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Abstract

A new distribution, called the Weibull-Rayleigh distribution, was recently in-
troduced by Ganji, et al. (2016). In this paper, we consider the generalized upper
record values (or k-th upper record values) from this distribution and obtained
exact explicit expressions as well as several recurrence relations satisfied by single
and product moments. The results include as particular cases the above relations
for moments of upper record statistics. In addition, conditional expectation and
recurrence relations for single moments are used to characterize this distribution
and some computational works are also carried out.

1 Introduction

A random variable X is said to have a Weibull-Rayleigh distribution (Ganji et al.

(2016)), if its probability density function (pdf) is of the form

f(x) =
βx

θα2

(

x2

2θα2

)β−1

e−(x2/2θα2)β

, x ≥ 0, α, β, θ > 0 (1)

with corresponding distribution function (df)

F̄ (x) = e−(x2/2θα2)β

, x ≥ 0, α, β, θ > 0. (2)

In view of (1) and (2), it is easy to see that

f(x) =
β

2β−1(θα2)β
x2β−1F̄ (x). (3)
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676 Exact Moments and Characterizations of the Weibull-Rayleigh Distribution

Ganji et al. (2016) pointed out Weibull-Rayleigh distribution is quite effective to
provide the best fits for real data sets. Since the results, on real life data compared
with other known distributions like Beta-Pareto, Three parameters Weibull, General-
ized exponential and Pareto, revealed that this distribution provides a better fit for
modelling real life data.

The statistical study of record values in a sequence of independently and identically
distributed (iid) continuous random variables was first formulated by Chandler (1952).
For a survey on important results developed in this area one may refer to Arnold et

al. (1998), Ahsanullah (1995) and Ahsanullah and Nevzorov (2015). Dziubdziela and
Kopociński (1976) have generalized the concept of record values of Chandler (1952) by
random variables of a more generalized nature and called them the k-th record values.
Later, Minimol and Thomas (2013) called the record values defined by Dziubdziela and
Kopociński (1976) also as the generalized record values, since the r-th member of the
sequence of the ordinary record values is also known as the r-th record value. Setting
k = 1, we obtain ordinary record statistics.

For applications of generalized upper record values or k-th record values one may
refer to Kamps (1995) and Danielak and Raqab (2004).

Let {Xn, n ≥ 1} be a sequence of iid random variables with df F (x) and pdf f(x).
The j-th order statistic of a sample X1, X2, . . . , Xn is denoted by Xj:n. For a fixed

positive integer k, we define the sequence {U (k)
n , n ≥ 1} of k-th upper record times of

{Xn, n ≥ 1} as follows:

U
(k)
1 = 1,

U
(k)
n+1 = min

{

j > U (k)
n : Xj:j+k−1 > X

U
(k)
n :U

(k)
n +k−1

}

.

The sequence {Y (k)
n , n ≥ 1}, where Y

(k)
n = X

U
(k)
n

is called the sequence of generalized

upper record values or k-th upper record values of {Xn, n ≥ 1}. Note that for k = 1,

we have Y
(1)
n = XUn , n ≥ 1, which are the record values of {Xn, n ≥ 1} as defined in

Ahsanullah (1995). Moreover, we see that Y
(k)
0 = 0 and Y

(k)
1 = min (X1, X2, ..., Xk) =

X1:k. The pdf of Y
(k)
n and the joint pdf of Y

(k)
m and Y

(k)
n are given by (Dziubdziela

and Kopociński (1976), Grudzień (1982))

f
Y

(k)
n

(x) =
kn

(n − 1)!
[−lnF̄ (x)]n−1 [F̄ (x)]k−1 f(x), n ≥ 1, (4)

and

f
Y

(k)
m ,Y

(k)
n

(x, y) =
kn

(m − 1)!(n − m − 1)!
[−lnF̄ (x)]m−1 f(x)

F̄ (x)

×[lnF̄ (x) − lnF̄ (y)]n−m−1[F̄ (y)]k−1 f(y) (5)

for x < y, 1 ≤ m < n, n ≥ 2 where F̄ (x) = 1 − F (x).
For some recent developments on record values and generalized upper record values

(k-th upper record values) with special reference to those arising from generalized
Rayleigh, Kumaraswamy-Burr III, exponentiated Pareto type I, exponential, Gumble,
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Pareto, generalized Pareto, Burr, Weibull, Gompertz, Makeham, exponential-Weibull,
additive Weibull and modified Weibull distributions, see Kumar (2015), Kumar et

al. (2017), Kumar and Kumar (2018), Grudzień and Szynal (1997), Pawlas and Szynal
(1998, 1999, 2000), Khan and Zia (2009), Minimol and Thomas (2013, 2014), Khan and
Khan (2016) and Khan et al. (2017), respectively. In this work we mainly focus on the
study of generalized upper record values arising from the Weibull-Rayleigh distribution.

2 Single Moments and Relations

In this section we will derive the exact explicit expressions and some recurrence rela-
tions for single moments of generalized upper record values from the Weibull-Rayleigh
distribution.

THEOREM 1. For the Weibull-Rayleigh distribution given in (2) and 1 ≤ k ≤ n,
j = 0, 1, ...

E(Y (k)
n )

j
=

(2θα2)j/2Γ(n + (j/2β))

kj/2βΓ(n)
(6)

PROOF. From (2) and (4), we have

E(Y (k)
n )

j
=

(2θα2)j/2kn

Γ(n)

∫ ∞

0

[−lnF̄ (x)]n+(j/2β)−1[F̄ (x)]k−1f(x)dx. (7)

By setting t = F̄ (x) in (7), we get

E(Y (k)
n )

j
=

(2θα2)j/2kn

Γ(n)

∫ 1

0

[−lnt]n+(j/2β)−1tk−1dt. (8)

In view of Gradshetyn and Ryzhik (2007, p-557), note that

∫ 1

0

[−lnx]µ−1xν−1dx =
Γ(µ)

νµ
. (9)

On substituting (9) in (8), we obtained the result given in (6).

REMARK 1. Setting α = 1/
√

2 and β = 1 in (6), we get the exact expression for
single moments of generalized upper record values from the Rayleigh distribution in
the form

E(Y (k)
n )

j
=

θj/2Γ(n + (j/2))

kj/2Γ(n)
.

COROLLARY 1. The exact expression for single moments of upper record values
from the Weibull-Rayleigh distribution has the form

E(XUn)j =
(2θα2)j/2Γ(n + (j/2β))

Γ(n)
. (10)
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REMARK 2. Putting α = 1/
√

2 and β = 1 in (10), the result for single moments
of upper record values is deduced for the Rayleigh distribution as

E(Y (k)
n )

j
=

θj/2Γ(n + (j/2))

Γ(n)
.

THEOREM 2. For the distribution given in (2) and 1 ≤ k ≤ n, j = 0, 1, ...,

E(Y (k)
n )

j+2β
= E(Y

(k)
n−1)

j+2β
+

2β−1(θα2)β(j + 2β)

βk
E(Y (k)

n )
j
. (11)

PROOF. From (3) and (4), we have

E(Y (k)
n )

j
=

βkn

2β−1(θα2)βΓ(n)

∫ ∞

0

xj+2β−1[−lnF̄ (x)]n−1[F̄ (x)]kdx.

Now, (11) can be seen in view of Khan et al. (2017) by noting that

E(Y (k)
n )

j − E(Y
(k)

n−1)
j

=
jkn−1

Γ(n)

∫ ∞

0

xj−1[−lnF̄ (x)]n−1[F̄ (x)]kdx.

REMARK 3. Putting α = 1/
√

2 and β = 1 in (11), we deduce the recurrence
relation for single moments of generalized upper record values from the Rayleigh dis-
tribution with parameter θ as established by Khan et al. (2015).

COROLLARY 2. The recurrence relation for single moments of upper record values
from the Weibull-Rayleigh distribution has the form

E(XUn)j+2β = E(XUn−1 )
j+2β +

2β−1(θα2)β(j + 2β)

β
E(XUn)j . (12)

REMARK 4. Letting α = 1/
√

2 and β = 1 in (12), the recurrence relation for
single moments of upper record values from the Rayleigh distribution is deduced as
established by Khan et al. (2015).

Numerical computations for the first four moments of upper record values from
the Weibull-Rayleigh distribution for arbitrary choosen values of α, β, θ, and various
sample size n = 1, 2, . . . , 5 are given in Table 1.

Trend of the first four moments of upper record values from the Weibull-Rayleigh
distribution for n = 1, 2, ..., 5 and different values of parameters are presented in fol-
lowing figures.
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Table 1. First four moments of upper record values
α = 0.5, θ = 0.5 α = 0.5, θ = 1

n β = 1 β = 2
E(X) E(X2) E(X3) E(X4) E(X) E(X2) E(X3) E(X4)

1 0.4431 0.2500 0.1661 0.125 0.6409 0.4431 0.3249 0.2500

2 0.6646 0.5000 0.4154 0.375 0.8012 0.6646 0.5686 0.5000
3 0.8308 0.7500 0.7269 0.750 0.9013 0.8308 0.7818 0.7500

4 0.9693 1.0000 1.090 1.250 0.9764 0.9693 0.9773 1.0000
5 1.0904 1.2500 1.4994 1.875 1.0374 1.0904 1.1606 1.2500

α = 1.0, θ = 0.5 α = 1.0, θ = 1
n β = 1 β = 2

E(X) E(X2) E(X3) E(X4) E(X) E(X2) E(X3) E(X4)

1 0.8862 1.0000 1.3293 2.0000 1.2818 1.7724 2.5995 4.0000
2 1.3293 2.0000 3.3233 6.0000 1.6023 2.6586 4.5491 8.0000

3 1.6616 3.0000 5.8158 12.000 1.8025 3.3233 6.2551 12.000
4 1.9386 4.0000 8.7237 20.000 1.9528 3.8772 7.8188 16.000

5 2.1809 5.0000 11.995 30.000 2.0748 4.3618 9.2848 20.000

3 Product Moments and Relations

This section contains the explicit expressions and recurrence relations for product mo-
ments of generalized upper record values from the Weibull-Rayleigh distribution. We
shall first establish the explicit expression for the product moments of generalized upper
record values.

THEOREM 3. For the distribution as given in (2). Fix a positive integer k ≥ 1,
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for 1 ≤ m ≤ n − 1 and i, j = 0, 1, ...

E[(Y (k)
m )i(Y (k)

n )j ] =
(2θα2)(i+j)/2

k(i+j)/2βΓ(m)Γ(n − m)

n−m−1
∑

u=0

(−1)n−m−u−1

(

n − m− 1

u

)

× Γ(n + (i + j)/2β)

[n + (i/2β) − u − 1]
. (13)

PROOF. From (5), for 1 ≤ m ≤ n − 1 and i, j = 0, 1, ... , we have

E[(Y (k)
m )i(Y (k)

n )j ] =
kn

Γ(m)Γ(n − m)

∫ ∞

0

∫ y

0

xiyj [−lnF̄ (x)]m−1 f(x)

F̄ (x)

×[lnF̄ (x) − lnF̄ (y)]n−m−1 [F̄ (y)]k−1f(y)dxdy (14)

On expanding [lnF̄ (x) − lnF̄ (y)]n−m−1 in (14), we have

E[(Y (k)
m )i(Y (k)

n )j] =
kn

Γ(m)Γ(n − m)

n−m−1
∑

u=0

(−1)n−m−u−1

(

n − m − 1

u

)

×
∫ ∞

0

yj [−lnF̄ (y)]u[F̄ (y)]k−1f(y)I(y)dy, (15)

where

I(y) =

∫ y

0

xi[−lnF̄ (x)]n−u−2 f(x)

F̄ (x)
dx. (16)

By setting t = −lnF̄ (x) in (16), we find that

I(y) = (2θα2)i/2

∫ −lnF̄ (y)

0

tn+(i/2β)−u−2dt

=
(2θα2)i/2[−lnF̄ (y)]n+(i/2β)−u−1

[n + (i/2β) − u − 1]
.



Singh et al. 681

Substituting for I(y) in (15) and simplifying the resulting expression, we get

E[(Y (k)
m )i(Y (k)

n )j ] = A

∫ ∞

0

yj [−lnF̄ (y)]n+(i/2β)−1[F̄ (y)]k−1f(y)dy, (17)

where

A =
(2θα2)i/2kn

Γ(m)Γ(n − m)

n−m−1
∑

u=0

(−1)n−m−u−1

(

n − m − 1

u

)

1

[n + (i/2β) − u − 1]
.

Again by setting z = −lnF̄ (y) in (17), we have

E[(Y (k)
m )i(Y (k)

n )j ] = (2θα2)j/2A

∫ ∞

0

zn+[(i+j)/2β]−1e−kzdz,

and hence the result given in (13).

REMARK 5. Setting α = 1/
√

2 and β = 1 in (13), we get the exact expression for
product moments of generalized upper record values from the Rayleigh distribution in
the form

E[(Y (k)
m )i(Y (k)

n )j ] =
θ(i+j)/2

k(i+j)/2Γ(m)Γ(n − m)

n−m−1
∑

u=0

(−1)n−m−u−1

(

n − m− 1

u

)

× Γ(n + (i + j)/2)

[n + (i/2) − u − 1]
.

IDENTITY 1. For 1 ≤ m < n,

n−m−1
∑

u=0

(−1)n−m−u−1

(

n − m − 1

u

)

1

(n − u − 1)
=

Γ(m)Γ(n − m)

Γ(n)
. (18)

PROOF. Putting i = j = 0 in (13), we get the required result.

REMARK 6. At i = 0 in (13), we have

E(Y (k)
n )j =

(2θα2)j/2

kj/2βΓ(m)Γ(n − m)

n−m−1
∑

u=0

(−1)n−m−u−1

(

n − m− 1

u

)

×Γ(n + (j/2β))

(n − u − 1)
. (19)

On using (18) in (19), we find that

E(Y (k)
n )j =

(2θα2)j/2Γ(n + (j/2β))

kj/2βΓ(n)
,
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which is the exact expression for single moments from the Weibull-Rayleigh distribu-
tion, as obtained in (6).

COROLLARY 3. The exact explicit expression for product moments of upper record
values from the Weibull-Rayleigh distribution has the form

E[(XUm)i(XUn)j ] =
(2θα2)(i+j)/2

Γ(m)Γ(n − m)

n−m−1
∑

u=0

(−1)n−m−u−1

(

n − m − 1

u

)

× Γ(n + (i + j)/2β)

[n + (i/2β) − u − 1]
. (20)

REMARK 7. Putting α = 1/
√

2 and β = 1 in (20), the result for product moments
of upper record values is deduced for the Rayleigh distribution as

E[(XUm)i(XUn)j ] =
θ(i+j)/2

Γ(m)Γ(n − m)

n−m−1
∑

u=0

(−1)n−m−u−1

(

n − m − 1

u

)

× Γ(n + (i + j)/2)

[n + (i/2) − u − 1]
.

THEOREM 4. For m ≥ 1, m ≥ k and i, j = 0, 1, ...,

E[(Y (k)
m )i(Y

(k)
m+1)

j+2β] = E[(Y (k)
m )i+j+2β +

2β−1(θα2)β(j + 2β)

βk
E[(Y (k)

m )i(Y
(k)
m+1)

j]

(21)
and for 1 ≤ m ≤ n − 2, i, j = 0, 1, ...,

E[(Y (k)
m )i(Y (k)

n )j+2β] = E[(Y (k)
m )i(Y

(k)
n−1)

j+2β] +
2β−1(θα2)β(j + 2β)

βk
E[(Y (k)

m )i(Y (k)
n )j].

(22)

PROOF. From (3) and (5), we have

E[(Y (k)
m )i(Y (k)

n )j ] =
βkn

2β−1(θα2)βΓ(m)Γ(n − m)

∫ ∞

0

∫ ∞

x

xiyj+2β−1[−lnF̄ (x)]m−1 f(x)

F̄ (x)

×[lnF̄ (x) − lnF̄ (y)]n−m−1[F̄ (y)]kdydx.

Now, (22) can be proved by noting that in view of Khan et al. (2017)

E[(Y (k)
m )i(Y (k)

n )j] − E[(Y (k)
m )i(Y

(k)
n−1)

j ]

=
jkn−1

Γ(m)Γ(n − m)

∫ ∞

0

∫ ∞

x

xiyj−1

×[−lnF̄ (x)]m−1 f(x)

F̄ (x)
[lnF̄ (x) − lnF̄ (y)]n−m−1 [F̄ (y)]kdydx.
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Now putting n = m + 1 in (22) and noting that E[(Y
(k)
m )i(Y

(k)
m )j] = E(Y

(k)
m )i+j , the

recurrence relation given in (21) can easily be established.

REMARK 8. At i = 0 in (22), the recurrence relation for product moments reduces
to relation for single moments as obtained in (11).

REMARK 9. Putting α = 1/
√

2 and β = 1 in (22), we deduce the recurrence
relation for product moments of generalized upper record values from the Rayleigh
distribution with parameter θ, established by Khan et al. (2015).

COROLLARY 4. The recurrence relation for product moments of upper record
values from the Weibull-Rayleigh distribution distribution has the form

E[(XUm)i(XUn)j+2β] = E[(XUm)i(XUn−1 )
j+2β]

+
2β−1(θα2)β(j + 2β)

β
E[(XUm)i(XUn)j]. (23)

REMARK 10. Letting α = 1/
√

2 and β = 1 in (23), the recurrence relation for
product moments of upper record values from the Rayleigh distribution is deduced, as
established by Khan et al. (2015).

4 Characterizations

Following theorem contains characterization of the Weibull-Rayleigh distribution on
using the recurrence relation for single moments of generalized upper record statistics.

THEOREM 5. Fix a positive integer k ≥ 1 and let j be a non-negative integer, a
necessary and sufficient condition for a random variable X to be distributed with df
given by (2) is that

E(Y (k)
n )

j+2β
= E(Y

(k)
n−1)

j+2β
+

2β−1(θα2)β(j + 2β)

βk
E(Y (k)

n )
j

(24)

for n = 1, 2, ..., n ≥ k.

PROOF. The necessary part follows from (11). On the other hand if the recurrence
relation (24) is satisfied, then on rearranging the terms in (24) and using (4), we have

kn

Γ(n)

∫ ∞

0

xj[−lnF̄ (x)]n−1[F̄ (x)]k−1f(x)dx

=
βkn+1

2β−1(θα2)β(j + 2β)Γ(n)

∫ ∞

0

xj+2β[−lnF̄ (x)]n−2[F̄ (x)]k−1f(x)

×
(

− lnF̄ (x) − n − 1

k

)

dx. (25)
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Let

h(x) = −1

k
[−lnF̄ (x)]n−1[F̄ (x)]k. (26)

Differentiating both the sides of (26), we get

h′(x) = [−lnF̄ (x)]n−2[F̄ (x)]k−1f(x)

{

− lnF̄ (x) − n − 1

k

}

.

Thus

kn

Γ(n)

∫ ∞

0

xj[−lnF̄ (x)]n−1[F̄ (x)]k−1f(x)dx

=
βkn+1

2β−1(θα2)β(j + 2β)Γ(n)

∫ ∞

0

xj+2βh′(x)dx. (27)

Integrating right hand side in (27) by parts and using the value of h(x) from (26), we
find that

kn

Γ(n)

∫ ∞

0

xj [−lnF̄ (x)]n−1[F̄ (x)]k−1

{

f(x) − βx2β−1

2β−1(θα2)β
F̄ (x)

}

= 0. (28)

Now applying a generalization of the Müntz-Szász Theorem (see for example Hwang
and Lin (1984)) to (28), we obtain

f(x) =
βx2β−1

2β−1(θα2)
β
F̄ (x),

which proves that f(x) has the form as in (3).

REMARK 11. If k = 1 in (24), we obtain the following characterization of the
Weibull-Rayleigh distribution based on upper record values

E(XUn)j+2β = E(XUn−1 )
j+2β +

2β−1(θα2)β(j + 2β)

β
E(XUn)j .

REMARK 12. If α = 1/
√

2 and β = 1 in (24), the characterizing result based on
generalized upper record values for the Rayleigh distribution is deduced as

E(Y (k)
n )

j+2
= E(Y

(k)
n−1)

j+2
+

θ(j + 2)

2k
E(Y (k)

n )
j
,

which verify the result obtained by Khan et al. (2015).

COROLLARY 5. Under the assumptions of Theorem 5 with j = 0, the following
relation

E(Y (k)
n )2β = E(Y

(k)
n−1)

2β +
2β(θα2)β

k
,

characterize the Weibull-Rayleigh distribution.
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REMARK 13. If k = 1, we obtain the following characterization of the Weibull-
Rayleigh distribution.

E(XUn)2β = E(XUn−1 )
2β + 2β(θα2)β, n = 1, 2, ....

Following theorem deal with the characterization of the Weibull-Rayleigh distribution
through conditional expectation of function of generalized upper record statistics.

THEOREM 6. Let X be a non-negative random variable having an absolutely
continuous df F (x) with F (0) = 0 and 0 ≤ F (x) ≤ 1 for all x > 0, then

E[ξ(Y (k)
n ) | (Y

(k)
l ) = x] = ξ(x)

( k

k + 1

)n−l

, l = m, m + 1 (29)

if and only if

F̄ (x) = e−(x2/2θα2)β

, x ≥ 0, α, β, θ > 0,

where

ξ(y) = e−(y2/2θα2)β

.

PROOF. From (4) and (5), we have

E[ξ(Y (k)
n ) | (Y (k)

m ) = x] =
kn−m

Γ(n − m)

∫ ∞

x

e−(y2/2θα2)β

[lnF̄ (x) − lnF̄ (y)]n−m−1

×
( F̄ (y)

F̄ (x)

)k−1 f(y)

F̄ (x)
dy. (30)

By setting u = F̄ (y)
F̄ (x)

= e−(y2/2θα2)β

e−(x2/2θα2)β
from (2) in (30), we obtain

E[ξ(Y (k)
n ) | (Y (k)

m ) = x] =
kn−m

Γ(n − m)
e−(x2/2θα2)β

∫ 1

0

(−lnu)n−m−1ukdu. (31)

On using (9) in (31), we derive relation given in (29). To prove sufficient part, we have

kn−m

Γ(n − m)

∫ ∞

x

e−(y2/2θα2)β

[lnF̄ (x) − lnF̄ (y)]n−m−1[F̄ (y)]k−1f(y)dy = [F̄ (x)]kgn|m(x),

(32)
where

gn|m(x) = e−(x2/2θα2)β
( k

k + 1

)n−m

.

Differentiating both sides of (32) with respect to x, we get

− kn−mf(x)

F̄ (x)Γ(n − m− 1)

∫ ∞

x

e−(y2/2θα2)β

[lnF̄ (x) − lnF̄ (y)]n−m−2

×[F̄ (y)]k−1f(y)dy = g′n|m(x)[F̄ (x)]k − k gn|m(x)[F̄ (x)]k−1f(x)
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or

−k gn|m+1(x)[F̄ (x)]k−1f(x) = g′n|m(x)[F̄ (x)]k − k gn|m(x)[F̄ (x)]k−1f(x).

Therefore,

f(x)

F̄ (x)
= −

g′n|m(x)

k[gn|m+1(x) − gn|m(x)]
=

β

2β−1(θα2)
β

x2β−1, (33)

where

g′n|m(x) = − β

2β−1(θα2)
β

x2β−1e−(x2/2θα2)β
( k

k + 1

)n−m

,

gn|m+1(x) − gn|m(x) =
1

k
e−(x2/2θα2)β

( k

k + 1

)n−m

.

Integrating both sides of (33) with respect to x between (0, y), the sufficiency part is
proved.

REMARK 14. If k = 1 in (29), we obtain the following characterization of the
Weibull-Rayleigh distribution based on upper record values

E[ξ(XUn)|XUl = x] = e−(x2/2θα2)β

(1/2)n−l, l = m, m + 1.

REMARK 15. Putting α = 1/
√

2 and β = 1 in (29), the characterizing result
of generalized upper record values for the Rayleigh distribution with parameter θ, is
deduced as

E[ξ(Y (k)
n ) | (Y

(k)
l ) = x] = e−x2/θ

( k

k + 1

)n−l

, l = m, m + 1

if and only if

F̄ (x) = e−(x2/θ), x ≥ 0, α, β, θ > 0.

Acknowledgement. The authors acknowledge their gratefulness to the Chief-
Editor and learned referees for their valuable comments and suggestions.

References

[1] M. Ahsanullah, Record Statistics, Nova Science Publishers, New York, 1995.

[2] M. Ahsanullah and V. B. Nevzorov, Record via Probability Theory, Atlantis Press,
Paris, 2015.

[3] B.C. Arnold, N. Balakrishnan and H. N. Nagaraja, Records, John Wiley, New
York, 1998.

[4] K. N. Chandler, The distribution and frequency of record values, J. Roy. Statist.
Soc. Ser. B, 14(1952), 220–228.



Singh et al. 687

[5] K. Danielak and M. Z. Raqab, Sharp bounds for expectations of k-th record in-
crements, Aust. N.Z.J. Stat., 46(2004), 665–673.
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