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Abstract
Let (Ln) be the Lucas sequence defined by Ln = Ln−1+Ln−2 for n ≥ 2 with initial conditions L0 = 2

and L1 = 1. A repdigit is a nonnegative integer whose digits are all equal. In this paper, we show that
if Ln + Lm is a repdigit, then Ln + Lm = 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 77, 333.

1 Introduction

Let (Fn)n≥0 be the Fibonacci sequence satisfying the recurrence relation Fn+2 = Fn+1 + Fn with initial
conditions F0 = 0 and F1 = 1. Let (Ln)n≥0 be the Lucas sequence following the same recursive pattern as
the Fibonacci sequence, but with initial conditions L0 = 2 and L1 = 1. Fn and Ln are called nth Fibonacci
number and nth Lucas number, respectively. It is well known that

Fn =
αn − βn

α− β and Ln = αn + βn, (1)

where

α =
1 +
√

5

2
and β =

1−
√

5

2
,

which are the roots of the characteristic equation x2 − x − 1 = 0. Also, the following relation between nth

Lucas number Ln and α is well known:
αn−1 ≤ Ln ≤ 2αn (2)

for n ≥ 0. The inequality (2) can be proved by induction.
A repdigit is a nonnegative integer whose digits are all equal. Recently, some mathematicians have

investigated the repdigits which are sums or products of any number of Fibonacci numbers, Lucas numbers,
and Pell numbers. In [2], Luca determined that the largest repdigits in Fibonacci and Lucas sequences are
F10 = 55 and L5 = 11. Then, in [1], the authors have found all repdigits in the Pell and Pell-Lucas sequences.
Here, they showed that the largest repdigits in these sequences are P3 = 5 and Q2 = 6. After that, in [3],
Luca proved that all nonnegative integer solutions (m1,m2,m3, n) of the equation

N = Fm1
+ Fm2

+ Fm3
= d

(
10n − 1

9

)
with d ∈ {1, 2, ..., 9}

have
N ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 44, 55, 66, 77, 99, 111, 555, 666, 11111} .

Later, in [4], the authors studied the similar problem for sums of four Pell numbers. They found all repdigits,
which are sums of four Pell numbers. Moreover, in [8], Marques and Togbe studied on repdigits as products
of consecutive Fibonacci numbers. They proved that the Diophantine equation

Fn · · · Fn+(k−1) = d

(
10m − 1

9

)
with d ∈ {1, 2, ..., 9}
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in positive integers n,m, k such that m > 1 has only the solution (n, k,m, d) = (10, 1, 2, 5). In [6], Irmak and
Togbe handled the above problem with m ≥ 1 for Lucas numbers, and found only the solution (n, k,m, d) =
(4, 2, 2, 7). In [10], the authors found all repdigits which are sums of four Fibonacci or Lucas numbers.
Later, in [11], they found all repdigits which are sums of three Lucas Numbers. In order to solve the above
mentioned problems, some authors have used only elementary methods, and some have used very technical
methods such as linear forms in logarithms. In this paper, we will find all repdigits which are sums of two
Lucas numbers. That is, we deal with the Diophantine equation

N = Lm1 + Lm2 = d

(
10k − 1

9

)
with d ∈ {1, 2, ..., 9} . (3)

Our main result, which is proved in the third section, is the following.

Theorem 1 All nonnegative integer solutions (m1,m2, k,N) of the equation (3) with 0 ≤ m2 ≤ m1 are
given by

(m1,m2, k,N) ∈


(1, 1, 1, 2) , (1, 0, 1, 3) , (0, 0, 1, 4) , (2, 1, 1, 4) , (2, 0, 1, 5) ,

(3, 1, 1, 5) , (2, 2, 1, 6) , (3, 0, 1, 6) , (3, 2, 1, 7) ,
(3, 3, 1, 8) , (4, 1, 1, 8) , (4, 0, 1, 9) , (4, 3, 2, 11) , (5, 5, 2, 22) ,

(6, 3, 2, 22) , (7, 3, 2, 33) , (9, 1, 2, 77) , (12, 5, 3, 333)

 .

2 Auxiliary Results

Lately, in many articles, to solve Diophantine equations such as the equation (3), the authors have used
Baker’s theory lower bounds for a nonzero linear form in logarithms of algebraic numbers. Since such
bounds are of crucial importance in effectively solving of Diophantine equations, we start with recalling
some basic notions from algebraic number theory.
Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + ...+ ad = a0

d∏
i=1

(
X − η(i)

)
∈ Z [x] ,

where the ai’s are relatively prime integers with a0 > 0 and η(i)’s are conjugates of η. Then

h(η) =
1

d

(
log a0 +

d∑
i=1

log
(

max
{
|η(i)|, 1

}))

is called the logarithmic height of η. In particular, if η = a/b is a rational number with gcd(a, b) = 1 and
b > 1, then h(η) = log (max {|a|, b}) .
The following properties of logarithmic height are found in many works stated in the references:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (4)

h(ηγ±1) ≤ h(η) + h(γ), (5)

h(ηm) = |m|h(η). (6)

The following theorem, which is deduced from Corollary 2.3 of Matveev [9], provides a large upper bound
for the subscript m1 in the equation (3) (also see Theorem 9.4 in [5]).
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Theorem 2 Assume that γ1, γ2, . . . , γt are positive real algebraic numbers in a real algebraic number field
K of degree D, b1, b2, . . . , bt are rational integers, and

Λ := γb11 · · · γ
bt
t − 1

is not zero. Then

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2 · · ·At

)
,

where
B ≥ max {|b1|, . . . , |bt|} ,

and Ai ≥ max {Dh(γi), | log γi|, 0.16} for all i = 1, . . . , t.

The following lemma can be found in [4]. And this lemma will be used to reduce the upper bound for
the subscript m1 in the equation (3). In this lemma, the function || · || denotes the distance from x to the
nearest integer. That is, ||x|| = min {|x− n| : n ∈ Z} for a real number x.

Lemma 1 Let Λ = ε+ x1v1 + x2v2 such that εv1v2 6= 0 and x1, x2 ∈ Z. Let X0, c, and δ be positive integers
such that max {|x1| , |x2|} ≤ X0 and

|Λ| < c exp(−δX).

Put v = −v1/v2 and Ψ = ε/v2. Let p/q be a convergent of v with q > X0. Assume that ||qΨ|| > 2X0

q . Then

X < 1
δ log

(
cq2

|v2X0|

)
.

The following lemma is given in [7].

Lemma 2 Let n ∈ N ∪{0} and k,m ∈ Z. Then

L2mn+k ≡ (−1)
(m+1)n

Lk (modLm) , (7)

L2mn+k ≡ (−1)
mn

Lk (modFm) . (8)

3 Proof of Theorem 1

We assume that the equation (3) holds with 0 ≤ m2 ≤ m1. If we run a program with Mathematica in the
range 0 ≤ m2 ≤ m1 ≤ 200, we obtain only the solutions stated in theorem. So, from now on, we can assume
that m1 ≥ 201. Thus, we have

L201 ≤ Lm1
+ Lm2

= d

(
10k − 1

9

)
< 10k − 1.

This shows that

42 ≤ log(L201 + 1)

log 10
< k.

On the other hand, using (2), we see that

10k−1 ≤ d
(

10k − 1

9

)
= Lm1

+ Lm2
≤ 2Lm1

≤ 4αm1 < αm1+4.

Taking the logarithm both sides of the last inequality gives

(k − 1)

(
log 10

logα

)
≤ (m1 + 4).
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This inequality shows that 4.7× k − 8.7 < m1. This implies that 42 < k < m1.
Firstly, assume that d = 9. Then we have Lm1 + Lm2 = 10k − 1 = 9(1 + 10 + 102 + ... + 10k−1).

This implies that 9|Lm1
+ Lm2

. Writing m1 = 60q1 + r1 and m2 = 60q2 + r2 with 0 ≤ r1, r2 ≤ 59, we get
Lm1

+Lm2
≡ Lr1 +Lr2(modL6) by (7). Since 9|L6, it follows that 9|Lr1 +Lr2 . Also, since k > 42 and F6 = 8,

it is obvious that Lm1
+Lm2

= 10k− 1 ≡ 7(mod8), which implies Lm1
+Lm2

≡ Lr1 +Lr2 ≡ 7(mod8) by (8).
Furthermore, we can see that Lm1 +Lm2 ≡ Lr1 +Lr2(modF5) by (8). Since Lm1 +Lm2 = 10k−1 ≡ 4(mod5)
and 5|F5, it follows that Lr1 + Lr2 ≡ 4(mod5). A search with Mathematica gives us that there is no pairs
(r1, r2) satisfying congruences Lr1 + Lr2 ≡ 0(mod9), Lr1 + Lr2 ≡ 7(mod8), and Lr1 + Lr2 ≡ 4(mod5).
Therefore, from now on, we assume that 1 ≤ d ≤ 8.
Now, if we arrange the equation (3) as

αm1 + αm2 − d10k

9
= −

(
βm1 + βm2 +

d

9

)
,

we get the inequality ∣∣∣∣αm1(1 + αm2−m1)− d10k

9

∣∣∣∣ ≤ |β|m1 + |β|m2 +
d

9
≤ 3.

Dividing this inequality by αm1(1 + αm2−m1), we obtain∣∣∣∣1− 10kα−m2
d

9(1 + αm1−m2)

∣∣∣∣ ≤ 3

αm1
< α2.3−m1 . (9)

Let

Γ1 = 1− 10kα−m2
d

9(1 + αm1−m2)
.

If Γ1 = 0, then we have αm1 + αm2 = d 10k

9 , which is impossible since αm1 + αm2 is irrational. Therefore
Γ1 6= 0. Now we put

γ1 = α, γ2 = 10, γ3 =
d

9(1 + αm1−m2)

and
b1 = −m2, b2 = k, b3 = 1.

Then, using (4), (5), and (6), we obtain h(γ1) = logα
2 = 0.4812

2 , h(γ2) = log 10 and

h(γ3) ≤ h(d) + h(9) + h(αm1−m2) + log 2

≤ log 9 + log 9 + (m1 −m2)
logα

2
+ log(2)

< 5.1 + (m1 −m2)
logα

2
.

It is clear that the degree of Q(
√

5) is 2. Since 1 ≤ |logα| ≤ 2 h(α), |log 10| ≤ 2h(10), and
∣∣∣log d

9(1+αn−m)

∣∣∣ ≤
2h(γ3), we can take A1 := 1, A2 := 4.61 and A3 := 10.2 + (m1 −m2) logα. Also, B = max {m2, k, 1} ≤ m1.
Thus applying Theorem 2 to the inequality (9), we get

m1 logα− 2.3 logα < 4.5 · 1012(1 + logm1) (10.2 + (m1 −m2) logα) . (10)

Rearranging the equation (3) as αm1 − d 10k

9 = −
(
βm1 + βm2 + d

9 + αm2
)
and taking absolute value, we

obtain ∣∣∣∣αm1 − d10k

9

∣∣∣∣ ≤ |β|m1 + |β|m2 +
d

9
+ αm2 ≤ αm2 + 3 < αm2+2.9.

This leads to ∣∣∣∣1− α−m110k
d

9

∣∣∣∣ < αm2−m1+2.9. (11)
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We now put γ1 = α, γ2 = 10, γ3 =
d

9
and b1 = −m1, b2 = k, b3 = 1. A similar argument to the above gives

that A1 := 1, A2 := 4.61, A3 := 8.8, and B = m1. Let Γ2 = α−m110k d9 . Similarly, one can justify that
Γ2 6= 0. Thus, again applying Theorem 2, we get

(m1 −m2) logα− 2.9 logα < 3.94 · 1013(1 + logm1). (12)

Substituting the inequality (12) into (10), a computer search withMathematica gives us thatm1 < 1.85·1030.
Put X0 = 1.85 · 1030.

Let Λ1 = log
(
d
9

)
−m1 logα+ k log 10. From (3), we see that

αm1 − d10k

9
= −d

9
− βm1 − Lm2 ≤ −

d

9
− βm1 − 1 < 0.

A simple computation shows that Λ1 > 0. By (11), it is seen that

0 < Λ1 < eΛ1 − 1 < αm2−m1+2.9,

which leads to

|Λ1| < α2.9αm2−m1 < α3 exp(−0.48(m1 −m2)).

We now put

c = α3, X = m1 −m2, δ = 0.48, x1 = m1, x2 = k, ε = log

(
d

9

)
, Ψ =

log
(
d
9

)
log 10

and v = logα
log 10 . Also we have

Λ1

log 10
=

log
(
d
9

)
log 10

−m1
logα

log 10
+ k.

It is clear that max {|x1| , |x2|} = m1 ≤ X0. We found that q63, the denominator of the 63th convergent of v
satisfies the hypothesis of Lemma 1. Thus we get X = m1 −m2 < 165.

Now take m1 −m2 < 165 and say

Λ2 = log

(
d

9(1 + αm1−m2)

)
−m2 logα+ k log 10.

It can be easily seen that Λ2 > 0. Then, it follows that 0 < Λ2 < eΛ2 − 1 < α2.3−m1 by (9). This yields to

|Λ2| < α2.3α−m1 < α2.3 exp(−0.48m1).

Put

c = α2.3, X = m1, δ = 0.48, x1 = m2, x2 = k, ε = log

(
d

9(1 + αm1−m2)

)
,

Ψ =

log

(
d

9(1 + αm1−m2)

)
log 10

, v =
logα

log 10
.

We found that q69, the denominator of the 69th convergent of v satisfies the hypothesis of Lemma 1. Applying
Lemma 1, we get m1 < 188. This contradicts the assumption that m1 ≥ 201. This completes the proof.
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