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Abstract

In this note, we present fractional polynomials, fractional rational functions and find explicit new
fractional polynomial or rational solutions of Abel differential equations.

1 Introduction

In 2006, Behloul and Cheng [1] gave an algorithm to compute all rational solutions of differential equations
of the form

Q(z)
dy

dz
= Pm(z)ym + Pm−1(z)y

m−1 + ...+ P1(z)y + P0(z), z ∈ C,m ∈ N,m ≥ 3

where Q,Pi for i = 0, 1, 2, ...,m are polynomials in z and Q,Pm are not trivial.
By putting y(z) = g(z)/Pm(z) the authors are able to obtain a new equation such that each of its rational

solutions is a polynomial. It is also shown that the polynomial solutions of this new equation have degrees
bounded above, and that they can be computed in automatic manners.
In 2011, Behloul and Cheng [2] gave another algorithm to look for the rational solutions of differential

equations of the following more general form

dy

dz
=

An(z)yn +An−1(z)y
n−1 + ···+A0(z)

Bm(z)ym +Bm−1(z)ym−1 + ···+B0(z)
, z ∈ C, m, n ∈ N,

where A0, A1, ..., An and B0, B1, ..., Bm are polynomials in z such that An and Bm are not trivial.
In this note, our purpose is to characterize all polynomials with nonnegative rational powers (fractional-

polynomials) and quotient of such polynomials which are solutions of Abel differential equations of the first
kind with fractional-polynomial coeffi cients.
Fractional-polynomials and fractional-rational functions are generalizations of polynomials and rational

functions that may occur in the characteristic equations of functional differential and/or difference equations
[4], or as interpolating functions that behave better than the usual interpolating polynomials and rational
functions [3].
Exact solutions of nonlinear differential equations, on the other hand, are needed in the theory of limit

cycles [5], and elsewhere as illustrated by Llibre and Valls [6], Thieu Vo, Grasegger and Winkler [8] who
used the results in [1, 2] to determine respectively "maximum number of polynomial solutions" and "rational
general solutions" of some nonlinear differential equations.
We therefore believe that exact generalized polynomial and rational solutions of differential equations

will be of use in similar research areas.
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2 Exact Solutions of Abel Type Differential Equations

2 Main Results

Let N, C and Q be respectively the sets of nonnegative integers, complex numbers and rational numbers.
First of all, a fractional-polynomial is a function of the form

f(x) = anx
γn + an−1x

γn−1 + · · ·+ a1x
γ1 + a0 (1)

where n ∈ N, ai ∈ C, γi ∈ Q, and γn > γn−1 > · · · > γ1 > 0 and x ∈ [0,+∞). If n ≥ 1 and an 6= 0 then
we call γn the fractional degree of f(x). If n = 0 then the fractional degree of f(x) is its usual degree as a
constant polynomial. The index of a fractional-polynomial of the form (1) with irreducible γ1, ..., γn is the
integer r which is defined as the least common multiple of the denominators of γi. The index of a constant
fractional-polynomial is equal to 1. A fractional-rational function is a function of the form

R(x) =
anx

γn + an−1x
γn−1 + · · ·+ a1x

γ1 + a0
bmxsm + bm−1xsm−1 + · · ·+ b1xs1 + b0

(2)

where n,m ∈ N, ai, bi ∈ C, γi, si ∈ Q, γi, si irreducible, γn > · · · > γ1 > 0, sm > · · · > s1 > 0, bm 6= 0, and
x ∈ [0,+∞)\Ω where

Ω = {x ∈ [0,+∞) : bmx
sm + bm−1x

sm−1 + · · ·+ b1x
s1 + b0 = 0 }.

Let r be the least common multiple of the denominators of γi and si. Put x = tr, t ≥ 0, then (2) becomes

R(x) = R(tr) =
ant

rγn + an−1t
rγn−1 + · · ·+ a1t

rγ1 + a0
bmtrsm + bm−1trsm−1 + · · ·+ b1trs1 + b0

≡ F (t).

It is clear that F (t) is a rational function. Let g(t) = gcd(ant
rγn+an−1t

rγn−1+· · ·+a0, bmtrsm+bm−1t
rsm−1+

· · ·+ b0). Then

F (t) =
g(t)h(t)

g(t)k(t)
=
h(t)

k(t)
,

where h(t), k(t) are polynomials such that gcd(h(t), k(t)) = 1. But since t = x
1
r , we see that F (t) becomes

F (t) = F (x
1
r ) = R(x) =

h(x
1
r )

k(x
1
r )
.

Let r1 be the index of h(x
1
r ) and r2 be the index of k(x

1
r ). Then the index of a fractional-rational function

of the form (2) is the least common multiple of r1 and r2.

Example 1 Let R(x) =
x
3
2 + x

x
5
6 + x

1
3 + x

1
2 + 1

, x ∈ [0,+∞)\Ω. The least common multiple of the denominators

of γi and si, in this case, is r = 6. Put x = t6, t ≥ 0. Then we obtain

R(x) = R(t6) =
t9 + t6

t5 + t2 + t3 + 1
.

But gcd(t9 + t6, t5 + t2 + t3 + 1) = t3 + 1. Thus,

t9 + t6

t5 + t2 + t3 + 1
=

(t3 + 1)t6

(t3 + 1)(t2 + 1)
=

t6

t2 + 1
=

x

x
1
3 + 1

= R(x).

We conclude that index of the fractional-rational function R(x) is equal to 3.
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2.1 Abel Differential Equations of the First Kind

Abel equations of the second kind take the form

(g0 + g1y) y′ = f0 + f1y + f2y
2 + f3y

3 + · · · ,

where g0, g1, f0, f1, f2, ... are functions in x and y is the unknown function in x to be sought. These equations
appear early in mathematics and some of them can be explicitly solved (see the Handbook of Exact Solutions
for Ordinary Differential Equations by Polyanin and Zaitsev [7]). When g0, f0, f1, f2, f3 are polynomials, and
g1 = f4 = f5 = · · · ≡ 0, it has been shown that the number of its rational solutions is finite and they can be
computed in a systematic manner [1, 2].
Consider

P4(x)y′ = P3(x)y3 + P2(x)y2 + P1(x)y + P0(x), x > 0 (3)

where P0, P1, P2, P3, P4 are fractional-polynomials such that P4 and P3 are not trivial.
The aim of this note is to establish the following main result.

Theorem 1 Equation (3) has a finite number of fractional-rational solutions and they can be determined in
a systematic manner.

Let ri be the index of each fractional polynomial Pi in (3). Let s = lcm(r0, r1, r2, r3, r4). If we put

x = ts and w(t) = y(x), t > 0,

then Eq. (3) becomes

P4(t
s)w′ = sts−1

(
P3(t

s)w3 + P2(t
s)w2 + P1(t

s)w + P0(t
s)
)
, t > 0

where P4(ts), sts−1P3(ts), sts−1P2(ts), sts−1P1(ts) and sts−1P0(ts) are all polynomials. We can then assume
that P0, P1, P2, P3, P4 are polynomials in equation (3).

2.2 Fractional-Rational Solutions

Let us now seek fractional-rational solutions of (3).

Proposition 1 Every rational-fractional solution y(x) of (3) is of the form

y(x) =
v(x)

xP3(x)

where v(x) is a fractional-polynomial.

To prove this, let y(x) be such a fractional-rational solution with index r. Then we can write it as

y(x) =
anx

n
r + an−1x

n−1
r + · · ·+ a1x

1
r + a0

bmx
m
r + bm−1x

m−1
r + · · ·+ b1x

1
r + b0

.

If we put
x = tr and w(t) = y(x),

then

w(t) =
ant

n + an−1t
n−1 + · · ·+ a1t+ a0

bmtm + bm−1tm−1 + · · ·+ b1t+ b0

which is a rational function. Equation (3) becomes

P4(t
r)w′ = rtr−1

(
P3(t

r)w3 + P2(t
r)w2 + P1(t

r)w + P0(t
r)
)
, t > 0 (4)
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According to [1, Section 4], we know that

w(t) =
f(t)

rtr−1P3(tr)
(5)

where f(t) is a polynomial.

Finally, from (5), we have w(t) =
tf(t)
r

trP3(tr)
and then y(x) =

v(x)

xP3(x)
where v(x) is a fractional-polynomial.

Now, if we put y(x) =
v(x)

xP3(x)
in equation (3), we obtain

Q(x)v′ = v3 +Q2(x)v2 +Q1(x)v +Q0(x), x > 0, (6)

where Q,Qi are polynomials. Therefore we may now consider

P3(x)y′ = y3 + P2(x)y2 + P1(x)y + P0(x), x > 0 (7)

and look for its fractional-polynomials solutions where Pi are polynomials.
Let us start with a particular case.

Example 2 Let us look for fractional-polynomial solutions of an arbitrary index of

2x2y′ = y3 − (3x− 1) y2 +
(
3x2 − 2x

)
y − x3 + 3x2 − x, x > 0. (8)

For r = k, k ∈ N\{0}, put x = tk, t > 0 and w(t) = y(x). Equation (8) becomes

2tk+1

k
w′ = w3 −

(
3tk − 1

)
w2 +

(
3t2k − 2tk

)
w − t3k + 3t2k − tk, t > 0. (9)

Let n = degw. Then deg( 2t
k+1

k w′) = n+k, deg(w3) = 3n, deg(
(
3tk − 1

)
w2) = 2n+k, deg(

(
3t2k − 2tk

)
w) =

n+ 2k and deg(−t3k + 3t2k− tk) = 3k. Now, if n > k then 3n > k+n, 2n+ k, n+ 2k, 3k, and then there is
no polynomial solution of (9). If k > n then 3k > k+n, 3n, 2n+k, n+2k, and again there is no polynomial
solution of (9).
We conclude that k = n, in this case, we see that

deg(w3) = deg((3tn − 1)w2) = deg(
(
3t2n − 2tn

)
w)

= deg(−t3n + 3t2n − tn) > deg(
2tn+1

n
w′).

If w(t) = ant
n + ...+a1t+a0 such that n ≥ 1 and an 6= 0, then after substituting w(t) in equation (9) we get

: a3n − 3a2n + 3an − 1 = 0, then an = 1. Put z(t) = w(t)− tn, (deg(z) ≤ n− 1), in equation (9), then we get

2tn+1

n
(z + tn)′ = (z + tn)3 − (3tn − 1) (z + tn)2 +

(
3t2n − 2tn

)
(z + tn)− t3n + 3t2n − tn,

thus,
2tn+1

n
z′ = z3 + z2 − tn. (10)

Let a = deg(z) > 0. Then deg(
2tn+1

n
z′) = a + n, deg(z3) = 3a,deg(z2) = 2a, and deg(tn) = n. We have

a < n. Then a + n > 2a, n, it is necessary that a + n = 3a, i.e. a =
n

2
. We can write equation (10) as

(
2t

n
z′ + 1)tn = (z+ 1)z2. Then tn divides (z+ 1)z2 but gcd(z+ 1, z2) = 1, (because z2 − (z− 1)(z+ 1) = 1),

and tn does not divide z+ 1, then tn divides z2. We conclude that z(t) = bt
n
2 . Now, substituting z(t) by bt

n
2
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in (10), we get bt
3n
2 = b3t

3n
2 + b2tn− tn and then b = 1 or b = −1. Hence, w(t) = tn+ t

n
2 and w(t) = tn− tn2

are all polynomial solutions of (9).
Finally, we conclude that y1(x) = x + x

1
2 and y2(x) = x − x 1

2 are all fractional-polynomial solutions
of equation (8) and their index is equal to 2 and there is no other fractional-polynomial solution of index
different from 2.

Let us now analyze indices of (7) in the general case. Before solving the general case, we recall a classical
identity.

Proposition 2 For all positive integer n and complex numbers a1, a2, ..., an we have(
n∑
i=1

ai

)3
=
∑
i

a3i + 3
∑
i6=j

aia
2
j + 6

∑
i<j<k

aiajak where i, j, k ∈ {1, 2, ..., n}.

Proposition 3 The possible values of an index of a fractional-polynomial solution of (7) are 1, 2, 3 or 6.

Proof. Let y = anx
γn + an−1x

γn−1 + · · ·+ a1x
γ1 + a0 be a fractional-polynomial solution of (7). We have

γi =
αi
βi
where αi, βi are positive integers with gcd(αi, βj) = 1 for i = 1, ..., n. Assume that there exists i

such that gcd(3, βi) = 1, βi > 3. Let

β = max
1≤i≤n

{βi : gcd(3, βi) = 1} and γj = max
1≤i≤n

{γi : βi = β}.

Then aj 6= 0. After substituting y by anxγn + ... + ajx
γj + · · · + a1t

γ1 + a0 in (7) we see that the term
a3jx

3γj given after expanding y3 appears only for one time in (7). Then aj = 0 which is a contradiction. We
conclude that 3 divides βi for all i ∈ {1, ..., n} such that βi 6= 1, 2, i.e. βi = 1 or 2 or 3miMi where mi, Mi

are positive integers such that gcd(3,Mi) = 1. If there exists i such that βi ≥ 3, then let m = maxmi and
k = 3m. After putting x = tk and w(t) = y(x) in equation (7), we have

P3(t
k)w′ = ktk−1

(
w3 + P2(t

k)w2 + P1(t
k)w + P0(t

k)
)
, t > 0, (11)

and
w(t) = ant

kγn + an−1t
kγn−1 + · · ·+ a1

kγ1 + a0

where

kγi = 3mαi or
3mαi

2
or

3m−miαi
Mi

with gcd(3,Mi) = 1.

Assume that there exists i such that Mi > 3. Let γj = max{γi where Mi > 3}. Then aj 6= 0. After
substituting w by antkγn + ...+ajt

kγj + · · ·+a1t
kγ1 +a0 in (11), we see that the term a3j t

k−1+3kγj given after
expanding ktk−1w3 appears only for one time in (11). Then aj = 0 which is a contradiction. We conclude
that Mi ≤ 2 for all i, i.e. βi = 2ε × 3mi where ε ∈ {0, 1} and mi are nonnegative integers. After putting

z(x) = y(x) +
P2(x)

3
in (7), we obtain

P3(x)z′ = z3 +Q1(x)z +Q0(x), x > 0,

where Q1, Q0 are polynomials. In the following, we take P2 ≡ 0 in (7) and γ0 = 0. Assume that there exists
i such that mi ≥ 2. Let m = max

1≤i≤n
mi and k = 2 × 3m−1. After putting x = tk and w(t) = y(x) in equation

(7), we have
P3(t

k)w′ = ktk−1
(
w3 + P1(t

k)w + P0(t
k)
)
, t > 0, (12)

and
w(t) = ant

γ′n + an−1t
γ′n−1 + · · ·+ a1t

γ′1 + a0t
γ′0
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where

γ′i = kγi =
21−εαi3

m−mi

3
and ε ∈ {0, 1},

i.e. γ′i = θi or
δi
3
where θi, δi are respectively nonnegative integers and positive integers such that gcd(3, δi) =

1. Let δj = max δi. Then aj 6= 0, γ′j =
δj
3
. Let i be an integer in {0, 1, ..., n} − {j}. After substituting w by

ant
γ′n + ...+ ajt

γ′j + · · ·+ a1t
γ′1 + a0t

γ′0 in (12) we see that the term 3aia
2
j t
k−1+γ′i+2γ

′
j given after expanding

ktk−1w3 appears only for one time in (12). Then ai = 0 for all i ∈ {0, 1, ..., n} − {j}. We conclude that
w(t) = ajt

δi
3 , i.e.

y(x) = aj x
δi
3k = aj x

δi
2ε ×3m .

Now, after substituting y by aj x
δi

2ε ×3m in (7) we see that the term a3j x
δi

2ε ×3m−1 appears only for one
time in (7). Then aj = 0 which is a contradiction. We conclude that mi < 2 for all i ∈ {1, ..., n}.

Finally, we get βi = 2ε × 3mi where ε,mi ∈ {0, 1} i.e. βi = 1 or 2 or 3 or 6.

Corollary 1 All fractional-polynomial solutions y(x) of (7) are the polynomial solutions w(t) of (11) for
k = 6.

Example 3 Let
3x2y′ = y3 − 3xy2 +

(
3x2 + x

)
y − x3 + 2x2 − x, x > 0. (13)

According to [1, 2], equation (13) has no polynomial solutions. After putting x = t6 and y(x) = y(t6) ≡ w(t)
in equation (13), we have

t7w′ = 2(w3 − 3t6 w2 + (3t12 + t6)w − t18 + 2t12 − t6), t > 0. (14)

According to [1, 2], all polynomial solutions of (14) are w(t) = t6+t2, t6+jt2 and t6+j2t2 where j = exp( 2iπ3 ).

Then all fractional-polynomial solutions of (13) are y(x) = x+ x
1
3 , x+ jx

1
3 and x+ j2x

1
3 .

We have thus obtained in this short note the means to calculate all fractional rational solutions of the
Abel differential equations. It is hoped that new exact solutions for other differential equations can be found
in similar, if not identical, manners.
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