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Abstract

In this paper we explore numerically the theoretical results of the paper [10],
and report on the numerical study of the Cauchy–Dirichlet problem for the 1D
wave equation with distributional propagation speed and mass term. The analysis
of this note shows that the notion of very weak solutions introduced in [3] is very
well adapted for numerical simulations. Moreover, by the recently constructed
theory of very weak solutions we can talk about uniqueness of numerical solutions
to differential equations with δ–like coefficients in some appropriate sense.

1 Introduction

In this paper we slightly modify theoretical results of the paper [10] to adapt them
to the numerical setting. As in [10] let L be a densely defined linear operator on a
separable Hilbert space H with the discrete spectrum {λξ ≥ 0 : ξ ∈ N}. We assume
that the system of eigenfunctions {eξ : ξ ∈ N} is a Riesz basis in H.

Here, for non-negative functions a = a(t) ≥ 0, q = q(t) ≥ 0 and for the source term
f = f(t) ∈ H, we are interested in the well–posedness of the Cauchy problem for the
operator L with the propagation speed a and with a time-dependent mass term q:






∂2
t u(t) + a(t)Lu(t) + q(t)u(t) = f(t), t ∈ [0, T ],

u(0) = u0 ∈ H,

∂tu(0) = u1 ∈ H.

(1)

We allow a and q to be of distributional type, in particular, we analyse δ and/or δ′

cases.
In general, in equations with distributional coefficients we face a mathematical

difficulty caused by the general impossibility to multiply distributions, going back to
the famous Schwartz impossibility result [6]. To study equations with distributional
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coefficients and initial data the notion of very weak solutions has been introduced in
[3] to analyse partial differential equations of hyperbolic type. In [9, 11, 12] this notion
was applied to prove the (very weak) well-posedness for the Landau Hamiltonian wave
equations in distributional electro-magnetic fields. Also, in [5] an acoustic problem was
studied from the viewpoint of very weak solutions. For more background information
on very weak solutions, we refer to [3, 9] and references therein.

Below, concerning the Cauchy problem (1), we obtain the well-posedness results
in Sobolev spaces Hs

L associated to L for any s ∈ R. We use the Sobolev type space
adapted to L,

Hs
L :=

{
f ∈ H−∞

L : Ls/2f ∈ H
}
,

with the norm ‖f‖Hs

L
:= ‖Ls/2f‖H. The global space of L-distributionsH−∞

L is defined
in Appendix 4. Anticipating the material of Appendix 4, by using Plancherel’s identity
(7), we can express the Sobolev norm as

‖f‖Hs

L
=




∑

ξ∈N

|λξ|
s(f, e∗ξ)(eξ , f)




1/2

, (2)

for any s ∈ R, where (·, ·) is the inner product of the space H.
Also, it is convenient to use the notationH∞

L for the space of test functions, defined
by H∞

L :=
⋂

s≥0H
s
L. We refer to Appendix 4 for all the appearing notation.

2 Main Results

We now repeat discussions of [3, 9, 10] about the very weak solutions and formulate
results for distributions a, q ∈ D′([0, T ]) and f ∈ D′([0, T ])⊗̄H−∞

L . We start by regu-
larising the distributional coefficients a, q and the source term f by convolution with
a suitable mollifier ψ. We obtain families of smooth functions (aε)ε, (qε)ε and (fε)ε,
namely

aε = a ∗ ψω(ε), qε = q ∗ ψω(ε), fε = f(·) ∗ ψω(ε),

where
ψω(ε)(t) = ω(ε)−1ψ(t/ω(ε))

and ω(ε) is a positive function converging to 0 as ε → 0 (to be chosen later). Here
ψ is a Friedrichs–mollifier: ψ ∈ C∞

0 (R), ψ ≥ 0 and
∫
ψ = 1. It turns out that the

net (aε)ε is C∞-moderate, in the sense that its C∞-seminorms can be estimated by
a negative power of ε. More precisely, we will make use of the following notions of
moderateness.

In what follows “K b R” means that K is a compact set in R.

DEFINITION 1. (i) We say that a net of functions (fε)ε ∈ C∞(R)(0,1] is C∞-
moderate if for arbitrary K b R and for any α ∈ N0 there exist N ∈ N0 and c > 0
such that

sup
t∈K

|∂αfε(t)| ≤ cε−N−α,
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for all ε ∈ (0, 1].
(ii) We say that a net of functions (uε)ε ∈ C∞([0, T ];Hs

L)(0,1] is C∞([0, T ];Hs
L)-

moderate if there are N ∈ N0 and ck > 0 for any k ∈ N0 such that

‖∂k
t uε(t, ·)‖Hs

L
≤ ckε

−N−k,

for all ε ∈ (0, 1] and t ∈ [0, T ].

Note that these notions of moderateness are natural in the sense that regularisations
of distributions are moderate. For more discussions on it, we refer to [3]. Now we are
in a position to introduce a notion of a ‘very weak solution’ for the Cauchy problem






∂2
t u(t) + a(t)Lu(t) + q(t)u(t) = f(t), t ∈ [0, T ],

u(0) = u0 ∈ H,

∂tu(0) = u1 ∈ H.

(3)

DEFINITION 2. Let s be a real number. We say that the net (uε)ε ⊂ C∞([0, T ];Hs
L)

is a very weak solution of s-type of the Cauchy problem (3) if there are

C∞-moderate regularisation aε, qεof coefficients a and q

and
C∞([0, T ];Hs

L)-moderate regularisation fε of f ,

such that (uε)ε solves the regularised problem






∂2
t uε(t) + aε(t)Luε(t) + qε(t)uε(t) = fε(t), t ∈ [0, T ],

uε(0) = u0 ∈ H,

∂tuε(0) = u1 ∈ H,

for arbitrary ε ∈ (0, 1], and is C∞([0, T ];Hs
L)-moderate.

In what follows we make assumptions that a is a nonnegative or a strictly positive
distribution and q is a nonnegative distribution. That is, a is a strictly positive distri-
bution if there exists a constant a0 > 0 such that a−a0(≥ 0) is a positive distribution.
Here a− a0 ≥ 0 means that 〈a − a0, ψ〉 ≥ 0 for arbitrary ψ ∈ C∞

0 (R), ψ ≥ 0.
The main results of the paper are existence, uniqueness and consistency Theorems

1, 2 and 3.

THEOREM 1 [Existence]. Let s ∈ R. Let the coefficients a and q of the Cauchy
problem (3) be positive distributions with compact support included in [0, T ], such
that a ≥ a0 and q ≥ q0 for some constants a0 > 0 and q0 > 0. Let u0, u1 ∈ Hs

L and
f ∈ D′([0, T ])⊗̄Hs

L. Then the Cauchy problem (3) has a very weak solution of s-type.

Now, we show that the very weak solution is unique in an appropriate sense. To
formulate the uniqueness result we will use the Colombeau algebras’ language:
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DEFINITION 3. We say that (uε)ε is C∞-negligible if for arbitrary K b R, for all
α ∈ N and for any ` ∈ N there is a constant C > 0 such that

sup
t∈K

|∂αuε(t)| ≤ C ε`

holds for all ε ∈ (0, 1].

Indeed, it is enough to put K = [0, T ] in this paper since we have only time-
dependent distributions supported in the interval [0, T ].

We introduce the Colombeau algebra as the quotient

G(R) =
C∞ − moderate nets

C∞ − negligible nets
.

For more general information about G(R) we refer to e.g. Oberguggenberger [13].

THEOREM 2 [Uniqueness]. Let a and q be positive distributions with compact
support included in [0, T ], such that a ≥ a0 and q ≥ q0 for some constants a0 > 0 and
q0 > 0. Let u0 ∈ Hs+1

L
, u1 ∈ Hs

L and f ∈ G([0, T ];Hs
L) for some s ∈ R. Then there

are embeddings of the coefficients a and q into G([0, T ]), such that the Cauchy problem
(3), that is






∂2
t u(t) + a(t)Lu(t) + q(t)u(t) = f(t), t ∈ [0, T ],

u(0) = u0 ∈ H,

∂tu(0) = u1 ∈ H,

has a unique solution u ∈ G([0, T ];Hs
L).

Denote by L∞
1 ([0, T ]) the space of bounded L∞–functions on the interval [0, T ] with

the derivative also in L∞.

THEOREM 3 [Consistency]. Assume that a ∈ L∞
1 ([0, T ]) and q ∈ L∞([0, T ]) are

such that a(t) ≥ a0 > 0 and q(t) ≥ a0 > 0. Let s ∈ R and consider the Cauchy problem






∂2
t u(t) + a(t)Lu(t) + q(t)u(t) = f(t), t ∈ [0, T ],

u(0) = u0 ∈ H,

∂tu(0) = u1 ∈ H,

(4)

with u0 ∈ H1+s
L

, u1 ∈ Hs
L and f ∈ C([0, T ];Hs

L). Let u be a very weak solution of
s-type of (4). Then for any regularising families aε, qε, and fε in Definition 2, any
representative (uε)ε of u converges in C([0, T ];H1+s

L ) ∩ C1([0, T ];Hs
L) as ε→ 0 to the

unique classical solution in C([0, T ];H1+s
L )∩C1([0, T ];Hs

L) of the Cauchy problem (4)
if the latter exists.
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3 Numerical Experiments

As a most commonly encountered model, for the subsequent numerical analysis, let us
put

L := −
∂2

∂x2

on the segment Ω := [0, 10] with the Dirichlet boundary conditions. Thus, we consider





∂2
t u(t, x) − a(t)∂2

xu(t, x) + q(t)u(t, x) = 0, (t, x) ∈ [0, T ]× [0, 10],

u(t, 0) = 0, t ∈ [0, T ],

u(t, 10) = 0, t ∈ [0, T ],

u(0, x) = u0(x), x ∈ [0, 10],

∂tu(0, x) = u1(x), x ∈ [0, 10].

(5)

In this work we consider several particular cases of the coefficient a(t) and the
mass term q(t). Here we allow them to be distributional, in particular, to have δ–like
singularities.

As it was theoretically outlined in [9] and [11], we start to analyse our problem by
regularising distributions a(t) and q(t) by a parameter ε, that is, we set

aε(t) := (a ∗ ϕε)(t), qε(t) := (q ∗ ϕε)(t),

as the convolution with the mollifier

ϕε(t) =
1

ε
ϕ(t/ε),

with

ϕ(t) =

{
1
c
e1/(t2+1), |t| ≤ 1,

0, |t| > 1,

where c ' 0.443994 to get
∫ 1

−1
ϕ(t)dt = 1. Then, instead of (5) we consider the

regularised problem





∂2
ttuε(t, x) − aε(t)∂

2
xxuε(t, x) + qε(t)uε(t, x) = 0, (t, x) ∈ [0, T ]× [0, 10],

uε(t, 0) = 0, t ∈ [0, T ],

uε(t, 10) = 0, t ∈ [0, T ],

uε(0, x) = u0(x), x ∈ [0, 10],

∂tuε(0, x) = 0, x ∈ [0, 10].

(6)

Here, we put u1(x) ≡ 0 and

u0(x) =

{
e1/((x−4.1)2−0.1), |x− 4.1| < 0.1,

0, |x− 4.1| ≥ 0.1.

Note that supp u0 ⊂ [4, 4.2].
For a and q we consider the following combinations of the possible cases, with δ

denoting the standard Dirac’s delta-distribution:
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(A1) a = 1, q = 0;

(A2) a = 1 + 5δ(t− 3), q = 0;

(A3) a = 1 + 5δ(t− 3), q = 1;

(B4) a = 1 + 5δ(t− 3), q = 10δ(t− 7);

(B5) a = 1 + 5δ(t− 3), q = 1 + 10δ(t− 7);

(A6) a = 1 + 5δ(t− 3), q = 1 + 5δ′(t− 1.5);

In Figure 1, we compare solutions of the problem (6) in different cases. In the
upper-left plot, we compare the behaviours of the solution corresponding to the cases
(A1) and (A2) coloured by blue and red, respectively, at t = 3.2 for ε = 0.1. In
the upper-right plot, we compare the behaviours of the solution corresponding to the
cases (A1) and (A3) coloured by blue and red, respectively, at t = 3.2 for ε = 0.1.
In the bottom plot, we compare the behaviour of the solutions of the problem (6)
corresponding to the cases (A1) and (A6) coloured by blue and red, respectively, at
t = 3.2 for ε = 0.1. Here when the mass term q is positive, we see that the wave level
is lower than when it is absent. But when q = 1 + 5δ′(t− 1.5), it can be interpreted as
a quickly changeable mass (not only volume but also its sign), and we get less stable
waves, as it is shown in the plot.

In Figure 2 in the left plot, from up to bottom we see the solution of the problem
(6) coloured by blue in the case (A1) and by red in the case (A2) at t = 3, 3.2, 3.4. In
the right plot, from up to bottom we can see the solution of the problem (6) coloured
by blue in the case (A2) and by red in the case (B4) at t = 7, 7.2, 7.4, for ε = 0.1.

In Figure 3, we compare the “kinetic energy”

E(t) =

∫ 10

0

|∂tuε(x, t)|
2dx

of the system corresponding to the problem (6) in the case (B5) for different values of
ε = 0.03, 0.05, 0.08, 0.1. In Figure 4 in the left plot, we compare the kinetic energy of
the system corresponding to the problem (6) in the cases (A1), coloured by blue, and
(A2), which is coloured by red, for ε = 0.1. In the right plot, we compare the kinetic
energy of the system corresponding to the problem (6) in the cases (A3), coloured
by blue, and (B5), which is coloured by red, for ε = 0.1. The analysis shows that
the kinetic energy of the singular problems is higher than the problems without δ–like
terms. However, in the both cases the kinetic energy decays in time. In the left plot,
we analyse the behaviour of the kinetic energy, in particular, how it depends on the
parameter ε. Even if the energy function shows impulses at the shocked moments, in
general, it decays in time.

All numerical computations are made in C++ by using the sweep method. In
above numerical simulations, we used the Matlab R2017b. For all simulations we take
∆t = 0.01, ∆x = 0.1.
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Figure 1: In all plots, from right to left we see the solution of the problem (6) in the
case (A1) coloured by blue at t = 3.2 and ε = 0.1. Red lines: in the upper-left plot, we
see the solution of the problem (6) in the case (A2); in the upper-right plot, we see the
solution of the problem (6) in the case (A3); in the bottom plot, we see the solution of
the problem (6) in the case (A6) at t = 3.2, for ε = 0.1.

4 Appendix: L-Fourier Analysis

Here, we recall some necessary elements of the global Fourier analysis developed in
[2, 7, 8]. We call H∞

L := Dom(L∞) the space of test functions for L. Define

Dom(L∞) :=

∞⋂

k=1

Dom(Lk),

where Dom(Lk) is the domain of the iterated operator Lk, defined as

Dom(Lk) := {f ∈ H : Ljf ∈ Dom(L), j = 0, 1, 2, . . . , k− 1}.

The Fréchet topology of H∞
L is given by the semi-norms

‖ϕ‖Hk

L

:= max
j≤k

‖Ljϕ‖H, k ∈ N0, ϕ ∈ H∞
L .

We call the space of linear continuous functionals H−∞
L := L(H∞

L∗ ,C) the space of
L-distributions. We write w(ϕ) = 〈w, ϕ〉 for w ∈ H−∞

L and ϕ ∈ H∞
L∗ ,

The system {eξ : ξ ∈ N} of eigenfunctions of L is a Riesz basis in the Hilbert space
H and its biorthogonal system {e∗ξ : ξ ∈ N} is also a Riesz basis in the space H (see
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Figure 2: In the left plot, from up to bottom we see the solution of the problem (6)
coloured by blue in the case (A1) and by red in the case (A2) at t = 3, 3.2, 3.4. In the
right plot, from up to bottom we can see the solution of the problem (6) coloured by
blue in the case (A2) and by red in the case (B4) at t = 7, 7.2, 7.4, for ε = 0.1.
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Figure 3: In the both plots, we compare the kinetic energy of the system corresponding
to the problem (6) in the case (B5) for different values of ε = 0.03, 0.05, 0.08, 0.1. In
the right plot we focus near t = 3 and can see an influence to the energy of the singular
propagation speed: the propagation speed effects comparatively more than the mass
term.

[1, 4]). We note that e∗ξ is an eigenfunction of the conjugate operator L∗ corresponding

to the eigenvalue λξ for all ξ ∈ N. For them we have the orthogonality relations

(eξ , e
∗
η) = δξη ,

where δξη is the Kronecker delta.
Denote 〈ξ〉 := (1 + |λξ|)

1/2. We say that the function ϕ : N → C belongs to the
space of rapidly decaying functions S(N) if for arbitrary m < ∞ there is a constant
Cϕ,m such that

|ϕ(ξ)| ≤ Cϕ,m〈ξ〉−m

holds for all ξ ∈ N.
We give the topology on S(N) by the seminorms pk, where k ∈ N0 and

pk(ϕ) := sup
ξ∈N

〈ξ〉k|ϕ(ξ)|.
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Figure 4: In the left plot, we compare the kinetic energy of the system corresponding
to the problem (6) in the cases (A1), coloured by blue, and (A2), which is coloured
by red, for ε = 0.1. In the right plot, we compare the kinetic energy of the system
corresponding to the problem (6) in the cases (A3), coloured by blue, and (B5), which
is coloured by red, for ε = 0.1.

Let us define the L-Fourier transform on H∞
L as

(FLf)(ξ) = (f 7→ f̂) : H∞
L → S(N)

by
f̂(ξ) := (FLf)(ξ) = (f, e∗ξ ),

and introduce the L∗-Fourier transform on H∞
L∗ as

(FL∗g)(ξ) = (g 7→ ĝ∗) : H∞
L∗ → S(N)

by
ĝ∗(ξ) := (FL∗g)(ξ) = (g, eξ).

The transform FL : H∞
L → S(N) is a bijective homeomorphism. For the inverse

F−1
L : S(N) → H∞

L

we have
(F−1

L h) =
∑

ξ∈N

h(ξ)eξ , h ∈ S(N),

so that the inversion formula becomes

f =
∑

ξ∈N

f̂(ξ)eξ

for any f ∈ H∞
L .

The Plancherel identity has the form

‖f‖H =




∑

ξ∈N

f̂(ξ)f̂∗(ξ)




1/2

. (7)
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Let us introduce H–norms of functions as

‖f‖H :=




∑

ξ∈N

|f̂(ξ)|2




1/2

.

Roughly speaking, for any linear continuous operator L : H∞
L → H∞

L (or for more
general operator L : H∞

L → H−∞
L

), requiring that eξ does not have zeros, its symbol
σL(ξ) can be defined by formula

eξσL(ξ) := Leξ .

Then we have
Lf =

∑

ξ∈N

σL(ξ) f̂(ξ) eξ .

The correspondence between linear operators and symbols is one-to-one.

For arbitrary s ∈ R define Sobolev spaces Hs
L associated to L:

Hs
L :=

{
f ∈ H−∞

L : Ls/2f ∈ H
}
,

with the norm ‖f‖Hs

L
:= ‖Ls/2f‖H. By taking into account the providing arguments,

we may also understand it as

‖f‖Hs

L
:= ‖Ls/2f‖H :=




∑

ξ∈N

|σL(ξ)|s|f̂(ξ)|2




1/2

,

justifying the expression (2) since σL(ξ) = λξ .

5 Conclusion

The analysis carried out in this paper showed that the numerical methods work well
in the situations where a rigorous mathematical formulation of the problem is diffi-
cult within the classical theory of distributions. The concept of very weak solutions
eliminates this difficulty, giving the well-posedness results for equations with δ–like
coefficients. Numerical experiments showed that a notion of very weak solutions intro-
duced in [3] is very well adapted for numerical simulations. Moreover, by the recently
constructed theory of very weak solutions we can talk about uniqueness of the numer-
ical solutions to differential equations with δ–like coefficients in a suitable appropriate
sense.
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