds
s

≤ Γ (α)

Ω

∫ +∞

1

(
a(s) |u(s)− v(s)|+ b(s)

∣∣Dα−2u(s)−Dα−2v(s)
∣∣+ c(s)

∣∣Dα−1u(s)−Dα−1v(s)
∣∣) ds

s

=
Γ (α)

Ω

∫ +∞

1

(a(s)
(
1 + (log s)α−1

) |u(s)− v(s)|
1 + (log s)α−1

+b(s) (1 + log s)

∣∣Dα−2u(s)−Dα−2v(s)
∣∣

1 + log s
+ c(s)

∣∣Dα−1u(s)−Dα−1v(s)
∣∣)ds
s

≤ Γ (α)

Ω
(a∗ + b∗ + c∗) ‖u− v‖F = k ‖u− v‖F ,

with

k =
Γ (α)

Ω
(a∗ + b∗ + c∗) < 1.

Similarly, we obtain∣∣∣∣Dα−2Tu(t)−Dα−2Tv(t)

1 + log t

∣∣∣∣ ≤ k ‖u− v‖F , ∣∣Dα−1Tu(t)−Dα−1Tv(t)
∣∣ ≤ k ‖u− v‖F .

Thus
‖Tu− Tv‖F ≤ k ‖u− v‖F .

It follows from the Banach contraction mapping theorem that T has a unique fixed point in F.

Example 1 We consider the following Hadamard fractional boundary value problem Dαu(t) + f(t, u(t), Dα−2u(t), Dα−1u(t)) = 0 t ∈ J = [1,+∞),
u(1) = u′(1) = 0,
Dα−1u(+∞) = ξIβu(η),

(7)

with α = 5
2 , β = 1

2 , ξ = 1
4 , η = 3 and

f(t, u, v, w) =
ln (1 + |v|)
(1 + t2) e5t

+

√
|uv|

3te2t
+

w

30 (1 + t2)
+

t

1 + et2
.

Obviously,

|f(t, u, v, w)| ≤ 1

6te2t
|u|+

[
1

6te2t
+

1

(1 + t2) e5t

]
|v|+ |w|

30 (1 + t2)
+

1

1 + et2
,

and

|f(t, u1, v1, w1)− f(t, u2, v2, w2)| ≤ 1

6te2t
|u1 − u2|+

[
1

6te2t
+

1

(1 + t2) e5t

]
|v1 − v2|+

1

30(1 + t2)
|w1 − w2| .

Then f satisfies (H1) and (H2), with

a(t) =
1

6te2t
=⇒ a∗ =

1

12
,

b(t) =
1

6te2t
+

1

(1 + t2) e5t
=⇒ b∗ =

17

60
,

c(t) =
1

30 (1 + t2)
=⇒ c∗ =

π

60
,

p(t) =
1

1 + et2
=⇒ p∗ =

1

2
.

Moreover, we find that

k =
Γ (α)

Ω
(a∗ + b∗ + c∗) = 0.488 < 1.

Therefore, all conditions of Theorem 1 and 2 are satisfied. Thus, problem (7) has a unique solution.
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4 Conclusion

In this paper, we investigate the existence and uniqueness of solutions for Hadamard fractional equations on
an infinite interval with integral boundary value conditions. We were able to overcome the main challenges
by establishing a proper compactness criterion. Schauder fixed point theorem was the key of our analysis
to establish existence of solutions of our problem by adding suitable conditions on the nonlinear term. We
succeeded to obtain a unique solution by using Banach contraction principle. At the same time, we present
an example to demonstrate the consistency of our the theoretical findings.
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