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Abstract
We first familiarise with δ-Hardy Roger type contraction in the frame work of metric space. Then,

well-posedness, data dependence, existence and uniqueness results of strict fixed point for δ-Hardy Roger
type contraction are presented. The obtained results generalize the existing results in the literature.
Applications to an integral inclusion equation and Fractals concludes the paper.

1 Introduction

Banach contraction principle [1] has been generalised in numerous directions and one such generalisation
is due to Nadler [14], who generalised it considering set-valued contraction. There after many results are
established for set-valued mappings (see for instance [3]-[8], [16]-[21]). In this paper, considering the fact that
Hardy-Rogers type operator is a Ćiríc type operator (however the reverse need not be true), we introduce δ-
Hardy Roger type contraction and establish strict fixed point for it using iterations of a delta distance which
is not even a metric. Also, we present well-posedness and data dependence of strict fixed point problem and
utilise it to solve an integral inclusion equation and in presenting a novel iterated function framework via
δ-Hardy-Roger type operator to obtain attractor of multifunction system.
Let (X, d) be a metric space,

P (X) = {Y ⊂ X : Y 6= ∅}, Pb(X) = {Y ∈ P (X) : Y is bounded},

Pcl(X) = {Y ∈ P (X) : Y is closed} and Pcp(X) = {Y ∈ P (X) : Y is compact}.
Define a set-valued operator as T : X → P (X) and T (Y ) = ∪x∈Y T (x) for Y ∈ P (X). Also, FT =
{x ∈ X : x ∈ T (x)} is a set of fixed points and (SF )T = {x ∈ X : T x = {x}} is a set of strict fixed
points of the set-valued operator T . Chifu and Petrusel [10] introduced the δ generalized functional as:
δ : P (X)× P (X)→ R+ ∪ {∞},

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.

2 Main Results

Firstly, we define δ-Hardy Roger type contraction and establish strict fixed point making use of iterations of
a delta distance which is not even a metric.

Definition 1 If T : X → Pb(X) is a set-valued operator of a metric space (X, d) satisfying

δ(T (x), T (y)) ≤ a1d(x, y) + a2δ(x, T (x)) + a3δ(y, T (y)) + a4δ(x, T (y)) + a5δ(y, T (x)),

where a′is ∈ R+,
∑5
i=1 ai < 1, x, y ∈ X, then T is called a δ-Hardy Roger type contraction.
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Theorem 1 If T is a δ-Hardy Roger type contraction of a complete metric space (X, d), then (SF )T = {u∗}.

Proof. Let u0 ∈ X. Then there exists u1 ∈ T (u0) and

δ(u0, T (u0)) ≤ qd(u0, u1), q > 1 is arbitrary.

Now,

δ(u1, T (u1)) ≤ δ(T (u0), T (u1))

≤ a1d(u0, u1) + a2δ(u0, T (u0)) + a3δ(u1, T (u1))

+a4δ(u0, T (u1)) + a5δ(u1, T (u0))

≤ a1d(u0, u1) + a2qd(u0, u1) + a3δ(u1, T (u1))

+a4{d(u0, u1) + δ(u1, T (u1))}+ a5δ(u1, u1)

≤ (a1 + a2q + a4)d(u0, u1) + (a3 + a4)δ(u1, T (u1)).

This implies
(1− a3 − a4)δ(u1, T (u1)) ≤ (a1 + a2q + a4)d(u0, u1),

or

δ(u1, T (u1)) ≤
[
a1 + a2q + a4
1− (a3 + a4)

]
d(u0, u1).

Also, u1 ∈ T (u0), ∃ u2 ∈ T (u1) and

δ(u1, T (u1)) ≤ qd(u1, u2).

Therefore,

δ(u2, T (u2)) ≤ δ(T (u1), T (u2))

≤ a1d(u1, u2) + a2δ(u1, T (u1)) + a3δ(u2, T (u2)) + a4δ(u1, T (u2))

+a5δ(u2, T (u1))

≤ a1d(u1, u2) + a2qd(u1, u2) + a3δ(u2, T (u2)) + a4{d(u1, u2)

+δ(u2, T (u2))}+ a5δ(u2, u2)

= (a1 + a2q + a4)d(u1, u2) + (a3 + a4)δ(u2, T (u2)).

This implies
(1− (a3 + a4)) δ(u2, T (u2)) ≤ (a1 + a4 + a2q)d(u1, u2),

or

δ(u2, T (u2)) ≤
[
a1 + a4 + a2q

1− (a3 + a4)

]
d(u1, u2)

≤
[
a1 + a4 + a2q

1− (a3 + a4)

]
δ(u1, T (u1))

≤
[
a1 + a4 + a2q

1− (a3 + a4)

]2
d(u0, u1).

Following the similar pattern, we construct a sequence (un)n∈N satisfying the following properties:

(i) un ∈ T (un−1);

(ii) d(un, un+1) ≤ δ(un, T (un)) ≤
[
a1+a4+a2q
1−a3−a4

]n
d(u0, u1).
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Next, consider

d(un, un+p) ≤ d(un, un+1) + d(un+1, un+2) + ...+ d(un+p−1, un+p)

≤
[(

a1 + a4 + a2q

1− a3 − a4

)n
+

(
a1 + a4 + a2q

1− a3 − a4

)n+1
+...+

(
a1 + a4 + a2q

1− a3 − a4

)n+p−1 ]
d(u0, u1).

Assume that α = a1+a4+a2q
1−a3−a4 . Then

d(un, un+p) ≤ αn[1 + α+ ...+ αp−1]d(u0, u1) = αn
αp − 1

α− 1
d(u0, u1).

Choose q < 1−a1−a3−2a4
a2

then α < 1. Letting n→∞, we get

d(un, un+p)→ 0,

i.e., (un)n∈N is a Cauchy sequence. Since (X, d) is a complete metric space, there exists u∗ ∈ X such that
un → u∗ as n→∞. Now, we shall demonstrate that u∗ ∈ (SF )T . Consider,

δ(u∗, T (u∗)) ≤ d(u∗, un) + δ(un, T (un)) + δ(T (un), T (u∗))

≤ d(u∗, un) + δ(un, T (un)) + a1d(un, u
∗) + a2δ(un, T (un))

+a3δ(u
∗, T (u∗)) + a4δ(un, T (u∗)) + a5δ(u

∗, T (un))

≤ d(u∗, un) + δ(un, T (un)) + a1d(un, u
∗) + a2δ(un, T (un))

+a3δ(u
∗, T (u∗)) + a4 (d(un, u

∗) + δ(u∗, T (u∗)))

+a5 (d(u∗, un) + δ(un, T (un)))

= (1 + a1 + a4 + a5) d(u∗, un) + (1 + a2 + a5) δ(un, T (un))

+(a3 + a4)δ(u
∗, T (u∗)).

This implies

(1− a3 − a4)δ(u∗, T u∗) ≤ (1 + a1 + a4 + a5)d(u∗, un) + (1 + a2 + a5)δ(un, T (un)),

or

δ(u∗, T u∗) ≤
[

1 + a1 + a4 + a5
1− a3 − a4

]
d(u∗, un) +

[
1 + a2 + a5
1− a3 − a4

]
δ(un, T (un)).

Since δ(un, T (un)) ≤ αnd(u0, u1), we see that δ(u∗, T u∗) = 0. It implies that T (u∗) = {u∗}, i.e., u∗ ∈ (SF )T .
For uniqueness, assume that there exists two distinct points u∗, v∗ ∈ (SF )T . So

d(u∗, v∗) = δ(T (u∗), T (v∗))

≤ a1d(u∗, v∗) + a2δ(u
∗, T (u∗)) + a3δ(v

∗, T (v∗)) + a4δ(u
∗, T (v∗)) + a5

δ(v∗, T (u∗))

≤ a1d(u∗, v∗) + a2δ(u
∗, T (u∗)) + a3δ(v

∗, T (v∗)) + a4(d(u∗, v∗) + δ(v∗,

T (v∗))) + a5 (d(v∗, u∗) + δ(u∗, T (u∗)))

≤ (a1 + a4 + a5)d(u∗, v∗) + a2δ(u
∗, T u∗) + a3δ(v

∗, T v∗) + a4δ(v
∗, T v∗) +

a5δ(u
∗, T u∗).

This implies

(1− a1 − a4 − a5)d(u∗, v∗) ≤ a2δ(u∗, T u∗) + a3δ(v
∗, T v∗) + a4δ(v

∗, T v∗) + a5δ(u
∗, T u∗),
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or
(1− a1 − a4 − a5)d(u∗, v∗) ≤ 0,

or 1− a1− a4− a5 ≤ 0 or a1 + a4 + a5 ≥ 1, a contradiction to the fact that a1 + a2 + a3 + a4 + a5 < 1. Hence
u∗ = v∗.

Example 1 Let X = [0, 3] be a complete metric space and the mapping T : X → Pb(X) be defined as

T (x) =

{
[0, 1], 0 ≤ x < 2,

{2}, 2 ≤ x ≤ 3.

Taking a1 = 3
10 , a2 = 0, a3 = 1

20 , a4 = 1
4 , a5 = 7

20 , a1 + a2 + a3 + a4 + a5 = 19
20 < 1. Now we have following

cases:
Case I: When x, y ∈ [0, 2),

δ(T (x), T (y)) = 1 ≤ a1.2 + a2.2 + a3.2 + a4.2 + a5 ≤ 2.
19

20
.

Case II: When x ∈ [0, 2) and y ∈ [2, 3],

δ(T (x), T (y)) = 2 ≤ a1.3 + a2.2 + a3.1 + a4.2 + a5.3 ≤
45

20
.

Case III: When x ∈ [2, 3] and y ∈ [0, 2),

δ(T (x), T (y)) = 2 ≤ a1.2 + a2.1 + a3.2 + a4.3 + a5.2 ≤
43

20
.

Case IV: When x, y ∈ [2, 3],

δ(T (x), T (y)) = 0 ≤ a1 + a2 + a3 + a4 + a5 ≤
19

20
.

Subsequently, all the hypotheses of Theorem 1 are verified and x = 2 is the only strict fixed point of a
discontinuous set-valued operator T .
Next, we try to establish suffi cient conditions for the well-posedness of a strict fixed point problem for

the set-valued operator.

Theorem 2 If T is a δ-Hardy Roger type contraction of a complete metric space (X, d), then the strict fixed
point is well-posed for T with respect to δd.

Proof. Using Theorem 1, (SF )T = {u∗}. Suppose un ∈ X,n ∈ N satisfying

δd(un, T (un))→ 0 as n→∞.

We next prove that un → u∗ as n→∞. Now,

d(un, u
∗) ≤ δd(un, T (un)) + δd(T (un), T (u∗))

≤ δd(un, T (un)) + a1d(un, u
∗) + a2δd(un, T (un)) + a3δd(u

∗, T (u∗)) + a4

δd(un, T (u∗)) + a5δd(u
∗, T (un))

≤ δd(un, T (un)) + a1d(un, u
∗) + a2δd(un, T (un)) + a3δd(u

∗, T (u∗)) + a4

(d(un, u
∗) + δd(u

∗, T (u∗)) + a5(d(u∗, un) + δd(un, T (un)).

This implies
(1− a1 − a4 − a5)d(un, u

∗) ≤ (1 + a2 + a5)δd(un, T (un)),
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or

d(un, u
∗) ≤

(
1 + a2 + a5

1− a1 − a4 − a5

)
δd(un, T (un))→ 0 as n→∞,

i.e., un → u∗ as n→∞.
Now, we establish a data dependence result.

Theorem 3 If T1 is a δ-Hardy Roger type contraction of a complete metric space (X, d) and T2 : X → Pb(X)
is a set-valued operator such that

(i) (SF )T2 6= ∅;

(ii) ∃ η > 0 satisfying δ(T1(x), T2(x)) ≤ η, x ∈ X,

then

δ(u∗1, (SF )T2) ≤
(

1 + a3 + a4
1− a1 − a4 − a5

)
η.

Proof. Let u∗2 ∈ (SF )(T2). So, δ(u
∗
2, T2(u∗2)) = 0. Now,

d(u∗1, u
∗
2) = δ(T1(u∗1), T2(u∗2))
≤ δ(T1(u∗1), T1(u∗2)) + δ(T1(u∗2), T2(u∗2))
≤ a1d(u∗1, u

∗
2) + a2δ(u

∗
1, T1(u∗1)) + a3δ(u

∗
2, T1(u∗2)) + a4δ(u

∗
1, T1(u∗2))

+ a5δ(u
∗
2, T1(u∗1)) + δ(T1(u∗2), T2(u∗2))

≤ a1d(u∗1, u
∗
2) + a3δ(u

∗
2, T1(u∗2)) + a4(d(u∗1, u

∗
2) + δ(u∗2, T1(u∗2)))

+ a5(d(u∗2, u
∗
1) + δ(u∗1, T1(u∗1))) + δ(T1(u∗2), T2(u∗2)).

This implies

(1− a1 − a4 − a5)d(u∗1, u
∗
2) ≤ a3δ(u

∗
2, T1(u∗2)) + a4δ(u

∗
2, T1(u∗2)) + δ(T1(u∗2), T2(u∗2))

≤ a3η + a4η + η

≤ (1 + a3 + a4)η,

or

d(u∗1, u
∗
2) ≤

(
1 + a3 + a4

1− a1 − a4 − a5

)
η.

By taking supremum, it follows that

δ(u∗1, (SF )T2) ≤
(

1 + a3 + a4
1− a1 − a4 − a5

)
η.

3 Applications

3.1 Application to Volterra Integral Inclusion.

Now, we utilise Theorem 1 to solve the following Volterra integral inclusion

x(t) ∈ q(t) +

σ(t)∫
0

k(t, s)F (s, x(s))ds, (1)
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for t ∈ J , σ : J → J, k : J × J → R, q : J → E are continuous, F : J × E → C(E), E is a real
Banach space with norm ‖.‖E , C(E) is the class of all non-empty closed subsets of E and J = [0, 1] in R
is a closed and bounded interval. Let C(J,E) is the space of all continuous E-valued functions on J and
‖x‖ = supt∈J |x(t)|E . We use the following definitions.

Definition 2 A set-valued function β : J × E → 2E is Carathèodory if

(i) t→ β(t, x) is measurable, x ∈ E and

(ii) x→ β(t, x) is upper semi-continuous a. e. for t ∈ J .

Definition 3 A Carathèodory multifunction F (t,X) is L1-Carathèodory if for every real number r > 0 ∃ a
function hr ∈ L1(J,R) satisfying ‖F (t, x)‖ ≤ hrt for almost every t ∈ J and x ∈ E and ‖x‖E ≤ r. Denote
‖F (t, x(t))‖ = sup{‖u‖E : u ∈ F (t, x(t))}, T 1F = {v ∈ B(J,E) : v(t) ∈ F (t, x(t)) a.e. t ∈ J}, where B(J,E)
is the space of all E-valued Bochner-integrable functions on J .

Lemma 1 ([13]) If diam(E) <∞ and F : J × E → 2E is L1- Carathèodory, then T 1F 6= φ, x ∈ E.

Lemma 2 ([13]) Let E be a Banach space, L : L1(J,E) → C(J,E) a continuous linear mapping and F
a Carathèodory set-valued mapping such that T 1F 6= φ. Then LoT 1F : C(J,E) → 2C(J,E) is a closed graph
operator on C(J,E)× C(J,E).

Theorem 4 Suppose that the following set of hypotheses hold.

(i) The function k(t, s) is non-negative on J × J and M = supt,s∈J [k(t, s)];

(ii) the set-valued function F (t, x) is Carathèodory;

(iii) the set-valued function F (t, x) is nondecreasing in x a.e. for t ∈ J ;

(iv) |F (s, x(s))− F (s, y(s))| ≤ 1
M (Θ(x, y)), s ∈ J, x ∈ E, where

Θ(x, y) = a1d(x, y) + a2δ(x, T (x)) + a3δ(y, T (y)) + a4δ(x, T (y)) + a5δ(y, T (x)),

a′is ∈ R+,
∑5
i=1 ai < 1;

(v) T 1F 6= φ, x ∈ C(J,E).

Then the integral inclusion (1) has a solution in J .

Proof. A continuous function x : J → E is a solution of the integral inclusion (1), if

x(t) = q(t) +

σ(t)∫
0

k(t, s)v(s)ds,

where v ∈ B(J,E) such that v(t) ∈ F (t, x(t)). Define the set-valued mapping T : [0, 1]→ 2X as

T (x) = q(t) +

∫ σ(t)

0

k(t, s)v(s)ds,

where v ∈ T 1F (x) for every t ∈ [0, 1]. Clearly T is well-defined, since, from (v), T 1F 6= φ. For all t ∈ [0, 1] by
(ii) and (iv), we get

|T (x)− T (y)| =
∣∣∣∣ ∫ σ(t)

0

(
k(t, s)v1(s)− k(t, s)v2(s)

)
ds

∣∣∣∣
E

, v1, v2 ∈ T 1F (x).

Taking supremum on both sides

δ(T (x), T (y)) ≤M |F (s, x(s))− F (s, y(s))| ≤ Θ(x, y),

i.e., the operator T verify the hypotheses of the Theorem 1 on [0, 1] and consequently, the given integral
inclusion has a unique solution.
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3.2 Application to Fractals.

Fixed point theory performs a significant role in fractals that are the self-similar sets. Iterated function
systems define fractals as attractors in discrete dynamical frameworks and can be applied to wavelet analy-
sis, quantum physics, computer graphics and different applied sciences. This concept was first introduced
by Hutchinson [11] and popularized by Barnsley [2] as a natural generalization of the celebrated Banach
contraction principle. Now, we present novel iterated function framework utilizing the δ-Hardy Rogers type
operators which covers a large range of operators. The operator

T : Pcp(X)→ Pcp(X), T (Y ) = ∪mi=1Ti(Y ), Y ∈ P (X)

is the multifractal operator generated by T = (T1, ..., Tm), such that Ti : X → Pcp(X). A fixed point
V ∗ ∈ Pcp(X) of T is an attractor of the iterated multifunction system T . Next, we establish existence of an
attractor.

Theorem 5 Let Ti : X → Pcp(X), i ∈ {1, ...,m} be a finite family of set-valued operator of a complete
metric space (X, d) such that

δ(Ti(x), Ti(y)) ≤ A1d(x, y) +A2δ(x, Ti(x)) +A3δ(y, Ti(y)) +A4δ(x, Ti(y))

+A5δ(y, Ti(x)),

A′js ∈ R+,
∑5
j=1Aj < 1, x, y ∈ X. Then the operator T : Pcp(X)→ Pcp(X) defined by T (B) = ∪mi=1T i(B)

for all B ∈ Pcp(X) satisfies:

δ(T (B), T (C)) ≤ A1d(B,C) +A2δ(B, T (B)) +A3δ(C, T (C)) +A4δ(B, T (C))

+A5δ(C, T (B)),

where B,C ∈ Pcp(X) and has attractor A in (Pcp(X), δ(d)) such that A = T (A) = ∪mi=1Ti(A), A =
limn→∞ T o

n

(B) and B ∈ Pcp(X).

Proof. Let F ∈ Pcp(X), then F is a non-empty and compact in X. Clearly T (F ) is non-empty. Now
we establish that T (F ) is compact in X. If {yn} ⊂ T (F ), then there is a sequence {un} ⊂ F satisfying
yn = T un(n = 1, 2, ...). Compactness of F implies that there is a subsequence {xnk} ⊂ {un} such that
{xnk} → x ∈ F . Since T is continuous, {ynk} = T xnk → T x ∈ T (F ). Hence, T (F ) is compact in X.
Definition of δ-Hardy Roger type contraction shows that T satisfies

δ(T (B), T (C)) ≤ A11d(B,C) +A21δ(B, T (B)) +A31δ(C, T (C)) +A41δ(B, T (C))

+A51δ(C, T (B)), ∀ B,C ∈ Pcp(X).

Now, we shall use the principle of mathematical induction. The statement is clearly true for m = 1. Now,
for m = 2,

δ (T (B), T (C)) = δ (T1(B) ∪ T2(B), T1(C) ∪ T2(C))

≤ max{A12}δ(B,C) + max{A22}δ(B, T1(B))

+ max{A32}δ(C, T1(C)) + max{A42}δ(B, T1(C))

+ max{A52}δ(C, T1(B)).

Hence by induction inequality is true for all i ∈ 1, ...,m, i.e.,

δ(T (B), T (C)) ≤ A1d(B,C) +A2δ(B, Tn(B)) +A3δ(C, Tn(C)) +A4δ(B, Tn(C))

+A5δ(C, Tn(B)),

where A1 = max{A1j}, A2 = max{A2j}, ..., A5 = max{A5j}, i.e., the operator T satisfy all the hypotheses
of Theorem 1 and consequently T has a attractor A = T (A) = ∪mi=1Ti(A) and A = limT o

n

(B), B ∈ Pcp(X).
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4 Remarks

Remark 1 Choosing suitably the values of constants in Theorems 1, 2 and 3, similar results can be estab-
lished for Kannan [12], Chatterjee [9], Reich [15] and Banach [1] type set-valued contractions.

Remark 2 In Theorem 5, we established the attractors of δ-Hardy Roger type set-valued iterated function
systems, which generalizes the celebrated Hutchinson iterated function systems.

Acknowledgment. The authors are thankful to the learned referees for the very careful reading of the
manuscript and valuable suggestions.
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