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Abstract

In this paper we study Carleman’s inequality over the values of Euler function,
sum of divisors function, and their reciprocals. We show that the constant of
Carleman’s inequality over the values of these functions is not the best possible.

1 Introduction

For positive real numbers aq, ..., a,, Carleman’s inequality [7] asserts that

n
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The constant e is the best possible. Based on the results in [5], recently in [2] we have
studied Carleman’s inequality over prime numbers and over reciprocal of the prime
numbers, by proving
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where p denote the kth prime.

In this paper, we are motivated by studying Carleman’s inequality over the values
of arithmetical functions, more precisely, over the values of Euler function ¢, sum of
divisors function o, and their reciprocals. For each positive arithmetical function f let
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We prove the following results, providing non-trivial limit values lim,,_,o, C(n) for the
above mentioned arithmetical functions.

THEOREM 1. As n — oo we have
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and
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THEOREM 2. As n — oo we have
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The above theorems imply that the constant of Carleman’s inequality over the
values of @, %, o and % is not the best possible. More precisely, computations running
on Maple, give

n,~0.3388, 7122096, 1, ~0.3493, .~ 22721.
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2 Proofs

During the proofs, for given positive function f we let G(n) denote the geometric
mean of the numbers f(1), f(2),..., f(n). Hence
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Also, we note that
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The asymptotic expansion
L o_ l—z+2% -+ (=1)"z" +O0(z" ) (z — 0), (8)
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which holds for any given integer r > 0, usually will be useful to obtain an asymptotic
expansion for GT( n) by using asymptotic expansion of Gy(n).

PROOF of THEOREM 1. Let

1
1 1\~
oo A1(-5)
p

where the product runs over all primes. Corollary 2.5 of [8] asserts that
Gy(n) = gon + g?@ logn + O(loglogn). 9)

Thus
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Stirling approximation asserts that
n 1
nl = (E> V2mn (1+O()> .
e n
Taking logarithm and simplifying, we get
logn! = nlogn —n+ O(logn).

Also, since the function ¢ — loglogt is strictly increasing on the interval [2,n] of length
n — 2 < n, we obtain

/ loglogtdt < nloglogn.
2

Combining the above approximations, gives
ZG (n® +nlogn + O(nloglogn)) . (10)
Chapter IV of [9] provides a proof of the following best known approximation
Zg@ —n +O( (logn)%(loglogn)%).

We use the last approximation, (10), (6) and asymptotic expansion (8) with r = 0, to
write

Co(n) =
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3

= (n, +1, logn+O(k’gl:g"))(1+0((10g")§(1:g10gn) ).
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from which we obtain (2).

To prove (3) we use (9) and the approximation (8) with r = 1, to write

327

1 1 1 1 logn loglogn
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Hence, by using the approximation >, _; + = logn + O(1), we get
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Also, it is known [3] that
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where A; = 4(2253) = 31§§£3), B = Zp p;ggpﬁl, and «y is Euler’s constant. The relation

(7), the above approximations, and (8) with r = 1, give
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concluding the proof.

PROOF of THEOREM 2. Theorem 1.1 of [4] asserts that
Z logo(k) =nlogn+ (E+c1+ca+v—1)n+ O(L>,
ot logn

where F is the constant in Mertens’ approximation, defined by

1
E = lim Z 08D — log z,
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and c¢; and cy are absolute constants defined by
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It is known (see (2.8) of [1]) that

logp
E:_PY_Z pa !
pOé

(13)
a=2
Note that nlog G,(n) = >, ., logo(k). Hence (11) implies that
Go(n) = gon + O () (14)
o\n) = goh logn/’
where g, = efratetr=1 By using (12) and (13) we get
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Chapter III, Section 2 of [9] provides a proof of the following best known approximation

n

2
2 o(k) = %nz + O(n(log n)%)

Considering this approximation and (15), using (6) and asymptotic expansion (8) with
r =0, we obtain (4).

Now, we prove (5). The approximation (14) and the asymptotic expansion (8) with
r =0 give

1
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Hence
n 1 n 1 n 1
1(k) = — —
- L340 (Y )
k=1 k=1 k=2
_ilo n+O(1)+ O /n dt —ilo n 4+ O(loglogn)
= log | Tlogi) = g 8 glogn).

Corollary 4.1 of [6] asserts that

n 4
3
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Therefore, the above approximations and asymptotic expansion (8) with » = 0 imply

L logn + O(loglogn)

= . logn) 3 (log log n) 3
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This completes the proof.
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