Hyers-Ulam Stability And Exponential Dichotomy Of Discrete Semigroup^{*}

Akbar Zada[†], Bakht Zada[‡]

Received 18 October 2018

Abstract

In this manuscript we prove that the discrete semigroup $\mathcal{T} = \{T(p) : p \in \mathbb{Z}_+\}$ is Hyers–Ulam stable if and only if it has uniform exponential dichotomy. In fact, we prove that if the discrete semigroup \mathcal{T} possesses uniform exponential dichotomy then for each $f_q \in P_0(\mathbb{N}, \mathcal{B})$, the discrete time equation $\psi_{p+1} = T(1)\psi_p + f_{p+1}$ have bounded solution, starting by a unique $x \in Ker\mathbb{P}_r$. Consequently the semigroup \mathcal{T} will be Hyers–Ulam stable and vice versa.

1 Introduction

In 1940, Ulam presented some problems concerning the stability of functional equations, [17]. He asked: let \mathcal{G}_1 be a group and (\mathcal{G}_2, d) be a metric group. For a given $\varepsilon > 0$, does there exists $\delta > 0$ such that if $f : \mathcal{G}_1 \to \mathcal{G}_2$ satisfies

 $d(f(xy), f(x)f(y)) < \delta$, for all $x, y \in \mathcal{G}_1$,

then there exists a homomorphism $T: \mathcal{G}_1 \to \mathcal{G}_2$ such that

 $d(f(x), T(x)) < \varepsilon$ for all $x \in \mathcal{G}_1$?

In the next year, Hyers [6] answered Ulam's question, partially, by considering \mathcal{G}_1 and \mathcal{G}_2 Banach spaces. Afterwards, solution of such problem is known as Ulam–Hyers stability. In 1978, Rassias [15], provided a remarkable generalization of the Ulam–Hyers stability of mappings by considering variables. Obloza [14] was the first one, who extended the Hyers–Ulam (\mathcal{HU}) stability concept to differential equations. Alsina and Ger [1], studied the mentioned concept of stability for differential equation of the form $\dot{y} = y$. Since then, different researchers studied \mathcal{HU} stability with different approaches, we refer the reader to [4, 7, 9, 10, 11, 13, 16, 18, 19, 20, 21, 22, 23, 24].

The notion of exponential stability and dichotomy plays a central role in the theory of dynamical systems. Development has been made to analyze the exponential stability and dichotomy of evolution equations with different approaches, see [2, 3, 5, 8, 12, 25, 26, 27].

^{*}Mathematics Subject Classifications: 47D06, 34D20, 34D09.

 $^{^{\}dagger}\textsc{Department}$ of Mathematics, University of Peshawar, Peshawar 25000, Pakistan

[‡]Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan

In this manuscript we relate the uniform exponential dichotomy and \mathcal{HU} stability of exponentially bounded semigroup \mathcal{T} . Consider the following time-dependent discrete system

$$\Upsilon_{p+1} = T(1)\Upsilon_p, \quad \forall \quad p \in \mathbb{Z}_+, \tag{1}$$

where T(p) represent discrete semigroup on the Banach space \mathcal{B} .

The system (1) is said to be \mathcal{HU} stable, if there exists a real constant $\mathcal{K} > 0$ such that for each $\epsilon > 0$ and each solution ψ_p of

$$\|\psi_{p+1} - T(1)\psi_p\| \le \varepsilon, \quad \forall \quad p \in \mathbb{Z}_+.$$

there exists a solution Υ_p of (1) such that

$$\sup_{p\in\mathbb{Z}_+}\|\psi_p-\Upsilon_p\|\leq \mathcal{K}\varepsilon.$$

We show that the family $\{T(p) : p \in \mathbb{Z}_+\}$ of discrete semigroup of operators is \mathcal{HU} stable if and only if it is uniformly exponentially dichotomic.

The paper is arranged as follows: in section 2, we present some helpful notations and definitions regarding the family of one parameter discrete semigroup of operators. In section 3, we prove a result related to the exponential dichotomy of discrete semigroup which is helpful in the proof of our main result.

2 Notations and Preliminaries

By \mathbb{N} , \mathbb{Z}_+ , \mathcal{B} we denote the set of all natural numbers, all positive integers and Banach space of all bounded linear operators, respectively, the norm on \mathcal{B} will be denoted by $\|\cdot\|$ and $\mathbb{B}(\mathcal{B})$ denote the Banach algebra of all bounded linear operators on \mathcal{B} . We define the following spaces: By $L^{\infty}(\mathbb{N}, \mathcal{B})$ we denote the space such that if $f \in L^{\infty}(\mathbb{N}, \mathcal{B})$, then $\sup_{p \in \mathbb{N}} \|f(p)\| < \infty$ and $P(\mathbb{N}, \mathcal{B})$ denotes the space such that if $f \in P(\mathbb{N}, \mathcal{B})$ then $\lim_{p \to \infty} f(p) = 0$. $P_0(\mathbb{N}, \mathcal{B})$ denotes the space such that if $f \in P(\mathbb{N}, \mathcal{B})$ then obvious that the defined spaces are Banach spaces. The spectrum of a given operator is denoted by $\sigma(.)$.

DEFINITION 1. The one parameter family $\mathcal{T} = \{T(p)\}_{p\geq 0} \subset \mathbb{B}(\mathcal{B})$ is said to be semigroup of operators if T(0) = I and T(t+s) = T(t)T(s), for all $t, s \in \mathbb{Z}_+$.

DEFINITION 2. The one parameter family $\mathcal{T} = \{T(p)\}_{p\geq 0} \subset \mathbb{B}(\mathcal{B})$ will be exponentially bounded if there exist $M \geq 1$ and $\xi > 0$ such that $||T(p)|| \leq Me^{\xi p}$ for all $p \geq 0$.

DEFINITION 3. If there exists a projection $\mathbb{P}_r \in \mathbb{B}(\mathcal{B})$ and $M \geq 1$, v > 0, then the one parameter family $\mathcal{T} = \{T(p)\}_{p \geq 0}$ is uniformly exponentially dichotomic if the following holds:

1. $T(p)\mathbb{P}_r = \mathbb{P}_r T(p)$, for all $p \ge 0$;

- 2. $T(p)_{\downarrow}: Ker\mathbb{P}_r \to Ker\mathbb{P}_r$ is an isomorphism, for all $p \geq 0$;
- 3. $||T(p)x|| \leq Me^{-vp}||x||$, for all $x \in Im\mathbb{P}_r$ and all $p \geq 0$;
- 4. $||T(p)x|| \ge \frac{1}{M}e^{vp}||x||$, for all $x \in Ker\mathbb{P}_r$ and all $p \ge 0$.

DEFINITION 4. Let $\mathcal{T} = \{T(p)\}_{p\geq 0}$ be the one parameter family of operators on the Banach space \mathcal{B} and let $\mathbb{Y} \subset \mathcal{B}$. \mathbb{Y} is said to be \mathcal{T} -invariant if $T(p)\mathbb{Y} \subset \mathbb{Y}$, for all $p \geq 0$.

Consider the discrete time equation:

$$\psi_{p+1} = T(1)\psi_p + f_{p+1},\tag{2}$$

where $p \in \mathbb{N}$, $\psi \in L^{\infty}(\mathbb{N}, \mathcal{B})$ and $f \in P_0(\mathbb{N}, \mathcal{B})$. The solution of (2) with initial condition $\psi_0 = x_0$ is given by:

$$\psi_p = T(p)x_0 + \sum_{q=0}^p T(p-q)f_q.$$
 (3)

Let $\mathcal{B}_1 = \{x \in \mathcal{B} : \sup_{p \ge 0} ||T(p)x|| < \infty\}$. \mathcal{T} will denote an exponentially bounded discrete semigroup, \mathcal{B}_2 will denote \mathcal{T} -invariant(closed) complement of the closed linear subspace \mathcal{B}_1 such that $\mathcal{B} = \mathcal{B}_1 \oplus \mathcal{B}_2$, and the corresponding decomposition, due to \mathbb{P}_r , will be denoted by $Im\mathbb{P}_r = \mathcal{B}_1$ and $Ker\mathbb{P}_r = \mathcal{B}_2$. The solution (3) can be written as:

the solution (b) can be written as.

$$\psi_p = \sum_{q=0}^p T(p-q) Im \mathbb{P}_r f_q - \sum_{q=p+1}^\infty T(p-q)^{-1} Ker \mathbb{P}_r f_q.$$

REMARK 1. $T(p)\mathbb{P}_r = \mathbb{P}_r T(p)$, for all $p \ge 0$.

3 Exponential Dichotomy of Discrete Semigroup

In this section we prove that if a discrete semigroup posses uniform exponential dichotomy then the solution of non-homogenous discrete time equation will be bounded, starting by a unique $x \in Ker\mathbb{P}_r$.

THEOREM 1. If the semigroup $\mathcal{T} = \{T(p)\}_{p\geq 0}$ is uniformly exponentially dichotomic then for each $f_q \in P_0(\mathbb{N}, \mathcal{B})$ there exists $\psi_p \in L^{\infty}(\mathbb{N}, \mathcal{B})$ bounded solution of discrete-time equation (2), starting by a unique $x \in Ker\mathbb{P}_r$.

PROOF. Let the semigroup $\mathcal{T} = \{T(p)\}_{p \ge 0}$ is uniformly exponentially dichotomic. The solution of the discrete-time equation (2) may be written as

$$\psi_p = \sum_{q=0}^p T(p-q) Im \mathbb{P}_r f_q - \sum_{q=p+1}^\infty T(p-q)^{-1} Ker \mathbb{P}_r f_q.$$
(4)

As

$$\begin{split} \sup_{p \ge 0} \| \sum_{q=0}^{p} T(p-q) Im \mathbb{P}_{r} f_{q} \| &\leq \sum_{q=0}^{p} M e^{-v(p-q)} \sup_{p \ge 0} \| f_{q} \| \\ &= \frac{M(1-e^{-vp})}{e^{v}-1} \sup_{p \ge 0} \| f_{q} \| \\ &\leq \frac{M}{e^{v}-1} \sup_{p \ge 0} \| f_{q} \|, \end{split}$$

and

$$\begin{split} \sup_{p \ge 0} \| \sum_{q=p}^{\infty} T(q-p) Ker \mathbb{P}_r f_q \| & \ge \quad \sum_{q=p}^{\infty} \frac{1}{M} e^{v(q-p)} \sup_{p \ge 0} \| f_q \| \\ & = \quad \frac{1}{M(1-e^{-v})} \sup_{p \ge 0} \| f_q \|. \end{split}$$

Equivalently,

p

$$\sup_{p\geq 0} \|\sum_{q=p}^{\infty} T(q-p)^{-1} Ker \mathbb{P}_r f_q \| \le M(1-e^{-v}) \sup_{p\geq 0} \|f_q\|.$$

Thus (4) implies

$$\sup_{p \ge 0} \|\psi_p\| \le \left(\frac{M}{e^v - 1} + Me^{v(q-p)}\right) \sup_{p \ge 0} \|f_q\|.$$

Let there exist two bounded solutions ψ_{1p} and ψ_{2p} , of the discrete-time equation (2) having their start in $Ker\mathbb{P}_r$. Then

$$\psi_{1p} = T(p)x_1 + \sum_{q=0}^p T(p-q)f_q, \quad x_1 \in Ker\mathbb{P}_r$$

and

$$\psi_{2p} = T(p)x_2 + \sum_{q=0}^p T(p-q)f_q, \quad x_2 \in Ker\mathbb{P}_r.$$

The difference $\psi_{1p} - \psi_{2p} = T(p)(x_1 - x_2)$ is clearly bounded. Since $x_1, x_2 \in Ker\mathbb{P}_r$ so $x_1 - x_2 \in Ker \mathbb{P}_r$. Therefore $x_1 = x_2$.

${\cal H}{\cal U}$ Stability and Exponential Dichotomy for Discrete-4 **Time Equation**

Consider a discrete semigroup $\mathcal{T} = \{T(p)\}_{p \geq 0}$, which appears in the solutions of the discrete system $\Upsilon_{p+1} = T(1)\Upsilon_p$ and let ψ_p is the approximate solution of the considered system, then $\psi_{p+1} \approx T(1)\psi_p$. Let f_q is the force term then ψ_p is an exact solution

530

of (2) corresponding to the forced term f_q , bounded by ε . Therefore, we have the following definition.

DEFINITION 5. The semigroup $\mathcal{T} = \{T(p)\}_{p\geq 0}$ is said to be $\mathcal{H}\mathcal{U}$ stable if for any ε , the inequality $||f_q|| \leq \varepsilon$ holds and there exists an exact solution Υ_p of $\Upsilon_{p+1} = T(1)\Upsilon_p$ and $\mathcal{K} \geq 0$ such that

$$\|\psi_p - \Upsilon_p\| \le \mathcal{K}\varepsilon.$$

THEOREM 2. The semigroup $\mathcal{T} = \{T(p)\}_{p\geq 0}$ is \mathcal{HU} stable if and only if it is uniformly exponentially dichotomic.

PROOF. **Sufficiency**: Suppose on contrary that $\mathcal{T} = \{T(p)\}_{p\geq 0}$ is not dichotomic. Then there exists $\lambda \in \sigma(T)$ with $|\lambda| = 1$ and $y \neq 0$ such that $T(0)y = \lambda y$. In general

$$T(p)y = \lambda^p y, \quad \forall p \in \mathbb{N}.$$

Suppose that $f_q = \lambda^q y$ for all $q \neq 0$ and $f_q = 0$ for q = 0. Let $\varepsilon \ge 0$ and ψ_p is the approximate solution of (1) such that $\sup_{p\ge 0} \|\psi_{p+1} - T(1)\psi_p\| = \sup_{p\ge 0} \|f(p+1)\|, \ \psi(0) = x_0$ with $\sup_{q\ge 0} \|f_q\| \le \varepsilon$ and let Υ_p is the exact solution of $\Upsilon_{p+1} = T(1)\Upsilon_p$.

As we assumed that the one parameter family $\mathcal{T} = \{T(p)\}_{p \geq 0}$ is $\mathcal{H}\mathcal{U}$ stable. Thus,

$$\sup_{p\geq 0} \left\|\psi_p - \Upsilon_p\right\|$$

is bounded by $\mathcal{K}\varepsilon$. So

$$\begin{split} \sup_{p\geq 0} \|\psi_p - \Upsilon_p\| &= \sup_{p\geq 0} \|T(p)x_0 + \sum_{q=0}^p T(p-q)f_q - T(p)x_0\| \\ &= \sup_{p\geq 0} \|\sum_{q=0}^p T(p-q)f_q\| \\ &= \sup_{p\geq 0} \|\sum_{q=1}^p T(p-q)\lambda^q y\| \\ &= \sup_{p\geq 0} \|\sum_{q=1}^p T(p-q)\Upsilon_q y\| \\ &= \sup_{p\geq 0} \|\sum_{q=1}^p T(p)y\| \\ &= \sup_{p\geq 0} \|n\lambda^p y\|, \end{split}$$

which is clearly unbounded. The contradiction arises due to our wrong supposition. So $\mathcal{T} = \{T(p)\}_{p \ge 0}$ is dichotomic. **Necessity**: Let \mathbb{P}_r is given by Definition 3. and \mathcal{T} be exponentially dichotomic, then equation(2) have unique bounded solution. Let $f \in P_0(\mathbb{N}, \mathcal{B})$, with $\sup_{p \ge 0} ||f_q|| \le \varepsilon$, and let Υ_p is the exact solution of $\Upsilon_{p+1} = T(1)\Upsilon_p$ and ψ_p is the approximate solution which is an exact solution of equation(2) with $\psi(0) = x_0$, i.e.

$$\psi_p = T(p)x_0 + \sum_{q=0}^p T(p-q)f_q.$$

Then

$$\begin{split} \sup_{p\geq 0} \|\psi_p - \Upsilon_p\| &= \sup_{p\geq 0} \|T(p)x_0 + \sum_{q=0}^p T(p-q)f_q - T(p)x_0\| \\ &= \sup_{p\geq 0} \|\sum_{q=0}^p T(p-q)f_q\| \\ &= \sup_{p\geq 0} \|\sum_{q=0}^p T(p-q)Ker\mathbb{P}_r f_q - \sum_{q=p+1}^\infty T(q-p))^{-1}Im\mathbb{P}_r f_q\| \\ &\leq \Big(\frac{M}{e^v - 1} + M(e^v - 1)\Big)\varepsilon \\ &= \mathcal{K}\varepsilon, \qquad \text{by choosing} \ \mathcal{K} = \Big(\frac{M}{e^v - 1} + M(e^v - 1)\Big). \end{split}$$

Thus $\sup_{p\geq 0} \|\psi_p - \Upsilon_p\| \leq \mathcal{K}\varepsilon$. Which implies that the discrete semigroup $\mathcal{T} = \{T(p)\}_{p\geq 0}$ is $\mathcal{H}\mathcal{U}$ stable.

Conclusion

We proved that the system $\Upsilon_{p+1} = T(1)\Upsilon_p$, $\forall p \in \mathbb{Z}_+$ is Hyers–Ulam stable if and only if it is dichotomic.

References

- C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2(1998), 373–380.
- [2] A. Ben-Artzi and I. Gohberg, Dichotomies of perturbed time-varying systems and the power method, Indiana Univ. Math. J., 42(1993), 699–720.
- [3] A. Ben-Artzi, I. Gohberg and M. A. Kaashoek, Invertibility and dichotomy of differential operators on the half-line, J. Dynam. Differential Equations, 5(1993), 1–36.
- [4] N. Brillouet-Belluot, J. Brzdek and K. Cieplinski, On some recent developments in Ulam's type stability, Abstr. Appl. Anal. 2012, Art. ID 716936, 41 pp.

- [5] C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, 70. American Mathematical Society, Providence, RI, 1999.
- [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A, 27(1941), 222–224.
- [7] S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17(2004), 1135–1140.
- [8] Y. Latushkin and R. Schnaubelt, Evolution semigroups, translation algebras and exponential dichotomy of cocycles, J. Differential Equations, 159(1999), 321–369.
- [9] Y. Li and J. Huang, Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces, Electron. J. Differential Equations 2013, No. 184, 7 pp.
- [10] Y. Li and Y. Shen, Hyers-Ulam stability of nonhomogeneous linear differential equations of second order, Int. J. of Math. Math. Sci., 2009, Art. ID 576852.
- [11] Y. Li, Hyers-Ulam stability of linear differential equations $\ddot{y} = \lambda^2 y$, Thai J. Mat., 8(2010), 215–219.
- [12] M. Megan, A. L Sasu and B. Sasu, Discrete admissibility and exponential dichotomy for evolution families, Discrete Contin. Dyn. Syst., 9(2003), 383–397.
- [13] Z. Moszner, On stability of some functional equations and topology of their target spaces, Ann. Univ. Paedagog. Crac. Stud. Math., 11(2012), 69–94.
- [14] M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., 13(1993), 259–270.
- [15] Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
- [16] S. E. Takahasi, H. Takagi, T. Miura and S. Miyajima, The Hyers-Ulam stability constants of first order linear differential operators, J. Math. Anal. Appl., 296(2004), 403–409.
- [17] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publisheres, New York-London, 1960.
- [18] A. Zada, W. Ali and S. Farina, Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Meth. App. Sci., 40(2017), 5502–5514.
- [19] A. Zada and S. Ali, Stability Analysis of Multi-point Boundary Value Problem for Sequential Fractional Differential Equations with Non-instantaneous Impulses, Int. J. Nonlinear Sci. Numer. Simul., DOI: https://doi.org/10.1515/ijnsns-2018-0040.

- [20] A. Zada, S. Ali and Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Difference Equ., (2017), 2017:317.
- [21] A. Zada, U. Riaz and F. U. Khan, Hyers-Ulam stability of impulsive integral equations, Boll. Unione Mat. Ital., (2018). https://doi.org/10.1007/s40574-018-0180-2
- [22] A. Zada, S. O. Shah and R. Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problem, Appl. Math. Comput., 271(2015), 512–518.
- [23] A. Zada and S. O. Shah, Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacettepe J. Math. Stat., 47(2015), 1196–1205.
- [24] A. Zada, P. Wang, D. Lassoued and T. Li, Connections between Hyers-Ulam stability and uniform exponential stability of 2-periodic linear nonautonomous systems, Adv. Difference Equ., (2017), 2017:192.
- [25] A. Zada and B. Zada, On uniform exponential stability of linear switching system, Math. Methods Appl. Sci., 42(2019), 717–722.
- [26] A. Zada, B. Zada, J. Cao and T. Li, Uniform exponential stability of periodic discrete switched linear system, J. Franklin Inst., 354(2017), 6247–6257.
- [27] A. Zada A, T. Li, M. Arif and D. Lassoued, Criteria for the exponential stability of linear evolution difference equation, IMA J. Math. Conrol Inform., 35(2018), 25–34.