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Abstract

In this paper, we introduce some classes of mappings called the TAC-Suzuki-
Berinde type F -contraction and TAC-Suzuki-Berinde type rational F -contraction
in the frame work of b-metric spaces and prove some fixed point results for these
classes of mappings. As an application, we establish the existence of a solution
for the following nonlinear integral equation:

x(t) = g(t) +

∫ b

a

M(t, s)K(t, x(s))ds,

where M : [a, b] × [a, b] → R+, K : [a, b] × R → R and g : [a, b] → R are
continuous functions. Our results improve and extend the corresponding results
in the literature.

1 Introduction

The theory of fixed point plays an important role in nonlinear functional analysis and is
known to be very useful in establishing the existence and uniqueness theorems for non-
linear differential and integral equations. Banach [3] in 1922 proved the well celebrated
Banach contraction principle in the frame work of metric spaces. The importance of the
Banach contraction principle cannot be over emphasized in the study of fixed point the-
ory and its applications. Due to its importance and fruitful applications, many authors
have generalized this result by considering classes of nonlinear mappings which are
more general than contraction mappings and in other classical and important spaces
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(see [1, 17, 19, 20, 26, 28] and the references therein). Also, over the years, several
authors have developed several iterative schemes for solving fixed point problem for
different operators and in different spaces, (see [2, 13, 10, 15, 29, 30, 31, 34, 35] and the
references therein). For example, Khan et al. [18] introduced the concept of alternating
distance function, which is defined as follows: A function ψ : R+ → R+ is called an
alternating distance function if the following conditions are satisfied:

1. ψ(0) = 0,

2. ψ is monotonically nondecreasing,

3. ψ is continuous.

They obtained the following result:

THEOREM 1. Let (X, d) be a complete metric space, ψ an alternating distance
function and T : X → X be a self mapping which satisfies the following condition

ψ(d(Tx, Ty)) ≤ δψ(d(x, y)),

for all x, y ∈ X, where δ ∈ (0, 1). Then T has a unique fixed point.

REMARK 1. Clearly, if we take ψ(x) = x, for all x ∈ X, we obtain the Banach
contraction mapping.

Berinde [6, 7] introduced and studied a class of contractive mappings, which is
defined as follows:

DEFINITION 1. Let (X, d) be a metric space. A mapping T : X → X is said to
be a generalized almost contraction if there exist δ ∈ [0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

for all x, y ∈ X.

Furthermore, in 2008, Suzuki [32] introduced a class of mappings satisfying condi-
tion (C), known as Suzuki-type generalized nonexpansive mapping and he proved some
fixed point theorems for this class of mappings.

DEFINITION 1.2. Let (X, d) be a metric space. A mapping T : X → X is said to
satisfy condition (C) if for all x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) ≤ d(x, y).

THEOREM 1.2. Let (X, d) be a compact metric space and T : X → X be a
mapping satisfying

1

2
d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) < d(x, y),
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for all x, y ∈ X. Then T has a unique fixed point.

In 2012, Wardowski [37] introduced the notion of F -contractions, which is defined
as follows:

DEFINITION 1.3. Let (X, d) be a metric space. A mapping T : X → X is said to
be an F -contraction if there exists τ > 0 such that for all x, y ∈ X;

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (1)

where F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing;

(F2) for all sequences {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞;

(F3) there exists k ∈ (0, 1) such that limα→0+ αkF (α) = 0.

He established the following result:

THEOREM 1.3. Let (X, d) be a complete metric space and T : X → X be an
F -contraction. Then T has a unique fixed point x∗ ∈ X and for each x0 ∈ X, the
sequence {Tnx0} converges to x∗.

REMARK 1.2 ([37]). If we suppose that F (t) = ln t, an F -contraction mapping
becomes the Banach contraction mapping.

In [22], Piri et al. used the continuity condition instead of condition (F3) and proved
the following result:

THEOREM 1.4. Let X be a complete metric space and T : X → X be a selfmap
of X. Assume that there exists τ > 0 such that for all x, y ∈ X with Tx 6= Ty,

1

2
d(x, Tx) ≤ d(x, y)⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

where F : R+ → R is continuous strictly increasing and inf F = −∞. Then T has a
unique fixed point z ∈ X, and for every x ∈ X, the sequence {Tnx} converges to z.

In 2016, Chandok et al. [9] introduced a new type of contractive mappings using
the notion of cyclic admissible mappings in the framework of metric spaces.

DEFINITION 1.4 ([9]). Let T : X → X be a mapping and let α, β : X → R+ be
two functions. Then T is called a cyclic (α, β)-admissible mapping, if

1. α(x) ≥ 1 for some x ∈ X implies that β(Tx) ≥ 1,

2. β(x) ≥ 1 for some x ∈ X implies that α(Tx) ≥ 1.
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DEFINITION 1.5 ([9]). Let (X, d) be a metric space and let α, β : X → [0,∞) be
two mappings. We say that T is a TAC-contractive mapping, if for all x, y ∈ X,

α(x)β(y) ≥ 1⇒ ψ(d(Tx, Ty)) ≤ f(ψ(d(x, y)), φ(d(x, y))),

where ψ is a continuous and nondecreasing function with ψ(t) = 0 if and only if t = 0,
φ is continuous with limn→∞ φ(tn) = 0 ⇒ limn→∞ tn = 0 and f : [0,∞)2 → R is
continuous, f(a, t) ≤ a and f(a, t) = a⇒ a = 0 or t = 0 for all s, t ∈ [0,∞).

THEOREM 1.5 ([9]). Let (X, d) be a complete metric space and let T : X → X
be a cyclic (α, β)-admissible mapping. Suppose that T is a TAC contraction mapping.
Assume that there exists x0 ∈ X such that α(x0) ≥ 1, β(x0) ≥ 1 and either of the
following conditions hold:

1. T is continuous,

2. if for any sequence {xn} in X with β(xn) ≥ 1, for all n ≥ 0 and xn → x as
n→∞, then β(x) ≥ 1.

In addition, if α(x) ≥ 1 and β(y) ≥ 1 for all x, y ∈ F (T ) (where F (T ) denotes the set
of fixed points of T ), then T has a unique fixed point.

One of the most interesting generalizations of metric spaces is the concept of b-
metric spaces (to be defined in Section 2) introduced by Czerwik in [11]. He proved
the Banach contraction principle in this setting with the fact that d need not to be
continuous. Thereafter, several results have been extended from metric spaces to b-
metric spaces. In addition, a lot of results have been published on the fixed point
theory of various classes of single-valued and multi-valued operators in the frame work
of b-metric spaces (see [4, 8, 11, 25, 39] and the references therein). Yamaod and
Sintunawarat [39] introduced the notion of (α, β)-(ψ,ϕ)-contraction mapping in the
frame work of b-metric spaces as follows:

DEFINITION 1.6. Let (X, d) be a b-metric space with coeffi cient s ≥ 1 and α, β :
X → [0,∞) be two given mappings. We say that T : X → X is an (α, β)-(ψ,ϕ)-
contraction mapping if the following conditions holds: for all x, y ∈ X with α(x)β(y) ≥
1 implies that

ψ(s3d(Tx, Ty)) ≤ ψ(Ms(x, y))− ϕ(Ms(x, y)),

where

Ms(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
and ψ,ϕ : [0,∞)→ [0,∞) are alternating distance functions.

THEOREM 1.6. Let (X, d) be a complete b-metric space with coeffi cient s ≥ 1 and
T : X → X an (α, β)-(ψ,ϕ)-contraction mapping. Suppose that one of the following
conditions holds:
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1. there exists x0 ∈ X such that α(x0) ≥ 1,

2. there exists y0 ∈ X such that α(y0) ≥ 1,

and the following hold:

1. T is continuous,

2. T is cyclic (α, β)-admissible.

Then T has a fixed point.

Recently, Babu et al. [4] generalized the result of Chandok et al. [9] by introducing
a generalized TAC-contractive mapping in the frame work of b-metric spaces.

DEFINITION 1.7. Let (X, d) be a b-metric space, α, β : X → [0,∞) be two given
mappings and T be a self map on X. The mapping T is said to be generalized TAC-
contrative map in b-metric spaces, if for all x, y ∈ X,

α(x)β(y) ≥ 1⇒ ψ(s3d(Tx, Ty)) ≤ f(ψ(Ms(x, y)), φ(Ms(x, y))),

where

Ms(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
,

ψ is an alternating distance function, φ is continuous with limn→∞ φ(tn) = 0 ⇒
limn→∞ tn = 0 and f : [0,∞)2 → R is continuous with f(a, t) ≤ a and f(a, t) =
a⇒ a = 0 or t = 0 for all s, t ∈ [0,∞).

THEOREM 1.7. Let (X, d) be a complete b-metric space with coeffi cient s ≥ 1.
Let T : X → X be a generalized TAC-contraction mapping. Suppose the following
conditions hold:

1. T is a cyclic (α, β)-admissible mapping,

2. there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,

3. T is continuous,

4. if for any sequence {xn} in X with β(xn) ≥ 1, for all n ≥ 0 and xn → x as
n→∞, then β(x) ≥ 1.

Then T has a fixed point.

Motivated by the research works described above and the recent interest in this
direction of research, in this paper we first generalize the concept of cyclic (α, β)-
admissible mapping, by introducing the concept of cyclic (αs, βs)-admissible mapping
and cyclic (α, β)-admissible type S mapping in the frame work of b-metric spaces. In
addition, we introduce TAC-Suzuki-Berinde type F -contraction, TAC-Suzuki type F -
contraction and TAC-Suzuki-Berinde type rational F -contraction mapping, establish
some fixed point results regarding these classes of mappings and finally applied our
result to the solution of a nonlinear integral equation in the frame work of b-metric
spaces.
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2 Premilinaries

In this section, we introduce some concepts and present some results that will be needed
in the sequel.

DEFINTION 2 ([11]). Let X be a nonempty set and let s ≥ 1 be a given real
number. A function d : X ×X → [0,∞) is called a b-metric if for all x, y, z ∈ X, the
following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space. The number s ≥ 1 is called the coeffi cient of
(X, d). It is clear that, the class of b-metric spaces is larger than that of metric spaces.
If s = 1, a b-metric become a metric.

EXAMPLE 2 ([4]). Let X = R and d(x, y) = |x − y|2 for all x, y ∈ X. It is easy
to see that (x, d) is a b-metric space with coeffi cient s = 2, but (X, d) is not a metric
space.

DEFINITION 2.1 ([8]). Let (X, d) be a b-metric space. A sequence {xn} in X is
said to be

1. b-convergent if there exists x ∈ X such that d(xn, x)→ 0 as n→∞. In this case,
we write limn→∞ xn = x.

2. b-Cauchy if d(xn, xm)→ 0 as n,m→∞.

DEFINITION 2.2 ([8]). Let (X, d) be a b-metric space. Then X is said to be
complete if every b-Cauchy sequence in X is b-convergent.

LEMMA 2 ([25]). Suppose that (X, d) is a b-metric space and {xn} is a sequence in
X such that d(xn, xn+1)→ 0 as n→∞. If {xn} is not a Cauchy sequence then there
exists an ε > 0 and sequences of positive integers {xmk

} and {xnk} with nk > mk ≥ k
such that d(xmk

, xnk) ≥ ε, d(xmk
, xnk−1) < ε and

1. ε ≤ lim supk→∞ d(xmk
, xnk) ≤ sε,

2. ε
s ≤ lim infk→∞ d(xmk

, xnk+1) ≤ lim supk→∞ d(xmk
, xnk+1) ≤ s2ε,

3. ε
s ≤ lim infk→∞ d(xmk+1

, xnk) ≤ lim supk→∞ d(xmk+1
, xnk) ≤ s2ε,

4. ε
s2 ≤ lim infk→∞ d(xmk+1

, xnk+1) ≤ lim supk→∞ d(xmk+1
, xnk+1) ≤ s3ε.

LEMMA 2.1 ([27]). Let F : R+ → R be an increasing mapping and {αn} be a
sequence of positive integers. Then the following assertion hold:
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1. if limn→∞ F (αn) = −∞ then limn→∞ αn = 0;

2. if inf F = −∞ and limn→∞ αn = 0 then limn→∞ F (αn) = −∞.

Furthermore, the authors in [27] replaced the condition F2 in the definition of F -
contraction with the following condition.

(F∗) inf F = −∞

or, also by

(F∗∗) there exists a sequence {αn} of positive real numbers such that limn→∞ F (αn) =
−∞.

3 Main Result

In this section, we introduce the notions of cyclic (αs, βs)-admissible mapping, cyclic
(α, β)-admissible type S mapping, TAC-Suzuki-Berinde type F -contraction, TAC-Suzuki
type F -contraction, TAC-Suzuki-Berinde type rational F -contraction mapping and es-
tablish some fixed point results regarding these classes of mappings.

DEFINITION 3. Let X be a nonempty set and s ≥ 1. Let T : X → X and
α, β : X → [0,∞) be given mappings. The mapping T is said to be cyclic (αs, βs)-
admissible mapping, if

1. α(x) ≥ s3 for some x ∈ X implies that β(Tx) ≥ s3,

2. β(x) ≥ s3 for some x ∈ X implies that α(Tx) ≥ s3.

REMARK 3. Clearly, if s = 1, then Definition 3 reduces to Definition 1.4.

LEMMA 3. LetX be a nonempty set and T : X → X be a cyclic (αs, βs)-admissible
mapping. Suppose that there exists x0 ∈ X such that α(x0) ≥ s3 and β(x0) ≥ s3.
Define the sequence xn+1 = Txn, then α(xm) ≥ s3 implies that β(xn) ≥ s3 and
β(xm) ≥ s3 implies that α(xn) ≥ s3, for all n,m ∈ N ∪ {0} with m < n.

PROOF. Using the fact that T is a cyclic (αs, βs)-admissible mapping and our
hypothesis, we have that there exists x0 ∈ X such that

α(x0) ≥ s3 ⇒ β(Tx0) = β(x1) ≥ s3

and
β(x0) ≥ s3 ⇒ α(Tx0) = α(x1) ≥ s3.

Continuing this way, we obtain that

α(xn) ≥ s3 ⇒ β(Txn) = β(xn+1) ≥ s3
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and
β(xn) ≥ s3 ⇒ α(Txn) = α(xn+1) ≥ s3

for all n ∈ N ∪ {0}. Using similar approach, we obtain that

α(xm) ≥ s3 ⇒ β(Txm) = β(xm+1) ≥ s3

and
β(xm) ≥ s3 ⇒ α(Txm) = α(xm+1) ≥ s3,

for all m ∈ N ∪ {0}. In addition, since

α(xm) ≥ s3 ⇒ β(xm+1) ≥ s3 ⇒ α(xm+2) ≥ s3 · · ·

with m < n, we deduce that

α(xm) ≥ s3 ⇒ β(xn) ≥ s3.

Using similar approach, we have that

β(xm) ≥ s3 ⇒ α(xn) ≥ s3.

We denote by F the family of all functions F : R+ → R which satisfy conditions

(F
′

1) F is strictly increasing,

(F
′

2) inf F = −∞,

or, also by,

(F
′

3) there exists a sequence {αn} of positive real numbers such that limn→∞ F (αn) =
−∞,

(F
′

4) F is continuous on (0,∞).

DEFINITION 3.1. Let (X, d) be a b-metric space with s ≥ 1, α, β : X → [0,∞) be
two functions and T be a self map on X. The mapping T is said to be TAC-Suzuki-
Berinde type F -contraction if F ∈ F , τ > 0 and L ≥ 0 such that for all x, y ∈ X

1

2s
d(x, Tx) ≤ d(x, y) and d(Tx, Ty) > 0, (2)

then

τ +F (α(x)β(y)d(Tx, Ty)) ≤ F (d(x, y))+Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

THEOREM 3. Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X
be a TAC-Suzuki-Berinde type F -contraction mapping. Suppose the following condi-
tions hold:
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1. T is a cyclic (αs, βs)-admissible mapping,

2. there exists x0 ∈ X such that α(x0) ≥ s3 and β(x0) ≥ s3,

3. T is continuous.

Then T has a fixed point.

PROOF. We define a sequence {xn} by xn+1 = Txn for all n ∈ N ∪ {0}. If we
suppose that xn+1 = xn, we obtain the desired result. Now, suppose that xn+1 6= xn
for all n ∈ N∪ {0}. Since T is a cyclic (αs, βs)-admissible mapping and α(x0) ≥ s3, we
have β(x1) = β(Tx0) ≥ s3 and this implies that α(x2) = α(Tx1) ≥ s3, continuing the
process, we have

α(x2k) ≥ s3 and β(x2k+1) ≥ s3, ∀ k ∈ N ∪ {0}. (3)

Using similar argument, we have that

β(x2k) ≥ s3 and α(x2k+1) ≥ s3, ∀ k ∈ N ∪ {0}. (4)

It follows from (3) and (4) that α(xn) ≥ s3 and β(xn) ≥ s3 for all n ∈ N ∪ {0}. Since
α(xn)β(xn+1) ≥ s3 and 1

2sd(xn, Txn) =
1
2sd(xn, xn+1) < d(xn, xn+1), we obtain from

(2)

τ + F (d(xn+1, xn+2))

= τ + F (d(Txn, Txn+1))

≤ τ + F (α(xn)β(xn+1)d(Txn, Txn+1))

≤ F (d(xn, xn+1)) + Lmin{d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+2), d(xn+1, xn+1)}
= F (d(xn, xn+1)),

which imples that
F (d(xn+1, xn+2)) ≤ F (d(xn, xn+1))− τ .

Using similar approach, it is easy to see that

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− τ .

Thus by inductively, we obtain

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ, ∀ n ∈ N ∪ {0}. (5)

Since F ∈ F , taking limit as n→∞ in (5), we have

lim
n→∞

F (d(xn, xn+1)) = −∞.

It follows from (F
′

3) and Lemma 2 that

lim
n→∞

d(xn, xn+1) = 0. (6)
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In what follows, we now show that {xn} is a b-Cauchy sequence. Suppose that {xn}
is not a b-Cauchy sequence, then by Lemma 2, there exists an ε > 0 and sequences
of positive integers {xnk} and {xmk

} with nk > mk ≥ k such that d(xmk
, xnk) ≥ ε.

For each k > 0, corresponding to mk, we can choose nk to be the smallest positive
integer such that d(xmk

, xnk) ≥ ε, d(xmk
, xnk−1) < ε and (1)—(4) of Lemma 2 hold.

Since α(x0) ≥ s3 and β(x0) ≥ s3, using Lemma 3, we obtain that α(xmk
)β(xnk) ≥ s3

and we can choose n0 ∈ N ∪ {0} such that

1

2s
d(xmk

, Txmk
) <

ε

2s
< ε ≤ d(xmk

, xnk).

Hence, for all k ≥ n0, we have

τ + F (d(xmk+1
, xnk+1))

≤ τ + F (α(xmk
)β(xnk)d(Txmk

, Txnk))

≤ F (d(xmk
, xnk))

+Lmin{d(xmk
, xmk+1

), d(xnk , xnk+1), d(xmk
, xnk+1), d(xnk , xmk+1

)}. (7)

Using Lemma 2, (F
′

4) and (6), we have that

τ + F (sε) = τ + F (s3
ε

s2
) ≤ τ + F (lim sup

k→∞
[α(xmk

)β(xnk)d(Txmk
, Txnk)])

= lim sup
k→∞

F (α(xmk
)β(xnk)d(xmk

, xnk))

≤ F (lim sup
k→∞

d(xmk
, xnk))

≤ F (sε).

That is
τ + F (sε) ≤ F (sε)

which is a contradiction. We therefore have that {xn} is b-Cauchy. Since (X, d) is
complete, it follows that there exists x ∈ X such that limn→∞ xn = x. Since T is
continuous, we have that

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

Txn = T lim
n→∞

xn = Tx.

Thus, T has a fixed point.

THEOREM 3.1. Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X
be a TAC-Suzuki-Berinde type F -contraction type mapping. Suppose the following
conditions hold:

1. T is a cyclic (αs, βs)-admissible mapping,

2. there exists x0 ∈ X such that α(x0) ≥ s3 and β(x0) ≥ s3,

3. if for any sequence {xn} in X with β(xn) ≥ s3, for all n ≥ 0 and xn → x as
n→∞, then β(x) ≥ s3.
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Then T has a fixed point.

PROOF. We define a sequence {xn} by xn+1 = Txn for all n ∈ N∪{0}. In Theorem
3, we have establish that {xn} is b-Cauchy. Since (X, d) is complete, it follows that there
exists x ∈ X such that limn→∞ xn = x. More so, using the condition that β(xn) ≥ s3

for all n ∈ N ∪ {0}, we obtain that β(x) ≥ s3. We now establish that T has a fixed
point.
Claim: We claim that

1

2s
d(xn, xn+1) < d(xn, x)

or
1

2s
d(xn+1, xn+2) < d(xn+1, x).

Proof of claim. Suppose on the contrary that there exists m ∈ N ∪ {0}, such that

1

2s
d(xm, xm+1) ≥ d(xm, x) and

1

2s
d(xm+1, xm+2) ≥ d(xm+1, x). (8)

Now observe that

2sd(xm, x) ≤ d(xm, xm+1) ≤ sd(xm, x) + sd(x, xm+1), (9)

which implies that d(xm, x) ≤ d(x, xm+1). It follows from (8) and (9), that

d(xm, x) ≤ d(x, xm+1) ≤
1

2s
d(xm+1, xm+2). (10)

Since 1
2sd(xm, xm+1) < d(xm, xm+1), we have that

τ + F (d(xm+1, xm+2))

≤ τ + F (α(xm)β(xm+1)d(Txm, Txm+1))

≤ F (d(xm, xm+1))

+Lmin{d(xm, xm+1), d(xm+1, xm+2), d(xm, xm+2), d(xm+1, xm+1)}
= F (d(xm, xm+1)). (11)

It follows that
τ + F (d(xm+1, xm+2)) ≤ F (d(xm, xm+1)).

Using the fact that F is strictly increasing, we have that

d(xm+1, xm+2) < d(xm, xm+1).

Using this fact, (10) and (8), we have

d(xm+1, xm+2) < d(xm, xm+1)

≤ sd(xm, x) + sd(x, xm+1)

≤ 1
2
d(xm+1, xm+2) +

1

2
d(xm+1, xm+2) (12)

= d(xm+1, xm+2),
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which is a contradiction. Thus we must have that

1

2s
d(xn, xn+1) < d(xn, x)

or
1

2s
d(xn+1, xn+2) < d(xn+1, x).

Hence, we have

τ + F (d(xn+1, Tx)) = τ + F (d(Txn, Tx))

≤ τ + F (α(xn)β(x)d(Txn, Tx))
≤ F (d(xn, x)) + Lmin{d(xn, xn+1), d(x, Tx), d(xn, Tx), d(x, Txn)}.

Using the fact that F ∈ F and Lemma 2, we have that

lim
n→∞

F (d(Txn, Tx)) = −∞

and so
lim
n→∞

d(Txn, Tx) = 0.

Now, observe that

d(x, Tx) = lim
n→∞

d(xn+1, Tx) = lim
n→∞

d(Txn, Tx) = 0.

Clearly, we have that
d(x, Tx) = 0⇒ x = Tx.

Hence, T has a fixed point.

THEOREM 3.2. Suppose that the hypothesis of Theorem 3.1 holds and in addition
suppose α(x) ≥ s3 and β(y) ≥ s3 for all x, y ∈ F (T ), where F (T ) is the set of fixed
point of T. Then T has a unique fixed point.

PROOF. Let x, y ∈ F (T ), that is Tx = x and Ty = y such that x 6= y. Since,
α(x) ≥ s3 and β(y) ≥ s3, we have α(x)β(y) ≥ s3 and 1

2sd(x, Tx) = 0 ≤ d(x, y), we
obtain that

F (d(x, y)) = F (d(Tx, Ty)) < τ + F (d(Tx, Ty)) ≤ τ + F (α(x)β(y)d(Tx, Ty))
≤ F (d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},
≤ F (d(x, y)),

which implies that
F (d(x, y)) < F (d(x, y)).

Clearly, we get a contradiction. Thus T has a unique fixed point.
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DEFINITION 3.2. Let (X, d) be a b-metric space with s ≥ 1, α, β : X → [0,∞)
be two functions and T be a self map on X. The mapping T is said to be TAC-Suzuki
type F -contraction, if F ∈ F , τ > 0 and L ≥ 0 such that for all x, y ∈ X

1

2s
d(x, Tx) ≤ d(x, y) and d(Tx, Ty) > 0,

then
τ + F (α(x)β(y)d(Tx, Ty)) ≤ F (d(x, y)).

THEOREM 3.3. Let (X, d) be a b-complete b-metric space with s ≥ 1 and T :
X → X be a TAC-Suzuki type F -contraction type mapping. Suppose the following
conditions hold:

1. T is a cyclic (αs, βs)-admissible mapping,

2. there exists x0 ∈ X such that α(x0) ≥ s3 and β(x0) ≥ s3,

3. T is continuous,

4. if for any sequence {xn} in X with β(xn) ≥ s3, for all n ≥ 0 and xn → x as
n→∞, then β(x) ≥ s3.

Then T has a fixed point.

PROOF. The proof follows directly from Theorem 3 and Theorem 3.1 by taking
L = 0.

THEOREM 3.4. Suppose that the hypothesis of Theorem 3.3 holds and in addition
suppose α(x) ≥ s3 and β(y) ≥ s3 for all x, y ∈ F (T ), where F (T ) is the set of fixed
point of T. Then T has a unique fixed point.

PROOF. The proof follows directly from Theorem 3.2 by taking L = 0.

DEFINITION 3.3. Let X be a nonempty set and s ≥ 1. Let T : X → X and
α, β : X → [0,∞) be mappings. The mapping T is said to be cyclic (α, β)-admissible
type S mapping if

1. α(x) ≥ s for some x ∈ X implies that β(Tx) ≥ s,

2. β(x) ≥ s for some x ∈ X implies that α(Tx) ≥ s.

REMARK 3.1. Clearly, if s = 1, then Definition 3.3 reduces to Definition 1.4. We
also note that Definition 3 is a generalization of Definition 3.3.

THEOREM 3.5. Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X
be a mapping with d(Tx, Ty) > 0 which satisfies the following statement: if

1

2s
d(x, Tx) ≤ d(x, y) and α(x)β(y) ≥ s,
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then

F (s3d(Tx, Ty)) ≤ F (d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Suppose the following conditions hold:

1. T is a cyclic (α, β)-admissible type S mapping,

2. there exists x0 ∈ X such that α(x0) ≥ s and β(x0) ≥ s,

3. T is continuous,

4. if for any sequence {xn} in X with β(xn) ≥ s, for all n ≥ 0 and xn → x as
n→∞, then β(x) ≥ s.

Then T has a fixed point.

PROOF. The proof follow similar approach as in Theorem 3 and Theorem 3.1, thus
we omit it.

THEOREM 3.6. Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X
be a mapping with d(Tx, Ty) > 0 which satisfies the following statement: if

1

2s
d(x, Tx) ≤ d(x, y) and α(x)β(y) ≥ s,

then
F (s3d(Tx, Ty)) ≤ F (d(x, y)).

Suppose the following conditions hold:

1. T is a cyclic (α, β)-admissible type S mapping,

2. there exists x0 ∈ X such that α(x0) ≥ s and β(x0) ≥ s,

3. T is continuous,

4. if for any sequence {xn} in X with β(xn) ≥ s, for all n ≥ 0 and xn → x as
n→∞, then β(x) ≥ s.

Then T has a fixed point.

PROOF. The proof follow similar approach as in Theorem 3 and Theorem 3.1 by
taking L = 0, thus we omit it.

COROLLARY 3.1. Let (X, d) be a complete b-metric space with s ≥ 1 and T :
X → X be a mapping with d(Tx, Ty) > 0 which satisfies the following statement: if

1

2s
d(x, Tx) ≤ d(x, y) and α(x)β(y) ≥ 1,

then

F (s3d(Tx, Ty)) ≤ F (d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Suppose the following conditions hold:
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1. T is a cyclic (α, β)-admissible mapping,

2. there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,

3. T is continuous,

4. if for any sequence {xn} in X with β(xn) ≥ 1, for all n ≥ 0 and xn → x as
n→∞, then β(x) ≥ 1.

Then T has a fixed point.

COROLLARY 3.2. Let (X, d) be a complete b-metric space with s ≥ 1 and T :
X → X be a mapping with d(Tx, Ty) > 0 which satisfies the following statement: if

1

2s
d(x, Tx) ≤ d(x, y),

then

F (s3d(Tx, Ty)) ≤ F (d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Then T has a unique fixed point.

DEFINITION 3.4. Let (X, d) be a b-metric space with s ≥ 1, α, β : X → [0,∞) be
two functions and T be a self map on X. The mapping T is said to be TAC-Suzuki-
Berinde type rational F -contraction if F ∈ F , τ > 0 and L ≥ 0 such that if

1

2s
d(x, Tx) ≤ d(x, y) and d(Tx, Ty) > 0 for all x, y ∈ X,

then

F (α(x)β(y)d(Tx, Ty)) ≤ F (M(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s
,
d(x, Tx)d(y, Ty)

s+ d(x, y)

,
d(y, Tx)[1 + d(x, Tx)]

s+ d(x, y)

}
.

THEOREM 3.7. Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X
be a TAC-Suzuki-Berinde type rational F -contraction type mapping. Suppose the
following conditions hold:

1. T is a cyclic (αs, βs)-admissible mapping,

2. there exists x0 ∈ X such that α(x0) ≥ s3 and β(x0) ≥ s3,

3. T is continuous.
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Then T has a fixed point.

PROOF. We define a sequence {xn} by xn+1 = Txn for all n ∈ N ∪ {0}. If we
suppose that xn+1 = xn, we obtain the desired result. Now, suppose that xn+1 6= xn
for all n ∈ N∪ {0}. Since T is a cyclic (αs, βs)-admissible mapping and α(x0) ≥ s3, we
have β(x1) = β(Tx0) ≥ s3 and this implies that α(x2) = α(Tx1) ≥ s3, continuing the
process, we have

α(x2k) ≥ s3 and β(x2k+1) ≥ s3 ∀ k ∈ N ∪ {0}. (13)

Using similar argument, we have that

β(x2k) ≥ s3 and α(x2k+1) ≥ s3 ∀ k ∈ N ∪ {0}. (14)

It follows from (13) and (14) that α(xn) ≥ s3 and β(xn) ≥ s3 for all n ∈ N∪{0}. Since
α(xn)β(xn+1) ≥ s3 and 1

2sd(xn, Txn) =
1
2sd(xn, xn+1) < d(xn, xn+1), we have

τ + F (d(xn+1, xn+2))

= τ + F (d(Txn, Txn+1)) ≤ τ + F (α(xn)β(xn+1)d(Txn, Txn+1))
≤ F (M(xn, xn+1))

+Lmin{d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+2), d(xn+1, xn+1)}
= F (M(xn, xn+1)), (15)

where

M(xn, xn+1) = max

{
d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),

d(xn, Txn+1) + d(xn+1,, Txn)

2s
,
d(xn, Txn)d(xn+1, Txn+1)

s+ d(xn, xn+1)
,

d(xn+1, Txn)[1 + d(xn, Txn)]

s+ d(xn, xn+1)

}
= max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1,, xn+1)

2s
,
d(xn, xn+1)d(xn+1, xn+2)

s+ d(xn, xn+1)
,

d(xn+1, xn+1)[1 + d(xn, xn+1)]

s+ d(xn, xn+1)

}
= max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2)

2s
,

d(xn, xn+1)d(xn+1, xn+2)

s+ d(xn, xn+1)
, 0

}
.

Since d(xn,xn+1)
s+d(xn,xn+1)

< 1, we obtain

d(xn, xn+1)d(xn+1, xn+2)

s+ d(xn, xn+1)
< d(xn+1, xn+2).
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We therefore have that

M(xn, xn+1) = max

{
d(xn, xn+1), d(xn+1, xn+2)

}
.

If we suppose that

M(xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn+1, xn+2),

we then have that (15) becomes

τ + F (d(xn+1, xn+2)) ≤ F (d(xn+1, xn+2)),

which contradict the fact that F is strictly increasing and τ > 0. Therefore, we must
have that

M(xn, xn+1) = max

{
d(xn, xn+1), d(xn+1, xn+2)

}
= d(xn, xn+1),

which implies that

F (d(xn+1, xn+2)) ≤ F (d(xn, xn+1))− τ ,

using similar approach, it is easy to see that

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− τ

and inductively, we obtain

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ n ∈ N ∪ {0}. (16)

Since F ∈ F , taking limit as n→∞ of (16), we have

lim
n→∞

F (d(xn, xn+1)) = −∞.

It follows from (F
′

3) and Lemma 2 that

lim
n→∞

d(xn, xn+1) = 0.

In what follows, we now show that {xn} is a b-Cauchy sequence. Suppose that {xn}
is not a b-Cauchy sequence, then by Lemma 2, there exists an ε > 0 and sequences of
positive integers {xnk} and {xmk

} with nk > mk ≥ k such that d(xmk
, xnk) ≥ ε. For

each k > 0, corresponding to mk, we can choose nk to be the smallest positive integer
such that d(xmk

, xnk) ≥ ε, d(xmk
, xnk−1) < ε and (1) − (4) of Lemma 2 hold. Since

α(x0) ≥ s3 and β(x0) ≥ s3, using Lemma 3, we obtain that α(xmk
)β(xnk) ≥ s3 and

we can choose n0 ∈ N ∪ {0} such that

1

2s
d(xmk

, Txmk
) <

ε

2s
< ε ≤ d(xmk

, xnk).
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Hence, for all k ≥ n0, we have

τ + F (d(xmk+1
, xnk+1))

≤ τ + F (α(xmk
)β(xnk)d(Txmk

, Txnk))

≤ F (M(xmk
, xnk))

+Lmin{d(xmk
, xmk+1

), d(xnk , xnk+1), d(xmk
, xnk+1), d(xnk , xmk+1

)},

where

M(xmk
, xnk) = max

{
d(xmk

, xnk), d(xmk
, xmk+1

), d(xnk , xnk+1),

d(xnk , xnk+1) + d(xnk , xmk+1
)

2s

d(xmk
, xmk+1

)d(xnk , xnk+1)

s+ d(xmk
, xnk)

,

d(xmk
, xnk+1)[1 + d(xnk , xnk+1)]

s+ d(xmk
, xnk)

}
.

Using Lemma 2 and (F
′

4), we have that

τ + F (sε) = τ + F (s3
ε

s2
) ≤ τ + F (lim sup

k→∞
[α(xmk

)β(xnk)d(Txmk
, Txnk)])

= lim sup
k→∞

F (α(xmk
)β(xnk)d(xmk

, xnk))

≤ F (lim sup
k→∞

M(xmk
, xnk))

≤ F (sε),

we obtain
τ + F (sε) ≤ F (sε)

which is a contradiction. We therefore have that {xn} is b-Cauchy. Since (X, d) is
b-complete, it follows that there exists x ∈ X such that limn→∞ xn = x. Since T is
continuous, we have that

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

Txn = T lim
n→∞

xn = Tx.

Thus, T has a fixed point.

THEOREM 3.8. Let (X, d) be a b-complete b-metric space with s ≥ 1 and T : X →
X be a TAC-Suzuki-Berinde type rational F -contraction type mapping. Suppose the
following conditions hold:

1. T is a cyclic (αs, βs)-admissible mapping,

2. there exists x0 ∈ X such that α(x0) ≥ s3 and β(x0) ≥ s3,

3. if for any sequence {xn} in X with β(xn) ≥ s3, for all n ≥ 0 and xn → x as
n→∞, then β(x) ≥ s3.
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Then T has a fixed point.

PROOF. We define a sequence {xn} by xn+1 = Txn for all n ∈ N∪{0}. In Theorem
3, we have establish that {xn} is b-Cauchy. Since (X, d) is b-complete, it follows that
there exists x ∈ X such that limn→∞ xn = x. More so, using the condition that
β(xn) ≥ s3 for all n ∈ N∪ {0}, we obtain that β(x) ≥ s3. We now establish that T has
a fixed point.
Claim: We claim that

d(xn, x) <
1

2s
d(xn, xn+1)

or
d(xn+1, x) <

1

2s
d(xn+1, xn+2).

Proof of Claim. Then using the fact that d(xn+1, xn+2) ≤ d(xn, xn+1), we have

d(xn, xn+1) ≤ sd(xn, x) + sd(x, xn+1)

<
1

2
d(xn, xn+1) +

1

2
d(xn+1, xn+2)

= d(xn, xn+1).

The above inequality is a contradiction, thus, we must have that

d(xn, x) ≥
1

2s
d(xn, xn+1) or d(xn+1, x) ≥

1

2s
d(xn+1, xn+2).

Hence, we have

τ + F (d(xn+1, Tx))

= τ + F (d(Txn, Tx))

≤ τ + F (α(xn)β(x)d(Txn, Tx))
≤ F (M(xn, x)) + Lmin{d(xn, Tx), d(x, Tx), d(xn, Tx), d(x, Txn)},

where

M(xn, x) = max

{
d(xn, x), d(xn, Txn), d(x, Tx),

d(xn, Tx) + d(x, Txn)

2s
,

d(xn, Txn)d(x, Tx)

s+ d(xn, x)
,
d(x, Txn)[1 + d(xn, Txn)]

s+ d(xn, x)

}
.

Using the fact that F ∈ F and Lemma 2, we have that

lim
n→∞

F (d(Txn, Tx)) = −∞

so that
lim
n→∞

d(Txn, Tx) = 0.

Now, observe that

d(x, Tx) = lim
n→∞

d(xn+1, Tx) = lim
n→∞

d(Txn, Tx) = 0.
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Clearly, we have that
d(x, Tx) = 0⇒ x = Tx.

Hence, T has a fixed point.

THEOREM 3.9. Suppose that the hypothesis of Theorem 3.8 holds and in addition
suppose α(x) ≥ s3 and β(y) ≥ s3 for all x, y ∈ F (T ), where F (T ) is the set of fixed
point of T. Then T has a unique fixed point.

PROOF. The proof follows similar approach as in Theorem 3.2.

4 Example and Application

In this section, we give an example and application on the existence of a solution for
the following nonlinear integral equation:

x(t) = g(t) +

∫ b

a

M(t, s)K(t, x(s))ds, (17)

where M : [a, b] × [a, b] → R+, K : [a, b] × R → R and g : [a, b] → R are continuous
functions. Let X = C([a, b],R) be the space of all continuous real valued functions
defined on [a, b]. We defined d : X ×X → [0,∞) by d(x, y) = supt∈[a,b] |x(t) − y(t)|2.
Clearly, (X, d) is a complete b-metric space with s = 2.

EXAMPLE 4. Let X = [0,∞) and d : X × X → [0,∞) be defined as d(x, y) =
|x−y|2 for all x, y ∈ X. It is clear that (X, d) is a b-metric space with s = 2.We defined
T : X → X by

Tx =

{
x
16 if x ∈ [0, 1],
4x if x ∈ (1,∞),

and α, β : X → [0,∞) by

α(x) = β(x) =

{
8 if x ∈ [0, 1],
0 if x ∈ (1,∞),

and F (t) = −1
t + t. Then T satisfy conditions in Theorem 3.2 and T is TAC-Suzuki-

Berinde type F -contraction mapping.

PROOF. Since for any x ∈ [0, 1], we have that α(x) = s3 = 8, Tx = x
16 , and

β(Tx) = β( x16 ) = 8. Since α(x) = β(x), it is easy to see that T is cyclic (αs, βs)-
admissible mapping. For any x0 ∈ [0, 1], we have that α(x0) = 8 and β(x0) = 8. Let
{xn} be sequence in X with β(xn) ≥ 8 for all n ∈ N ∪ {0} and xn → x as n → ∞,
using the definition of β, we must have that {xn} ⊂ [0, 1] and thus x ∈ [0, 1], which
implies that β(x) = 8. Since T is cyclic (αs, βs)-admissible mapping, if x ∈ [0, 1],
we need to show that T is TAC-Suzuki-Berinde type F -contraction mapping for any
x, y ∈ [0, 1] with 1

2sd(x, Tx) ≤ d(x, y). Let x, y ∈ [0, 1] and without loss of generality
we suppose that x ≤ y. We then have that 1

2sd(x, Tx) =
1
4 |x −

x
16 | =

15x
64 . Thus for
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1
4d(x, Tx) ≤ d(x, y), we must have that

79x
64 ≤ y. Observe that, for τ = 1 and L > 1, it

is easy to see that

τ + F (α(x)β(y)d(Tx, Ty))

= 1 + F (64| y
16
− x

16
|2)

= 1 + F (
1

4
|y − x|2) = 1 + |y − x|

2

4
− 4

|y − x|2

≤ |y − x|2 − 1

|y − x|2

+Lmin

{(
15x

16

)2
,

(
15y

16

)2
,

(
16x− y
16

)2
,

(
16y − x
16

)2}
= F (d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Thus T is TAC-Suzuki-Berinde type F -contraction mapping and T also satisfy all the
hypothesis of Theorem 3 with x = 0 as the unique fixed point of T.

THEOREM 4. Let X = C([a, b],R) and T : X → X be the operator given by

Tx(t) = g(t) +

∫ b

a

M(t, s)K(t, x(s))ds

for all t, s ∈ [a, b], where M : [a, b]× [a, b]→ R+, K : [a, b]× R→ R and g : [a, b]→ R
are continuous functions. Let X = C([a, b],R) be the space of all continuous real valued
functions defined on [a, b]. Furthermore, suppose the following conditions hold:

1. there exists a continuous mapping µ : X ×X → [0,∞) such that

|K(s, x(s))−K(s, y(s))| ≤ µ(x, y)|x(s)− y(s)|

for all s ∈ [a, b] and x, y ∈ X;

2. there exists τ > 0 and α, β : X → [0,∞] such that α(x) ≥ s3 ⇒ β(Tx) ≥ s3 and
β(x) ≥ s3 ⇒ α(Tx) ≥ s3 for all x ∈ X, we have∫ b

a

M(t, s)µ(x, y) ≤

√
e−τ

α(x)β(y)
;

3. there exists x0 ∈ X such that α(x0) ≥ s3 and β(x0) ≥ s3;

4. for any sequence {xn} ⊂ X such that xn → x as n→∞ and β(xn) ≥ s3 for each
n ∈ N ∪ {0}, we have β(x) ≥ s3.

Then the integral equation (17) has a solution.

PROOF. We define α(x) = β(x) = 9 for all x ∈ X. Without loss of generality, we
suppose that x ≤ y, so that

sup{|y(s)− x(s)|2 : s ∈ [a, b]} ≥ sup{|Tx(s)− x(s)|2 : s ∈ [a, b]},
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which implies that

d(y, x) ≥ d(Tx, x) ≥ 1
4
d(Tx, x).

Thus, we have that

|Ty(s)− Tx(s)|2 ≤
(∫ b

a

|M(t, s)[K(t, y(s))−K(t, x(s))]|ds
)2

≤
(∫ b

a

M(t, s)µ(x, y)|y(s)− x(s)|ds
)2

≤
(
sup
s∈[a,b]

|y(s)− x(s)|
∫ b

a

M(t, s)µ(x, y)ds

)2
≤ d(y, x)e

−τ

81
.

Thus, we have that
81d(Tx, Ty) ≤ d(x, y)e−τ ,

which implies that
α(x)β(y)d(Tx, Ty) ≤ d(x, y)e−τ .

Suppose that F (t) = ln t, we have that

τ + ln(α(x)β(y)d(Tx, Ty)) ≤ ln(d(x, y)).

Clearly, all the conditions in Theorem 3.3 are satisfied, and so T has a fixed point.
Thus the integral equation (17) has a solution.
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