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Abstract

Cylindrically symmetric fractional Helmholtz equation is analytically solved

in an isotropic medium. Caputo‘s definition of the fractional derivative is followed

at the solution approach. The general solution utilizes fractional Bessel functions

attached to particular azimuthal and longitudinal exponents, it is represented

in orthogonal and completeness basis likewise the ordinary form. The derived

solution could be implemented at fractional modes of Bessel light as well as time-

independent fractional diffusion.

1 Introduction

Helmholtz equation is a partial differential equation that describes time independent
physical evolution in space. It is used in several applications in physics and applied
mathematics. The solution of Helmholtz equation, which is commonly derived by sep-
aration of variables, resolves essential phenomena in nature. For instance, propagation
of axial symmetric light beam through an isotropic medium, like the space, satisfies the
equation. Time-independent diffusion of neutrons inside cylindrical reactor is another
direct application of Helmholtz equation.

Fractional Helmholtz equation (FHE) is based on implementing the fractional dif-
ferentiation of the ordinary equation [1]. It does not only generalize the ordinary
Helmholtz equation, but also considers fractional field of the regular form. It is com-
patible with the ordinary equation at non fractional order [2], beside that, it is available
in Curvilinear and Cartesian coordinates. Several approaches have been employed to
find a convenient solution of FHE; for instance, fractional solutions have been pro-
posed using differintegral relations [3]. Hilfer definition of Riemann-Liouville fractional
derivative is also used to present fractional solution of Helmholtz equation [4]. In ad-
dition, FHE can also be solved by numerical approaches[5, 6], however, most of the
approaches are performed in Cartesian coordinates.

This study drives sufficient analytical solution of the cylindrically symmetric FHE
with Caputo fractional derivative. Our solution utilizes cylindrical coordinates due
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to its symmetrical feature, however the solution applicable in spherical coordinates as
well. The derived results enriches the literature by adding efficient analytical solution
away from rectangular space. Moreover, the followed procedure could be extended to
deal with similar equations such as Poisson, Heat and Schrodinger equations.

2 The derivation

FHE of a fractional order α ∈ R reads [4]

(∇α
2 + k2)U(r, φ, z) = 0. (1)

The Laplace operator in cylindrical coordinates for isotropic medium, which is az-
imuthally independent of fractional differentiation, is given by [7]

∇α
2 =

1

rα
Dα(rαDα) +

Γ2(α + 1)

r2α

∂2

∂φ2
+ D2

α, (2)

where Dα represents fractional derivative operator. It is defined for a p-differentiable
f(x) at right side of arbitrary constant a. by [8]

Dαf(x) =
1

Γ(p − α)

∫ x

a

f(p)(τ )dτ

(x − τ )α+1−p
, (3)

where p = [α + 1] . Separation of variables, Uα(r, φ, z) = R(r)Φ(φ)Z(z) along with
Laplace operator illustrate FHE to

1

Rrα
Dα(rαDαR) +

Γ2(α + 1)

r2α

1

Φ

d2Φ

dφ2
+

1

Z
D2

αZ(z) + k2 = 0. (4)

Eq. 4 can be decomposed into the followings:

d2Z

dz2
+ B2αZ = 0, (5a)

d2Φ

dφ2
+ η2Φ = 0, (5b)

rαDα(rαDαR) + (k2
Br2α − η2Γ2(α + 1))R = 0, (5c)

where B and η are constants, and kB =
√

k2 − B2α. Eqs 5a and 5b are identical to
the non-fractional solution terms, they have the sinusoidal form solutions Z = e±iBαz

and Φ = eiηφ respectively, where both B and η ε R unless for evanescent wave.

2.1 Fractional Bessel Function

Eq. 5c is a fractional differential equation with a singular point at rα = 0, without loss
of generality, this equation can be solved by fractional series expansion of the form:
R(r) = rαν

∑∞

n=0 Cnrαn. Substitution in Eq. 5c and use:

Dα(xβ) = (Γ(β + 1)/Γ(β − α + 1))(x)β−α, (6)
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where α, β /∈ N . The first coefficient in the fractional series can be written as:

C0[(
Γ(αν + 1)

Γ(αν − α + 1)
)2 − η2Γ2(α + 1)] = 0. (7)

The surface, which is oriented by α, ν and η, is defined for C0 6= 0, is illustrated in
Fig. 1. The recursion formula of the fractional series is determined by considering the
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Figure 1: Meshed surface composite of ν, η and α.

nth terms as follows:

Cn[(
Γ(αν + αn + 1)

Γ(αν + αn − α + 1)
)2 − η2Γ2(α + 1)] + Cn−2k

2
B = 0. (8)

Thus,

Cn = −k2
B [(

Γ(αν + αn + 1)

Γ(αν + αn − α + 1)
)2 − (

Γ(αν + 1)

Γ(αν − α + 1)
)2]−1Cn−2. (9)

Using the asymptotic formula of Gamma function [9]

Γ(ax + b) ∼
√

2πe−ax(ax)ax+b− 1

2 , (10)

to simplify the ratio in Eq. 9 as follows

Γ(αν + 1)

Γ(αν − α + 1)
≡ (αν)α, (

Γ(αν + αn + 1)

Γ(αν + αn − α + 1)
≡ (αν + αn)α. (11)

Thus the nth term coefficient Cn reduces to:

Cn =
−k2

B

(n2α2 + 2ανn)α
Cn−2. (12)

Since odd terms vanish, only even indices are considered

C2n =
−k2

B

[22n(αn + ν)]α
C2n−2, (13)
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taking C0 = 1,

C2n =
(−1)nk2n

B

[22n(αn)!(αn + ν)!]α
. (14)

Hence, the particle solution of Eq. 5c is

R(r) = rαν
∞∑

n=0

(−1)n(
kB

2α
)2n r2αn

[(αn)!(αn + ν)!]α
. (15)

The generated series is a Bessel function of fractional mode: Jαν(kBr), it is compatible
with the ordinary form when α = 1. The fractional Bessel function of first and second
modes are respectively plotted at different fractional orders in Figs. 2 (a and b). There
are no fractional orders of zero Bessel function according to Eq. 15.
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Figure 2: Fractional Bessel Function of first (a) and second (b) modes at particular
fraction orders as well as non-fraction order (α = 1).

2.2 General Solution

The general solution of the FHE is given by

Uα = Jαν(kBr)eiηφe±iBαz. (16)

Azimuthal coefficient can be extracted from Eq. 7 as η = (αν)α/Γ(α + 1), thus Eq. 16
can be written as:

Uα = Jαν(kBr)exp[i
(αν)α

Γ(α + 1)
± Bαz]. (17)

Eq. 17 is not only compatible with ordinary solution at α = 1, but also it expands the
Helmholtz solution to fractional modes and bases.
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2.3 Orthogonality and Completeness

This subsection charactrizes the orthogonality and completeness of the fractional Helmholtz
general solution. Without loos of generality, the transverse components of the general
solution can be expanded by orthogonal basis such that

Jαν(kBr)exp[i
(αν)α

Γ(α + 1)
] =

∞∑
m=−∞

Cα
mJm(kBr)eimφ. (18)

The expansion coefficients can be determined by the orthogonality of (Jm(kBr)eimφ)
[9] as follows

Cα
m =

1

2π

∫ ∞

0

Jαν(kr)Jm(kr)
dr

r

∫ 2π

0

exp[i(ν/Γ(a)− m)φ]dφ; (19)

evaluating the integrals in Eq. 19 one gets

Cα
m =

2

π2

(i)ν/Γ(α) sin(πν/Γ(α))

(ν/Γ(α)− m)

sin[π(αν − m)/2]

[(αν)2 − m2]
; (20)

when α = 1, ν → m, then Cα
m = 1, hence the transverse FHE reduces to the ordinary

form. Moreover, the completeness of (Jm(kBr)eimφ) states that [10]

1

2π

∞∑
m=−∞

∫
∞

0

|Cα
m|2

∫
∞

0

dkBkB[Jm(kr)eimφ][Jm(kr
′

)eimφ
′

]∗

=
1

r
δ(r − r

′

)δ(φ − φ
′

). (21)

Assuming axial periodic boundary conditions with finite normalization length, unless
evanescent waves, the general solution of the FHE can be written as

Uα
±(r, φ, z) =

∞∑
m=−∞

Cαν
m Jm(kBr)eimφe±iBαz (22)

where α /∈ N , m = 0,±1,±2, ... and kB =
√

k2 − B2α, Eq. 22 represents orthognal
and complete set solution.

3 Application

3.1 Fractional Bessel Light

The scalar wave amplitude of Bessel light, mathematically speaking, is the solution of
the cylindrically symmetric Helmholtz equation. The modes of the transverse terms,
which are first kind Bessel functions attached to exponentials of complex azimuthal
terms, are basically integers. So its spatial wave is characterized by helical structure
as well as phase singularity at the center [11]. Moreover, the magnitude of its wave
number, k, composites of transverse parameter,kB, as well as longitude parameter, B.
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Fractional Bessel light could be theoretically derived in several ways, it could be gen-
erated by using fractional calculus of raising operators or fractional Fourier transforms
[12]. In addition, it is generated practically for non-complete cycle of the azimuthal
phase [13]. Our procedure is based on direct derivation as an Eigen state of the cylin-
drically symmetric FHE , in an analogy to the familiar ordinary form of Bessel light.
Thus, the amplitude of monochromatic fractional Bessel light that propagates in free
space can be expressed as

Uα
±

(r, φ, z) =

∞∑
m=−∞

∫ k

0

dkBkBUα
+ +

∞∑
m=−∞

∫ k

0

dkBkBUα
−

(23)

where ± indicates traveling along the +z or −z axis, respectively. Similar to ordinary
modes, fractional Bessel modes are non diffracting light. The modulus of its transverse
amplitude, is independent of the propagation distance, that is

|Uα(r, φ, z = 0)|2 = |Uα(r, φ, z = z0)|2 (24)

As an example, fractional orders of second Bessel light modes, ν = 2 , are illustrated
in Fig. 3. On the other hand, fractional order Bessel light represents a destruction
in the wave amplitude as can be seen in Fig. 3. The rings of ordinary Bessel light
is deformed as fractional order goes away, again their formulas are compatible with
ordinary forms at non-fractional modes. The corresponding phase angles, which are
suspended between imaginary and real values of Eq. 23, are also defined in fractional
space. Its distribution represents intermediate states between the ordinary states of
integer modes as shown in Fig. 4, where it is clear the effect of the fractional orders.
Readers should note that both Figs. 3 and 4 are plotted in transverse scale in units of
k−1.

3.2 Cylindrically Symmetric Diffusion

The equation of time-independent fractional diffusion at uniform azimuthal symmetry
inside a cylinder of finite length can be also described by FHE. Eq. 22 can be modified
to represent fractional diffusion in this case, the fractional flux of such system is given
by:

Uαν
± (r, φ, z) =

∞∑
m=−∞

Cαν
m Jm(kBr)e±iBαz (25)

where Cαν
m is defined according to the orthonormality property as

Cαν
m =

2

π

sin[π(αν − m)/2]

[(αν)2 − m2]
(26)
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(a) α = 0.5 (b) α = 0.30 (c) α = 0.60

(d) α = 0.75 (e) α = 0.90 (f) α = 1

Figure 3: Images of transverse amplitude of second mode Bessel light at different
fraction orders.

Table 1: Numerical values of critical radii at different fractional modes of higher fluxes.

Flux Order α rc(kB)

0.25 2.7809
ν = 1 0.5 3.1416

0.75 3.4910
1 3.8317

0.25 3.1416
ν = 2 0.5 3.8317

0.75 4.4934
1 5.1356

Eq. 25 is reduced to ordinary flux equation which is compatible with the familiar
solution of spatial diffusion [14]. The flux is fractionalized at higher orders (ν ≥ 1)
and the critical fractional flux is determined at the zeroes of Eq. 25. On the other
hand, the critical radii are determined at the zeros of the fractional Bessel function,
which vary according to its mode. Certain numerical values of the critical radius, rc,
for different values of α are illustrated in Table 1, the data used in the calculation is
just for the first two high orders of the fluxes. Also the critical length is determined
when the exponential term of Eq. 25 vanishes, that is

eiBαz = 0 → Bα = mπ/Lc, m = 0,±1,±2, ... (27)

thus, the critical length of the cylinder could be specified. The data in Table 1, in
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(a) α = 0.15 (b) α = 0.30 (c) α = 0.60

(d) α = 0.75 (e) α = 0.90 (f) α = 1

Figure 4: Phase angle of second mode Bessel light at different fractional orders.

parallel with Eq. 27, could be used to determine the corresponding fractional buckling
according to the condition in Eq. 22:

k2 = k2
B + m2π2/L2

c (28)

Table 2: Fractional buckling of certain critical lengths and radii.

Lc(cm) rc(cm) α k(cm)−1

0.25 0.3591
15 11.3144 0.50 0.3816

0.75 0.4047

0.25 0.3328
20 9.4788 0.50 0.3668

0.75 0.4003

0.25 0.3397
30 8.6066 0.50 0.3798

0.75 0.4189
0.25 0.3431

50 8.2440 0.50 0.3862
0.75 0.4281
0.25 0.3446

100 8.1042 0.50 0.3889
0.75 0.4319

Table 2 illustrates chosen typical values of critical lengths and critical radii [15, 16, 9]
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which generates numerical values of the buckling of a cylinder at different fractional
first mode. It also shows the variation of buckling as the fractional order changes, note
that the buckling is slightly reduced at small fractional modes.

4 Conclusion

This study applies a fractional differentiation of the cylindrically symmetric Helmholtz
equation for isotropic medium. It provides an exact solution based on fractional Bessel
functions attached to particular exponents. The solution does not only compatible
with the ordinary form at non fractional orders, but also it considers the intermediate
cases as well. Moreover; the derived solution is represented as orthogonal and complete
set. In this work, we illustrate two direct applications of the cylindrically symmetric
FHE, spatial wave amplitudes and their phase angles of fractional Bessel light modes
are characterized. Also time independent fractional diffusion in a cylindrically sym-
metric isotropic medium is analyzed. In addition, critical heights and radii where
corresponding fluxes vanish, are determined.
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