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Abstract

In this paper, we prove some results on the mean square asymptotic stability of
the zero solution for a class of neutral stochastic differential with Poisson jumps
and variable delays by using a contraction mapping principle. A mean square
asymptotic stability theorem with a necessary and suffi cient condition is proved,
which improves and generalizes some previous results due to Dianli Zhao [35].
Finally, an example is exhibited to illustrate the effectiveness of the proposed
results.

1 Introduction

In nature, physics, society, engineering, and so on we always meet two kinds of functions
with respect to time: one is deterministic and another is random. Stochastic differen-
tial equations were first initiated and developed by K. Itô [9]. Today they have become
a very powerful tool applied to mathematics, physics, biology, finance, and so forth.
Real systems depend on not only present and past states but also involve derivatives
with delays. As a result, these systems are often built in the form of neutral differ-
ential equations. Practical examples of neutral delay differential systems include the
distributed networks containing lossless transmission lines [4], population ecology [15],
and other engineering systems [13]. For neutral stochastic delay differential equations,
we refer to [14, 22, 27].
It is well known that Lyapunov’s method has been the classical technique to study

stability of deterministic and stochastic differential equations and functional differen-
tial equations for more than 100 years, for example [26, 27]. However, there are a lot
of diffi culties to construct Lyapunov functions for examining stability. Burton in the
monograph [3] and the works [1, 2, 5, 10, 11, 29, 35, 37, 38] have successfully applied
fixed point theory to overcome these problems. In addition, there are some papers
where the fixed point theory is used to investigate the stability of stochastic (delayed)
differential equations (see for instance [17, 18, 20, 21, 33]). More precisely, Luo [17]
studied the mean square asymptotic stability for a class of linear scalar neutral sto-
chastic differential equations by means of fixed point theory. Furthermore, Luo [18—19]
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firstly considers the exponential stability for stochastic partial differential equations
with delays by the fixed point method. In [30, 31] the fixed point theory is used to
discuss the asymptotic stability in pth moment of mild solutions to nonlinear impulsive
stochastic partial differential equations with bounded delays and infinite delays. Wu et
al. [33] applied fixed point theory to study the stability of a class of nonlinear neutral
stochastic differential equations with variable time delays.
It often happens in real problems that a stochastic system jumps from a “normal

state” or “good state” to a “bad state,” and the strength of system is random. For
this class of systems, it is natural and necessary to include a jump term in them. The
effect of Poisson jumps should be taken into account when studying the stability of
stochastic differential equations (see for exemple [6, 7, 16, 28, 36]). Therefore, except
stochastic and delay effects, Poisson jumps’effects are likely to exist widely in a variety
of evolution processes in which states are changed abruptly at some moments of time,
including such fields as finance, economy, medicine, electronics, and so forth. Then,
it is natural to consider the effect of Poisson jumps when studying the stability of
stochastic delayed differential equations.
So far, these topics have received a lot of attention and there are so many references

about them. In detail, Guo and Zhu [7] studied the stochastic Voltera-Levin equation
with Poisson jumps, and they obtained pth moment stability of this equations. In
addition, Guo and Zhu have generalized and extended their works in [10]. Based on
fixed point theory, Chen et al. in [6] proved that the mild solution to a class of impulsive
stochastic differential equations with delays and Poisson jumps is not only existent and
unique but also pth moment exponentially stable. Recently, Liu et al. [16], applied
fixed point theory to study the mean square asymptotic stability for a class of nonlinear
neutral stochastic differential equations with Poisson jumps and variable delays.
Motived by previous work mentioned above, in this paper we address the mean

square asymptotic stability for a linear neutral stochastic differential equation with
variable delays and Poisson jumps. An asymptotic mean square stability theorem with a
necessary and suffi cient condition is proved. Some well-known results are improved and
generalized. More precisely, our model contains as a particular case the one analysed
in Dianli Zhao [35], and therefore we ensure the validity of those results.

The content of this paper is organized as follows. In Section 2, we recall some results
which are necessary for our analysis. In Section 3, we give the main result about mean
square asymptotic stability and its proof. In Section 4, an illustrative example is
analyzed to test our theory and our method. The last Section is the conclusion.

2 Model Description and Preliminaries

Throughout this paper, let (Ω,F ,P) be a complete probability space equipped with
some filtration {F t}t≥0 satisfying the usual conditions, i.e., the filtration is continuous
on the right and F0 contains all P-zero sets. Let {w (t) , t ≥ 0} denote a standard
one-dimensional Brownian motion defined on (Ω,F ,P). Also, let Ñ(t) := N(t) − βt,
where β ∈ R+ and N(t) is a stationary F t-Poisson point process with intensity β.
Obviously, Ñ(t) is a compensated Poisson process. Here C (S1, S2) denotes the set of
all continuous functions φ : S1 → S2 with the supremum norm. Finally, E will denote
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expectation.
In this paper, we consider the linear neutral stochastic differential equation with

variable delays and Poisson jumps:

d

(
x(t)− c (t)

1− τ ′1 (t)
x (t− τ1 (t))

)
=

(
−a(t)x(t− τ1 (t))− d

dt

(
c (t)

1− τ ′1 (t)

)
x (t− τ1 (t))

)
dt

+Σ (t)x(t− τ2 (t))dw (t) + Γ (t)x(t− τ3 (t))dÑ (t) , t ≥ t0, (1)

denote x (t) ∈ R the solution to (1) with the intial condition

x(t) = ψ (t) for t ∈ [m (t0) , t0] , (2)

and ψ ∈ C ([m (t0) , t0] ,R) , where a, b,Σ,Γ ∈ C (R+,R) , c ∈ C1 (R+,R) and τ i ∈
C (R+,R+) satisfy t− τ i (t)→∞ as t→∞, i = 1, 2, 3 and for each t0 ≥ 0,

mi (t0) = inf {t− τ i (t) , t ≥ t0} ,m (t0) = min {mi (t0) , i = 1, 2, 3} . (3)

Special cases of equation (1) have been investigated by many authors. For example,
Ardjouni and Djoudi in [1], Dianli Zhao in [35] studied the equation

x′(t) = −a(t)x(t− τ1 (t)) + c (t)x′(t− τ1 (t)), (4)

and have respectively proved the following theorems.

THEOREM A (Ardjouni and Djoudi [1]). Suppose that τ1 is twice differentiable
and τ ′1 (t) 6= 1 for all t ∈ R+, and there exists a continuous function h : [m (0) ,∞[→ R
and a constant α ∈ (0, 1) such that for t ≥ 0,

liminf
t→∞

∫ t

0

h(s)ds > −∞,

and

∣∣∣∣ c (t)

1− τ ′1 (t)

∣∣∣∣+

∫ t

t−τ1(t)
|h (s)| ds+

∫ t

0

e
−

∫ t

s

h(u)du

|h (s)|
(∫ s

s−τ1(s)
|h (u)| du

)
ds

+

∫ t

0

e
−

∫ t

s

h(u)du

|a (s) + h (s− τ1 (s)) (1− τ ′1 (s))− r (s)| ds ≤ α,

where

r (t) =
(c (t)h (t) + c′(t)) (1− τ ′1 (t)) + c(t)τ ′′1 (t)

(1− τ ′1 (t))
2 .

Then the zero solution of (4) is asymptotically stable if and only if∫ t

0

h(s)ds→∞ as t→∞.
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Under suffi cient conditions, Dianli Zhao in [35] has addressed new criteria for as-
ymptotic stability of equation (4) by using the Banach fixed point theorem method.
The author obtain one result as follows.

THEOREM B (Dianli Zhao [35]). Let τ1 be twice differentiable and suppose that
τ ′1 (t) 6= 1 for all t ∈ [m (t0) ,∞[ . Suppose that

(i) there exists a continuous function h : [m (t0) ,∞[→ R satisfying
∫ t
t0
h(s)ds →∞

as t→∞;

(ii) there exists a bounded function p : [m (t0) ,∞[ → (0,∞) with p(t) = 1 for
t ∈ [m (t0) , t0] and p′ (t) exists for all t ∈ [m (t0) ,∞[ ;

(iii) there exists a constant α ∈ (0, 1) such that for any t ≥ t0,∣∣∣∣c (t) p(t− τ1 (t))

p(t) (1− τ ′1 (t))

∣∣∣∣+

∫ t

t−τ1(t)

∣∣∣∣h (s)− p′(s)

p(s)

∣∣∣∣ ds
+

∫ t

0

e
−

∫ t

s

h(u)du

|h (s)|
(∫ s

s−τ1(s)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du
)
ds

+

∫ t

0

e−
∫ t
s
h(u)du

∣∣∣∣− b (s) +

(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s))

−k (s)

∣∣∣∣ds ≤ α, (5)

where

k (t) =
[C (t)h (t) + C ′ (t)] (1− τ ′1(t)) + C (t) τ ′′1(t)

(1− τ ′1(t))
2 , (6)

b (t) =
a (t) p (t− τ1(t))− c(t)p′ (t− τ1(t))

p (t)
and C (t) =

c (t) p (t− τ1(t))
p (t)

. (7)

Then the zero solution of (4) is asymptotically stable.

For each t0 ≥ 0 and ψ ∈ C ([m (t0) , t0] ,R) fixed, we define X l
ψ the complete metric

space of all Ft−adapted processes x(t, ω) : [m(t0),∞)×Ω→ R, which is almost surely
continuous in t for fixed ω ∈ Ω as follows

X l
ψ =

{
x(t, ω) : [m(t0),∞)× Ω→ R/ x(t, .) = ψ (t) for t ∈ [m (t0) , t0]

‖x‖X ≤ l for t ≥ t0 and E |x(t)|2 → 0 as t→∞
}

with ‖x‖X :=
(
E
(

supt≥m(t0) |x(t)|2
))1/2

, where l > 0 is positive number.

Let us now recall the definitions of stability that will be used in the next section.

DEFINITION 1.1. The zero solution of (1) is said to be:
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i) stable if for any ε > 0 and t0 ≥ 0, there exists a δ = δ (ε, t0) > 0 such that
ψ ∈ C ([m (t0) , t0] ,R) and ‖ψ‖ < δ imply E |x (t, t0, ψ)|2 < ε for t ≥ t0.

ii) asymptotically stable if the zero solution is stable and for any ε > 0 and t0 ≥ 0,
there exists a δ = δ (ε, t0) > 0 such that ψ ∈ C ([m (t0) , t0] ,R) and ‖ψ‖ < δ

imply E |x (t, t0, ψ)|2 → 0 as t→∞.

REMARK 2.1. When p(t) = 1 and suffi cient conditions for stability are presented
by the fixed point theory, Theorem B becomes theorem A.

Some of the results, such as Theorem A, depend on the constraint
∣∣∣ c(t)
1−τ ′1(t)

∣∣∣ < 1.

But in many environments, there are interesting examples where the constraint is not
satisfied. However, in Theorem B, this condition is removed. Our objective here is
to improve Theorem B and extend it to investigate a wide class of stochastic neutral
differential equation with Poisson jumps and variable delays presented in (1). The
stability problem for this class of equations has not yet been solved since Poisson jumps
are considered. To this end, in this paper we make the first attempt to fill this gap
and study mean square asymptotic stablity of (1) by fixed point theory. In particular,
by employing two auxiliary continuous functions on the contraction condition, we get

new criteria which can be applied in the case
∣∣∣ c(t)
1−τ ′1(t)

∣∣∣ ≥ 1 as well. The results of this

article are new and they extend and improve previously known results in [35]. Finally,
an illustrative example is given.

3 Main Results

For each t0 ∈ R+, C([m(t0), t0],R) is emdowed with the supremum norm

‖ψ‖ = max {|ψ(s)| : t0 ≤ s ≤ m (t0)} .

For each (t0, ψ) ∈ R+×C([m(t0), t0],R), a solution of (1) through (t0, ψ) is a continuous
function x : [m(t0), t0 + σ)→ R for some positive constant σ > 0 such that x satisfies
(1) on [t0, t0 + σ) and x = ψ on [m(t0), t0]. We denote such a solution by x(t) =
x(t, t0, ψ).
Our purpose here is to extend the work carried out in [35] by providing a necessary

and suffi cient condition for asymptotic stability of the zero solution of equation (1).
B. Zhang [37, 38] was the first to establish necessary and suffi cient condition for the
stability of solutions of functional differential equation by the fixed point theory. The
necessity of condition (10) below for the main stability result was first established in
[37]. It is well known that studying the stability of an equation using a fixed point
technique involves the construction of a suitable fixed point mapping. So, we construct
a contraction mapping Q on a complete metric space X l

ψ defined above, which may
depend on the initial condition ψ. Using Banach’s contraction mapping principle, we
obtain a fixed point for this mapping and hence a solution for (1), which in addition is
mean square asymptotically stable.
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Now, we can state our main result.

THEOREM 3.1. Let τ1 be twice differentiable and suppose that τ ′1 (t) 6= 1 for all
t ∈ [m (t0) ,∞[ . Suppose that

(i) there exists a bounded function p : [m (t0) ,∞[ → (0,∞) with p(t) = 1 for t ∈
[m (t0) , t0] and p′ (t) exists for all t ∈ [m (t0) ,∞[ , and there exists an arbitrary
continuous function h : [m (t0) ,∞[→ R and a constant γ ∈

(
0, 14
)
such that for

any t ≥ t0,[∣∣∣∣p(t− τ1 (t))

p(t)

c (t)

(1− τ ′1 (t))

∣∣∣∣+

∫ t

t−τ1(t)

∣∣∣∣h (s)− p′(s)

p(s)

∣∣∣∣ ds
+

∫ t

t0

e
−

∫ t

s

h(u)du

|h (s)|
(∫ s

s−τ1(s)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du
)
ds

+

∫ t

t0

e−
∫ t
s
h(u)du

∣∣∣∣− b (s) +

(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s))

−k (s)

∣∣∣∣ds
]2

+ 4

∫ t

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 ds
+4β

∫ t

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)

∣∣∣∣2 ds ≤ γ, (8)

where b (s) and k (s) are defined as in (6) and (7);

(ii) and such that

liminf
t→∞

∫ t

t0

h(s)ds > −∞. (9)

Then the zero solution of (1) is mean-square asymptotic stable if and only if∫ t

t0

h(s)ds→∞ as t→∞. (10)

PROOF. The technique for constructing a contraction mapping comes from an idea
in [35]. Let z(t) = ψ (t) on t ∈ [m (t0) , t0] , and for t ≥ t0,

x(t) = p(t)z(t). (11)

Make substitution of (11) into (1) to show

z′(t) = −p
′(t)

p(t)
z(t)− a(t)p(t− τ1 (t))− c (t) p′(t− τ1 (t))

p (t)
z(t− τ1 (t))
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+
c (t) p(t− τ1 (t))

p(t)
z′(t− τ1 (t))

+
Σ (t) p(t− τ2 (t))

p(t)
z(t− τ2 (t))dw (t)

+
Γ (t) p(t− τ3 (t))

p(t)
z(t− τ3 (t))dÑ (t) , t ≥ t0, (12)

then it can be verified that x satisfies (1). Since p is a bounded function and E |x (t)|2 =

p2(t)E |z (t)|2, to obtain mean square asymptotically stable of the zero solution of (1),
it remains to prove that the zero solution of (12) is asymptotically stable. Multiply

both sides of (12) by exp
(
−
∫ t
t0
h(s)ds

)
, and then inegrate from t0 to t, we have

z(t) = ψ (t0) e
−
∫ t
t0
h(s)ds

+
∫ t
t0

(
h(s)− p′(s)

p(s)

)
e−
∫ t
s
h(u)duz(s)ds

−
∫ t
t0
e
−

∫ t

s

h(u)du a(s)p(s− τ1 (s))− c (s) p′(s− τ1 (s))

p (s)
z(s− τ1 (s))ds

+
∫ t
t0
e
−

∫ t

s

h(u)du c (s) p(s− τ1 (s))

p(s)
z′(s− τ1 (s))ds

+
∫ t
t0
e
−

∫ t

s

h(u)duΣ (s) p(s− τ2 (s))

p(s)
z(s− τ2 (s))dw (s)

+

∫ t

t0

e
−

∫ t

s

h(u)duΓ (s) p(s− τ3 (s))

p(s)
z(s− τ3 (s))dÑ (s) . (13)

Rewrite (13) in the following equivalent form

z(t) = ψ (t0) e
−

∫ t

t0

h(s)ds

+

∫ t

t0

e
−

∫ t

s

h(u)du

d

(∫ s

s−τ1(s)

(
h (u)− p′(u)

p(u)

)
z (u) du

)

+

∫ t

t0

e
−

∫ t

s

h(u)du
(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s)) z(s− τ1 (s))ds

−
∫ t

t0

e
−

∫ t

s

h(u)du a(s)p(s− τ1 (s))− c (s) p′(s− τ1 (s))

p (s)
z(s− τ1 (s))ds

+

∫ t

t0

e
−

∫ t

s

h(u)du c (s) p(s− τ1 (s))

p(s)
z′(s− τ1 (s))ds

+

∫ t

t0

e
−

∫ t

s

h(u)duΣ (s) p(s− τ2 (s))

p(s)
z(s− τ2 (s))dw (s)
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+

∫ t

t0

e
−

∫ t

s

h(u)duΓ (s) p(s− τ3 (s))

p(s)
z(s− τ3 (s))dÑ (s) .

Performing an integration by parts, we have for t ≥ t0,

z(t) =

(
ψ (t0)−

p(t0 − τ1 (t0))

p(t0)

c (t0)

(1− τ ′1 (t0))
ψ(t0 − τ1 (t0))

−
∫ t0

t0−τ1(t0)

(
h (u)− p′(u)

p(u)

)
z(u)du

)
e
−

∫ t

t0

h(s)ds

+
p(t− τ1 (t))

p(t)

c (t)

1− τ ′1 (t)
z(t− τ1 (t))

+

∫ t

t−τ1(t)

(
h (s)− p′(s)

p(s)

)
z(s)ds+

∫ t
t0
e−
∫ t
s
h(u)du

{
− b (s)

+

(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s))− k (s)

}
×z(s− τ1 (s))ds

−
∫ t

t0

e
−

∫ t

s

h(u)du

h (s)

(∫ s

s−τ1(s)

(
h (u)− p′(u)

p(u)

)
z(u)du

)
ds

+

∫ t

t0

e
−

∫ t

s

h(u)duΣ (s) p(s− τ2 (s))

p(s)
z(s− τ2 (s))dw (s)

+

∫ t

t0

e
−

∫ t

s

h(u)duΓ (s) p(s− τ3 (s))

p(s)
z(s− τ3 (s))dÑ (s) , (14)

where b (s) and k (s) are defined as in (6) and (7) respectively.
Use (14) to define an operator Q : X l

ψ → X l
ψ as follows:

(Qz) (t) :=


ψ(t), t ∈ [m(t0), t0],
7∑
i=1

Ii (t) , t ≥ t0,
(15)

where

I1 (t) =

(
ψ (t0)−

p(t0 − τ1 (t0))

p(t0)

c (t0)

(1− τ ′1 (t0))
ψ(t0 − τ1 (t0))

−
∫ t0

t0−τ1(t0)

(
h (u)− p′(u)

p(u)

)
z(u)du

)
e
−

∫ t

t0

h(s)ds

,
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I2 (t) =
p(t− τ1 (t))

p(t)

c (t)

1− τ ′1 (t)
z(t− τ1 (t)),

I3 (t) =

∫ t

t−τ1(t)

(
h (s)− p′(s)

p(s)

)
z(s)ds,

I4 (t) =

∫ t

t0

e
−

∫ t

s

h(u)du
{
− b (s) +

(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s))

−k (s)

}
z(s− τ1 (s))ds,

I5 (t) =

∫ t

t0

e
−

∫ t

s

h(u)du

h (s)

(∫ s

s−τ1(s)

(
h (u)− p′(u)

p(u)

)
z(u)du

)
ds,

I6 (t) =

∫ t

t0

e
−

∫ t

s

h(u)duΣ (s) p(s− τ2 (s))

p(s)
z(s− τ2 (s))dw (s) ,

I7 (t) =

∫ t

t0

e
−

∫ t

s

h(u)duΓ (s) p(s− τ3 (s))

p(s)
z(s− τ3 (s))dÑ (s) .

Now we split the rest of our proof into three steps.

First step: We need to prove that Q
(
X l
ψ

)
⊂ X l

ψ. For z ∈ X l
ψ, it is necessary to

show that Q (z) ∈ X l
ψ. At first, we suppose that (10) holds. From (9), it is true that

exp
(
−
∫ t
t0
h(s)ds

)
is bounded, which is denoted by

M = sup
t≥t0

{
e
−
∫ t
t0
h(s)ds

}
.

We must prove the mean square continuity of Q on [t0,∞) . It is clear that Q is
continuous on [m(t0), t0]. For fixed time t1 ≥ t0, z ∈ X l

ψ, and |r| suffi ciently small, we
have

E |(Qz) (t1 + r)− (Qz) (t1)|2 ≤ 7

7∑
i=1

E |Ii (t1 + r)− Ii (t1)|2 .

It is easy to obtain that

E |Ii (t1 + r)− Ii (t1)|2 → 0, as r → 0, i = 1, ..., 5.

Furthermore,

E |I6 (t1 + r)− I6 (t1)|2
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≤ 2E
∣∣∣∣∫ t1

t0

(
e−

∫ t1+r
t1

h(u)du − 1
)
e−

∫ t1
0 h(u)duΣ (s) p(s− τ2 (s))z(s− τ2 (s))

p(s)
dw (s)

∣∣∣∣2
+2E

∣∣∣∣∫ t1+r

t1

e−
∫ t1+r
s

h(u)duΣ (s) p(s− τ2 (s))z(s− τ2 (s))

p(s)
dw (s)

∣∣∣∣2
≤ 2E

(∫ t1

t0

(
e−

∫ t1+r
t1

h(u)du − 1
)2
e−2

∫ t1
0 h(u)du

∣∣∣∣Σ (s) p(s− τ2 (s))z(s− τ2 (s))

p(s)

∣∣∣∣2 ds
)

+2E

(∫ t1+r

t1

e−2
∫ t1+r
s

h(u)du

∣∣∣∣Σ (s) p(s− τ2 (s))z(s− τ2 (s))

p(s)

∣∣∣∣2 ds
)
→ 0,

as r →∞, and

E |I7 (t1 + r)− I7 (t1)|2

≤ 2E
∣∣∣∣∫ t1

t0

(
e−

∫ t1+r
t1

h(u)du − 1
)
e−

∫ t1
0 h(u)duΓ (s) p(s− τ3 (s))

p(s)
z(s− τ3 (s))dÑ (s)

∣∣∣∣2
+2E

∣∣∣∣∫ t1+r

t1

e−
∫ t1+r
s

h(u)duΓ (s) p(s− τ3 (s))

p(s)
z(s− τ3 (s))dÑ (s)

∣∣∣∣2
≤ 2βE

(∫ t1

t0

(
e−

∫ t1+r
t1

h(u)du − 1
)2
e−2

∫ t1
0 h(u)du

∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)
z(s− τ3 (s))

∣∣∣∣2 ds
)

+2βE

(∫ t1+r

t1

e−2
∫ t1+r
s

h(u)du

∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)
z(s− τ3 (s))

∣∣∣∣2 ds
)
→ 0,

as r → 0.
Therefore, Q is mean square continuous on [t0,∞[ .

We verify that E |(Qz) (t)|2 → 0 as t → ∞. Since E |z (t)| → 0, t − τ i (t) → ∞ as
t → ∞, i = 1, 2, 3, for each ε > 0, there exists a T1 > 0, such that t ≥ T1, implies
E |z (t)|2 < ε and E |z (t− τ i (t))|2 < ε, i = 1, 2, 3. Hence

E |I6 (t)|2 ≤ E

∫ T1

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 |z(s− τ2 (s))|2 ds



+E

∫ t

T1

e
−2

∫ t

s

h(u)du
∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 |z(s− τ2 (s))|2 ds



≤ E

(
sup

σ≥m(t0)
|z(σ)|2

)∫ T1

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 ds
+ε

∫ t

T1

e
−2

∫ t

s

h(u)du
∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 ds.
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Due to condition (10), there is T ′ > T1, such that when t ≥ T ′, we obtain

E

(
sup

σ≥m(t0)
|z(σ)|2

)∫ T1

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 ds ≤ (1− γ) ε.

By condition (8) , we have E |I6 (t)|2 < (1− γ) ε + γε = ε. Thus E |I6 (t)|2 → 0 as
t→∞. Similarly,

E |I7 (t)|2 ≤ βE

∫ T1

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)

∣∣∣∣2 |z(s− τ3 (s))|2 ds



+βE

∫ t

T1

e
−2

∫ t

s

h(u)du
∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)

∣∣∣∣2 |z(s− τ3 (s))|2 ds



≤ βE

(
sup

σ≥m(t0)
|z(σ)|2

)∫ T1

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)

∣∣∣∣2 ds
+εβ

∫ t

T1

e
−2

∫ t

s

h(u)du
∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)

∣∣∣∣2 ds
< (1− γ) ε+ γε = ε.

Thus E |I7 (t)|2 → 0 as t → ∞, and it is very easy to get E |Ii (t)|2 → 0 as t → ∞,
i = 1, 2, ..., 5. This implies E |(Qz) (t)|2 → 0 as t→∞.

Next, we verify that ‖Q (z)‖X ≤ l. Let ψ be a small bounded initial function with
‖ψ‖ < δ, we choose δ > 0, ( δ < l ) such that

4δM2

(
1 +

∣∣∣∣p(t0 − τ1 (t0))

p(t0)

c (t0)

(1− τ ′1 (t0))

∣∣∣∣+
∫ t0
t0−τ1(t0)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du)2
< (1− 4γ) l2, (16)

where γ is the left hand side of (8) . Let z ∈ X l
ψ, then, ‖z‖X < l. It follows from (15),

condition (8) in Theorem 3.1 and Lp-Doob inequality that

E

[
sup

t≥m(t0)
|(Qz) (t)|2

]

≤ 4 |ψ (t0)|2
(

1 +

∣∣∣∣p(t0 − τ1 (t0))

p(t0)

c (t0)

(1− τ ′1 (t0))

∣∣∣∣
+

∫ t0

t0−τ1(t0)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du
)2

e
−2

∫ t
t0
h(s)ds
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+4E

(
sup

t≥m(t0)
|z (t)|2

){
sup
t≥t0

[ ∣∣∣∣p(t− τ1 (t))

p(t)

c (t)

(1− τ ′1 (t))

∣∣∣∣
+

∫ t

t−τ1(t)

∣∣∣∣h (s)− p′(s)

p(s)

∣∣∣∣ ds
+

∫ t

t0

e
−

∫ t

s

h(u)du
∣∣∣∣−b (s) +

(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s))− k (s)

∣∣∣∣ ds
+

∫ t∗

t0

e
−

∫ t

s

h(u)du

|h (s)|
(∫ s

s−τ1(s)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du
)
ds

]2

+4sup
t≥t0

∫ t

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 ds


+4βsup
t≥t0

∫ t

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)

∣∣∣∣2 ds
}

≤ 4δ

(
1 +

∣∣∣∣p(t0 − τ1 (t0))

p(t0)

c (t0)

(1− τ ′1 (t0))

∣∣∣∣
+

∫ t0

t0−τ1(t0)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du
)2

e
−2

∫ t

t0

h(s)ds

+ 4γl2

≤ (1− 4γ) l2 + 4γl2 = l2.

By (16) , we see that

E

[
sup

t≥m(t0)
|(Qz) (t)|2

]
≤ (1− 4γ) l2 + 4γl2 = l2.

Hence, ‖Qz‖X ≤ l for t ∈ [m (t0) ,∞) because ‖Qz‖X = ‖ψ‖ ≤ l for t ∈ [m (t0) , t0].

Then Q
(
X l
ψ

)
⊂ X l

ψ.

Second step: Now, we will show that Q has a unique fixed point z in X l
ψ. For any

x, y ∈ X l
ψ,

E

(
sup

t≥m(t0)
|(Qx) (t)− (Qy) (t)|2

)

≤ E
(

sup
t≥t0

∣∣∣∣p(t− τ1 (t))

p(t)

c (t)

1− τ ′1 (t)
[x(t− τ1 (t))− y(t− τ1 (t))]

+

∫ t

t−τ1(t)

(
h (s)− p′(s)

p(s)

)
[x(s)− y(s)] ds
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+

∫ t

t0

e
−

∫ t

s

h(u)du
{
−b (s) +

(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s))− k (s)

}
× [x(s− τ1 (s))− y(s− τ1 (s))] ds

−
∫ t

t0

e
−

∫ t

s

h(u)du

h (s)

(∫ s

s−τ1(s)

(
h (u)− p′(u)

p(u)

)
[x(u)− y(u)] du

)
ds

+

∫ t

t0

e
−

∫ t

s

h(u)duΣ (s) p(s− τ2 (s))

p(s)
[x(s− τ2 (s))− y(s− τ2 (s))] dw (s)

+

∫ t

t0

e
−

∫ t

s

h(u)duΓ (s) p(s− τ3 (s))

p(s)
[x(s− τ3 (s))− y(s− τ3 (s))] dÑ (s)

∣∣∣∣2).
By using the Doob Lp-inequality (see [12]),

E
∣∣∣∣sup
t≥t0

(∫ t

t0

e−
∫ t
s
h(u)duΣ (s) p(s− τ2 (s))

p(s)
[x(s− τ2 (s))− y(s− τ2 (s))] dw (s)

)∣∣∣∣2
≤ 4Esup

t≥t0

(∫ t

t0

e−2
∫ t
s
h(u)du

∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 |x(s− τ2 (s))− y(s− τ2 (s))|2 ds
)

≤ 4sup
t≥t0

(∫ t

t0

e−2
∫ t
s
h(u)du

∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 ds
)

×E
(

sup
s≥t0
|x(s− τ2 (s))− y(s− τ2 (s))|2

)
,

and

E
∣∣∣∣sup
t≥t0

(∫ t

t0

e−
∫ t
s
h(u)duΓ (s) p(s− τ3 (s))

p(s)
[x(s− τ3 (s))− y(s− τ3 (s))] dÑ (s)

)∣∣∣∣2
≤ 4βEsup

t≥t0

(∫ t

t0

e−2
∫ t
s
h(u)du

∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)

∣∣∣∣2 |x(s− τ3 (s))− y(s− τ3 (s))|2 ds
)

≤ 4βsup
t≥t0

(∫ t

t0

e−2
∫ t
s
h(u)du

∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)

∣∣∣∣2 ds
)

×E
(

sup
s≥t0
|x(s− τ3 (s))− y(s− τ3 (s))|2

)
.

Then we have{
E

(
sup

t≥m(t0)
|(Qx) (t)− (Qy) (t)|2

)} 1
2
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≤
√

3

{
E

(
sup

t≥m(t0)
|x (t)− y (t)|2

)} 1
2

×
{

sup
t≥t0

[ ∣∣∣∣p(t− τ1 (t))

p(t)

c (t)

1− τ ′1 (t)

∣∣∣∣
+

∫ t

t−τ1(t)

∣∣∣∣h (s)− p′(s)

p(s)

∣∣∣∣ ds
+
∫ t
t0
e−
∫ t
s
h(u)du

∣∣∣∣−b (s) +

(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s))− k (s)

∣∣∣∣ ds
+

∫ t

t0

e
−

∫ t

s

h(u)du

|h (s)|
(∫ s

s−τ1(s)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du
)
ds

]2

+4

∫ t

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Σ (s) p(s− τ2 (s))

p(s)

∣∣∣∣2 ds
+4β

∫ t

t0

e
−2

∫ t

s

h(u)du
∣∣∣∣Γ (s) p(s− τ3 (s))

p(s)

∣∣∣∣2 ds
}1

2
.

So {
E

(
sup

t≥m(t0)
|(Qx) (t)− (Qy) (t)|2

)} 1
2

≤
√

3γ

{
E

(
sup

t≥m(t0)
|x (t)− y (t)|2

)} 1
2

.

By condition (8), Q is a contraction mapping with constant
√

3γ. Thanks to the
contraction mapping principle (Smart [32], p. 2), we deduce that Q : X l

ψ → X l
ψ

possesses a unique fixed point z in X l
ψ, which is a solution of (14) with z(t) = ψ (t) on

t ∈ [m (t0) , t0] and E |z(t, t0, ψ)|2 → 0 as t→∞.

Third step: To prove stability at t0, let ε > 0 be given, then we choose m > 0 such
that m < min {l, ε}. Replacing l with m in X l

ψ beginning with (16), we see that there
is a δ > 0 such that ‖ψ‖ < δ implies that the unique solution of (12) with z(t) = ψ (t)
on t ∈ [m (t0) , t0] satisfies ‖Qz‖X ≤ m < ε for all t ≥ m (t0) . This shows that the zero
solution of (12) is asymptotic stable if (10) holds.
Conversely, we suppose that (10) fails. From (9), there exists a sequence {tn} with

tn →∞ as n→∞ such that lim
n→∞

∫ tn
0
h(u)du = l for some l ∈ R. We may also choose

a positive constant J satisfying

−J ≤
∫ tn

0

h(u)du ≤ +J, (17)

for all n ≥ 1. To simplify the expression, we define

F (s) : =

∣∣∣∣−b (s) +

(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s))− k (s)

∣∣∣∣
+ |h (s)|

∫ s

s−τ1(s)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du, (18)
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for all s ≥ 0. From (8), we have∫ tn

0

e−
∫ tn
s

h(u)duF (s) ds ≤ √γ, (19)

wich implies that ∫ tn

0

e
∫ s
0
h(u)duF (s) ds ≤ √γe

∫ tn
0

h(u)du ≤ √γeM . (20)

Therefore, the sequence
{∫ tn

0
e
∫ s
0
h(u)duF (s) ds

}
has a convergent subsequence. For

brevity of notation, we may assume that

lim
n→∞

∫ tn

0

e
∫ s
0
h(u)duF (s) ds = ξ, (21)

for some ξ ∈ R+ and choose a positive integer m so large that∫ tn

tm

e
∫ s
0
h(u)duF (s) ds ≤ δ0

8M
, (22)

for all n ≥ m, where δ0 > 0 satisfies

4δ20M
2e2J

(
1 +

∣∣∣∣p(tm − τ1 (tm))

p(tm)

c (tm)

(1− τ ′1 (tm))

∣∣∣∣
+

∫ tm

tm−τ1(tm)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du)2 < (1− 4γ) .

Now, we consider the solution z (t) = z(t, tm, ψ) of (12) with ‖ψ (tm)‖ = δ0 and
‖ψ (s)‖ < δ0 for s < tm. If we replace l by 1 in the proof of ‖Qz‖X ≤ l, we have
E |z (t)|2 < 1 for t ≥ tm. We may choose ψ so that

G (tm) : = ψ (tm)− p(tm − τ1 (tm))

p(tm)

c (tm)

(1− τ ′1 (tm))
ψ(tm − τ1 (tm))

−
∫ tm

tm−τ1(tm)

(
h (u)− p′(u)

p(u)

)
ψ(u)du ≥ δ0

2
. (23)

So, it follows from (23) with z (t) = (Qz) (t) that for n ≥ m,

E
∣∣∣∣z (tn)− p(tn − τ1 (tn))

p(tn)

c (tn)

(1− τ ′1 (tn))
z(tn − τ1 (tn))

−
∫ tn

tn−τ1(tn)

(
h (u)− p′(u)

p(u)

)
z(u)du

∣∣∣∣∣
2

≥ G2 (tm) e
−2
∫ tn
tm
h(u)du − 2G (tm) e

−
∫ tn
tm
h(u)du∫ tn

tm
e−

∫ tn
s

h(u)duF (s) ds
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≥ δ0
2
e
−2
∫ tn
tm
h(u)du

(
δ0
2
− 2M

∫ tn
tm
e
∫ s
0
h(u)duF (s) ds

)
≥ δ20

8
e−2M > 0. (24)

On the other hand, suppose that the solution of (12) E |z (t)|2 = E |z (t, tm, ψ)|2 → 0
as t→∞. Since tn− τ i(tn)→∞ as n→∞, for i = 1, 2, 3 and the condition (8) holds,
we have

E
∣∣∣∣z (tn)− p(tn − τ1 (tn))

p(tn)

c (tn)

(1− τ ′1 (tn))
z(tn − τ1 (tn))

−
∫ tm

tm−τ1(tm)

(
h (u)− p′(u)

p(u)

)
z(u)du

∣∣∣∣∣
2

→ 0,

as n → ∞, which contradicts (24). Hence condition (10) is necessary in order that
(12) has a solution E |z(t, t0, ψ|2 → 0 as t → ∞. Thus, the zero solution of (12) is
mean square asymptotically stable, and hence the zero solution of (1) is asymptotically
stable. The proof is complete.

REMARK 3.1. It follows from the first part of the proof of Theorem 3.1 that the
zero solution of (1) is stable under (8). Moreover, Theorem 3.1 still holds if (10) is
satisfied for t ≥ tρ with some tρ ∈ R+.

REMARK 3.2. In the current paper we extend the results in [35] to the linear
stochastic differential equation with Poisson jumps and variable delays (1) . Notice
that when Γ (t) = 0 and Σ (t) = 0, then (1) reduces to (4) . Thus, our results are
more general than those obtained in [35]. But we would like to emphasize that the
computations in D. Zhao [35] are not completely correct since on page 5, we obtain
that (8) actually should be

z(t) = ψ (t0) e
−

∫ t

t0

h(s)ds

+

∫ t

t0

e
−

∫ t

s

h(u)du
(
h(s)− p′(s)

p(s)

)
z(s)ds

−
∫ t

t0

e
−

∫ t

s

h(u)du a(s)p(s− τ1 (s))− c (s) p′(s− τ1 (s))

p (s)
z(s− τ1 (s))ds

+

∫ t

t0

e
−

∫ t

s

h(u)du c (s) p(s− τ1 (s))

p(s)
z′(s− τ1 (s))ds,

which is special form of (14), also the correct condition (iii) in Theorem 3.1 on page 4
of D. Zhao [35] should be the condition (5) in our paper.

4 An Example

In this section, we analyse an example to illustrate two facts. On the one hand, we
will show how to apply our main result in this paper, Theorem 3.1. On the other hand
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and most importantly, we will highlight the real interest and importance of our result
because the previous theory developed by Ardjouni and Djoudi [1] cannot be applied
to this example.

EXAMPLE 4.1. Consider the following linear stochastic delay differential equation

dx(t) = (−a(t)x(t− τ1 (t)) + c (t)x′(t− τ1 (t))) dt

+Σ (t)x(t− τ2 (t))dw (t) + Γ (t)x(t− τ3 (t))dÑ (t) , (25)

for t ≥ 0. Corresponding to equation (1), let

c (t) = ln

(
0.95t+ 0.1

5 (t+ 0.1)

)
, Σ (t) =

√
0.15 (t+ 0.5)

2

(t+ 0.1)
3 ,

τ1 (t) = 0.05t, τ2 (t) = 0.5t, Γ (t) = 0,

and a (t) satisfies∣∣∣∣−b (t) +

(
h (t− τ1 (t))− p′(t− τ1 (t))

p(t− τ1 (t))

)
(1− τ ′1 (t))− k (t)

∣∣∣∣ ≤ 0.1

t+ 0.1
,

where b (t) and k (t) are defined as in (6) and (7) respectively. Then the zero solution
of (25) is mean square asymptotically stable.

PROOF. Choosing h(t) =
2

t+ 0.1
and p(t) =

0.1

t+ 0.1
in Theorem 3.1. By straight-

forward computations, we can check that condition (8) in Theorem 3.1 holds. As
t→∞, we have∣∣∣∣p(t− τ1 (t))

p(t)

c (t)

1− τ ′1 (t)

∣∣∣∣ ≤ ∣∣∣∣ t+ 0.1

0.95t+ 0.1

0.95t+ 0.1

5 (t+ 0.1)

∣∣∣∣ ≤ 0.2,

∫ t

t−τ1(t)

∣∣∣∣h (s)− p′(s)

p(s)

∣∣∣∣ ds ≤ 0.026,

∫ t

t0

e
−

∫ t

s

h(u)du

|h (s)|
(∫ s

s−τ1(s)

∣∣∣∣h (u)− p′(u)

p(u)

∣∣∣∣ du
)
ds ≤ 0.026,

∫ t

0

e
−

∫ t

s

h(u)du
∣∣∣∣−b (s) +

(
h (s− τ1 (s))− p′(s− τ1 (s))

p(s− τ1 (s))

)
(1− τ ′1 (s))− k (s)

∣∣∣∣ ds
=

∫ t

0

e
−

∫ t

s

2

u+ 0.1
du 0.1

s+ 0.1
ds ≤ 0.05,
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and

4

∫ t

0

e
−2

∫ t

s

h(u)du
∣∣∣∣Σ (s)

p(s− τ2 (s))

p(s)

∣∣∣∣2 ds
≤ 4

∫ t

0

e
−2

∫ t

s

2

u+ 0.1
du
∣∣∣∣∣0.15 (s+ 0.5)

2

(s+ 0.1)
3

∣∣∣∣∣
∣∣∣∣s+ 0.1

s+ 0.5

∣∣∣∣2 ds < 0.15.

Since
∫ t

0

h(s)ds → ∞ as t → ∞, p(t) ≤ 1, it is easy to see that all the conditions of

Theorem 3.1 are satisfied for γ = (0.302)
2

+ 0.15 = 0.241 <
1

4
. Thus, Theorem 3.1

implies that the zero solution of (25) is mean square asymptotic stable.
Note that ∣∣∣∣ c (t)

1− τ ′1 (t)

∣∣∣∣ =

∣∣∣∣ 1

0.95
ln

(
0.95t+ 0.1

5 (t+ 0.1)

)∣∣∣∣ = 1.74 as t→∞.

Therfore the result in [1] is not applicable.

Conclusion: This work studies the problem of mean square asymptotic stability of
a linear stochastic neutral differential equation with Poisson jumps and variable delays.
As the main tool, it used the contraction mapping principle to obtain asymptotic sta-
bility results. As the main result, the paper establishes an asymptotic stability theorem
with a necessary and suffi cient condition. This improves and extends some previous
results due to Dianli Zhao [35]. Actually, the methods used in proofs are an appropriate
modification of those in [1, 17, 35] and other cited references. Moreover, an example
is given to illustrate our results.

Acknowledgment. The authors would like to thank Pr.Tomàs Caraballo for their
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