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Abstract

In this manuscript we prove that the discrete semigroup T = {T (p) : p ∈ Z+}
is Hyers—Ulam stable if and only if it has uniform exponential dichotomy. In
fact, we prove that if the discrete semigroup T possesses uniform exponential
dichotomy then for each fq ∈ P0(N,B), the discrete time equation ψp+1 =
T (1)ψp + fp+1 have bounded solution, starting by a unique x ∈ KerPr. Con-
sequently the semigroup T will be Hyers—Ulam stable and vice versa.

1 Introduction

In 1940, Ulam presented some problems concerning the stability of functional equations,
[17]. He asked: let G1 be a group and (G2, d) be a metric group. For a given ε > 0,
does there exists δ > 0 such that if f : G1 → G2 satisfies

d(f(xy), f(x)f(y)) < δ, for all x, y ∈ G1,

then there exists a homomorphism T : G1 → G2 such that

d(f(x), T (x)) ≤ ε for all x ∈ G1?

In the next year, Hyers [6] answered Ulam’s question, partially, by considering G1 and G2
Banach spaces. Afterwards, solution of such problem is known as Ulam—Hyers stability.
In 1978, Rassias [15], provided a remarkable generalization of the Ulam—Hyers stability
of mappings by considering variables. Obloza [14] was the first one, who extended
the Hyers—Ulam (HU) stability concept to differential equations. Alsina and Ger [1],
studied the mentioned concept of stability for differential equation of the form ẏ = y.
Since then, different researchers studied HU stability with different approaches, we
refer the reader to [4, 7, 9, 10, 11, 13, 16, 18, 19, 20, 21, 22, 23, 24].
The notion of exponential stability and dichotomy plays a central role in the theory

of dynamical systems. Development has been made to analyze the exponential stability
and dichotomy of evolution equations with different approaches, see [2, 3, 5, 8, 12, 25,
26, 27].
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In this manuscript we relate the uniform exponential dichotomy and HU stability of
exponentially bounded semigroup T . Consider the following time-dependent discrete
system

Υp+1 = T (1)Υp, ∀ p ∈ Z+, (1)

where T (p) represent discrete semigroup on the Banach space B.
The system (1) is said to be HU stable, if there exists a real constant K > 0 such

that for each ε > 0 and each solution ψp of

‖ψp+1 − T (1)ψp‖ ≤ ε, ∀ p ∈ Z+.

there exists a solution Υp of (1) such that

sup
p∈Z+

‖ψp −Υp‖ ≤ Kε.

We show that the family {T (p) : p ∈ Z+} of discrete semigroup of operators is HU
stable if and only if it is uniformly exponentially dichotomic.
The paper is arranged as follows: in section 2, we present some helpful notations and

definitions regarding the family of one parameter discrete semigroup of operators. In
section 3, we prove a result related to the exponential dichotomy of discrete semigroup
which is helpful in the proof of our main result.

2 Notations and Preliminaries

By N, Z+, B we denote the set of all natural numbers, all positive integers and Banach
space of all bounded linear operators, respectively, the norm on B will be denoted by ‖·‖
and B(B) denote the Banach algebra of all bounded linear operators on B. We define
the following spaces: By L∞(N,B) we denote the space such that if f ∈ L∞(N,B),
then supp∈N ‖f(p)‖ <∞ and P (N,B) denotes the space such that if f ∈ P (N,B) then
lim
p→∞

f(p) = 0. P0(N,B) denotes the space such that if f ∈ P (N,B) then f(0) = 0. It is

obvious that the defined spaces are Banach spaces. The spectrum of a given operator
is denoted by σ(.).

DEFINITION 1. The one parameter family T = {T (p)}p≥0 ⊂ B(B) is said to be
semigroup of operators if T (0) = I and T (t+ s) = T (t)T (s), for all t, s ∈ Z+.

DEFINITION 2. The one parameter family T = {T (p)}p≥0 ⊂ B(B) will be expo-
nentially bounded if there exist M ≥ 1 and ξ > 0 such that ‖T (p)‖ ≤ Meξp for all
p ≥ 0.

DEFINITION 3. If there exists a projection Pr ∈ B(B) and M ≥ 1, v > 0, then
the one parameter family T = {T (p)}p≥0 is uniformly exponentially dichotomic if the
following holds:

1. T (p)Pr = PrT (p), for all p ≥ 0;
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2. T (p)| : KerPr → KerPr is an isomorphism, for all p ≥ 0;

3. ‖T (p)x‖ ≤Me−vp‖x‖, for all x ∈ ImPr and all p ≥ 0;

4. ‖T (p)x‖ ≥ 1
M evp‖x‖, for all x ∈ KerPr and all p ≥ 0.

DEFINITION 4. Let T = {T (p)}p≥0 be the one parameter family of operators on
the Banach space B and let Y ⊂ B. Y is said to be T -invariant if T (p)Y ⊂ Y, for all
p ≥ 0.

Consider the discrete time equation:

ψp+1 = T (1)ψp + fp+1, (2)

where p ∈ N , ψ ∈ L∞(N,B) and f ∈ P0(N,B). The solution of (2) with initial
condition ψ0 = x0 is given by:

ψp = T (p)x0 +

p∑
q=0

T (p− q)fq. (3)

Let B1 = {x ∈ B : supp≥0 ‖T (p)x‖ < ∞}. T will denote an exponentially bounded
discrete semigroup, B2 will denote T -invariant(closed) complement of the closed linear
subspace B1 such that B = B1 ⊕ B2, and the corresponding decomposition, due to Pr,
will be denoted by ImPr = B1 and KerPr = B2.
The solution (3) can be written as:

ψp =

p∑
q=0

T (p− q)ImPrfq −
∞∑

q=p+1

T (p− q)−1KerPrfq.

REMARK 1. T (p)Pr = PrT (p), for all p ≥ 0.

3 Exponential Dichotomy of Discrete Semigroup

In this section we prove that if a discrete semigroup posses uniform exponential di-
chotomy then the solution of non—homogenous discrete time equation will be bounded,
starting by a unique x ∈ KerPr.

THEOREM 1. If the semigroup T = {T (p)}p≥0 is uniformly exponentially di-
chotomic then for each fq ∈ P0(N,B) there exists ψp ∈ L∞(N,B) bounded solution of
discrete-time equation (2), starting by a unique x ∈ KerPr.

PROOF. Let the semigroup T = {T (p)}p≥0 is uniformly exponentially dichotomic.
The solution of the discrete-time equation (2) may be written as

ψp =

p∑
q=0

T (p− q)ImPrfq −
∞∑

q=p+1

T (p− q)−1KerPrfq. (4)
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As

sup
p≥0
‖

p∑
q=0

T (p− q)ImPrfq‖ ≤
p∑
q=0

Me−v(p−q) sup
p≥0
‖fq‖

=
M(1− e−vp)

ev − 1
sup
p≥0
‖fq‖

≤ M

ev − 1
sup
p≥0
‖fq‖,

and

sup
p≥0
‖
∞∑
q=p

T (q − p)KerPrfq‖ ≥
∞∑
q=p

1

M
ev(q−p) sup

p≥0
‖fq‖

=
1

M(1− e−v) sup
p≥0
‖fq‖.

Equivalently,

sup
p≥0
‖
∞∑
q=p

T (q − p)−1KerPrfq‖ ≤M(1− e−v) sup
p≥0
‖fq‖.

Thus (4) implies

sup
p≥0
‖ψp‖ ≤

( M

ev − 1
+Mev(q−p)

)
sup
p≥0
‖fq‖.

Let there exist two bounded solutions ψ1p and ψ2p, of the discrete-time equation (2)
having their start in KerPr. Then

ψ1p = T (p)x1 +

p∑
q=0

T (p− q)fq, x1 ∈ KerPr

and

ψ2p = T (p)x2 +

p∑
q=0

T (p− q)fq, x2 ∈ KerPr.

The difference ψ1p − ψ2p = T (p)(x1 − x2) is clearly bounded. Since x1, x2 ∈ KerPr so
x1 − x2 ∈ KerPr. Therefore x1 = x2.

4 HU Stability and Exponential Dichotomy for Discrete-
Time Equation

Consider a discrete semigroup T = {T (p)}p≥0, which appears in the solutions of the
discrete system Υp+1 = T (1)Υp and let ψp is the approximate solution of the considered
system, then ψp+1 ≈ T (1)ψp. Let fq is the force term then ψp is an exact solution
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of (2) corresponding to the forced term fq, bounded by ε. Therefore, we have the
following definition.

DEFINITION 5. The semigroup T = {T (p)}p≥0 is said to be HU stable if for any ε,
the inequality ‖fq‖ ≤ ε holds and there exists an exact solution Υp of Υp+1 = T (1)Υp

and K ≥ 0 such that
‖ψp −Υp‖ ≤ Kε.

THEOREM 2. The semigroup T = {T (p)}p≥0 is HU stable if and only if it is
uniformly exponentially dichotomic.

PROOF. Suffi ciency : Suppose on contrary that T = {T (p)}p≥0 is not dichotomic.
Then there exists λ ∈ σ(T ) with |λ| = 1 and y 6= 0 such that T (0)y = λy.
In general

T (p)y = λpy, ∀ p ∈ N.
Suppose that fq = λqy for all q 6= 0 and fq = 0 for q = 0.
Let ε ≥ 0 and ψp is the approximate solution of (1) such that sup

p≥0
‖ψp+1 − T (1)ψp‖ =

sup
p≥0
‖f(p + 1)‖, ψ(0) = x0 with sup

q≥0
‖fq‖ ≤ ε and let Υp is the exact solution of

Υp+1 = T (1)Υp.
As we assumed that the one parameter family T = {T (p)}p≥0 is HU stable. Thus,

sup
p≥0
‖ψp −Υp‖

is bounded by Kε.
So

sup
p≥0
‖ψp −Υp‖ = sup

p≥0
‖T (p)x0 +

p∑
q=0

T (p− q)fq − T (p)x0‖

= sup
p≥0
‖

p∑
q=0

T (p− q)fq‖

= sup
p≥0
‖

p∑
q=1

T (p− q)λqy‖

= sup
p≥0
‖

p∑
q=1

T (p− q)Υq y‖

= sup
p≥0
‖

p∑
q=1

T (p)y‖

= sup
p≥0
‖nλpy‖,

which is clearly unbounded. The contradiction arises due to our wrong supposition.
So T = {T (p)}p≥0 is dichotomic.
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Necessity : Let Pr is given by Definition 3. and T be exponentially dichotomic,
then equation(2) have unique bounded solution.
Let f ∈ P0(N,B), with sup

p≥0
‖fq‖ ≤ ε, and let Υp is the exact solution of Υp+1 = T (1)Υp

and ψp is the approximate solution which is an exact solution of equation(2) with
ψ(0) = x0, i.e.

ψp = T (p)x0 +

p∑
q=0

T (p− q)fq.

Then

sup
p≥0
‖ψp −Υp‖ = sup

p≥0
‖T (p)x0 +

p∑
q=0

T (p− q)fq − T (p)x0‖

= sup
p≥0
‖

p∑
q=0

T (p− q)fq‖

= sup
p≥0
‖

p∑
q=0

T (p− q)KerPrfq −
∞∑

q=p+1

T (q − p))−1ImPrfq‖

≤
( M

ev − 1
+M(ev − 1)

)
ε

= Kε, by choosing K =
( M

ev − 1
+M(ev − 1)

)
.

Thus sup
p≥0
‖ψp −Υp‖ ≤ Kε. Which implies that the discrete semigroup T = {T (p)}p≥0

is HU stable.

Conclusion

We proved that the system Υp+1 = T (1)Υp, ∀ p ∈ Z+ is Hyers—Ulam stable if and
only if it is dichotomic.

References

[1] C. Alsina and R. Ger, On some inequalities and stability results related to the
exponential function, J. Inequal. Appl., 2(1998), 373—380.

[2] A. Ben-Artzi and I. Gohberg, Dichotomies of perturbed time-varying systems and
the power method, Indiana Univ. Math. J., 42(1993), 699—720.

[3] A. Ben-Artzi, I. Gohberg and M. A. Kaashoek, Invertibility and dichotomy of
differential operators on the half-line, J. Dynam. Differential Equations, 5(1993),
1—36.

[4] N. Brillouet-Belluot, J. Brzdek and K. Cieplinski, On some recent developments
in Ulam’s type stability, Abstr. Appl. Anal. 2012, Art. ID 716936, 41 pp.



A. Zada and B. Zada 533

[5] C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and
Differential Equations, Mathematical Surveys and Monographs, 70. American
Mathematical Society, Providence, RI, 1999.

[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad.
Sci. U.S.A, 27(1941), 222—224.

[7] S. M. Jung, Hyers-Ulam stability of linear differential equations of first order,
Appl. Math. Lett., 17(2004), 1135—1140.

[8] Y. Latushkin and R. Schnaubelt, Evolution semigroups, translation algebras and
exponential dichotomy of cocycles, J. Differential Equations, 159(1999), 321—369.

[9] Y. Li and J. Huang, Hyers-Ulam stability of linear second-order differential equa-
tions in complex Banach spaces, Electron. J. Differential Equations 2013, No. 184,
7 pp.

[10] Y. Li and Y. Shen, Hyers-Ulam stability of nonhomogeneous linear differential
equations of second order, Int. J. of Math. Math. Sci., 2009, Art. ID 576852.

[11] Y. Li, Hyers-Ulam stability of linear differential equations ÿ = λ2y, Thai J. Mat.,
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