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Abstract

We revisit the stability property of a stage structured mosquito population
model which was proposed by Jinping Fan and Hui Wan. By constructing some
suitable Lyapunov function, we show that the conditions which ensure the local
stability of the trivial equilibrium point is enough to ensure its global stability.

1 Introduction

During the last decades, many scholars investigated the dynamic behaviors of the
ecosystem, see [1]—[13] and the references cited therein. Also, many scholars studied
the dynamic behaviors of the stage structured ecosystem, see [1]—[9], [12] and the
references cited therein.
Recently, Fan and Wan [8] proposed the following stage structured mosquito pop-

ulation model
dJ
dt = bvN

1+N − αJ − d0J − d1J
2,

dN
dt = αJ − µvN,

(1)

with the initial conditions J(0) > 0, N(0) > 0. For more background on establishing
the model, one can refer to [8] for more detail. System (1) always admits the trivial
equilibrium point E0(0, 0), concerned with the stability property of this equilibrium,
the authors obtained the following result.

THEOREM A. Assume that R0 =
bvα

µv(α+ d0)
< 1. Then E0(0, 0) is locally asymp-

totically stable.
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466 The Stability Property of the Trivial Equilibrium Point

Figure 1: Dynamics behaviors of of system (2), the initial conditions (J(0), N(0)) =
(2, 2), (2, 1) and (0.5, 2), respectively.

Also, if R0 > 1, then the system admits a unique positive equilibrium E1(J
∗, N∗),

concerned with the stability property of the positive equilibrium, by applying the
Bendixson-Dulac principle, the authors obtained

THEOREM B. If R0 > 1, then the system admits a unique positive equilibrium
E1(J

∗, N∗), which is globally asymptotically stable.

Now, an interesting issue may be raised: Is it possible for us to obtain a set of suffi -
cient conditions which ensure the global asymptotic stability of the trivial equilibrium?

Let’s consider the following example.

EXAMPLE 1. Consider the following system

dJ
dt = N

1+N − J − J − J
2,

dN
dt = J −N.

(2)

Here, we assume that bv = α = d0 = d1 = µv = 1. Then R0 =
bvα

µv(α+d0)
= 1

2 < 1. Then
from Theorem A, E0(0, 0) is locally asymptotically stable, however, numeric simulation
(Fig.1) shows that in this case, E0(0, 0) is globally asymptotically stable.

Example 1 motivated us to propose the following conjecture.
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CONJECTURE. The condition R0 =
bvα

µv(α+ d0)
< 1 is enough to ensure the global

asymptotic stability of the trivial point E0(0, 0).

The aim of this paper is to give an answer to the above conjecture, more precisely,
we have the following result.

THEOREM 1. Assume that R0 =
bvα

µv(α+ d0)
< 1. Then the trivial equilibrium

point E0(0, 0) is globally asymptotically stable.

2 Proof of Theorem 1

PROOF. We will prove this by constructing some suitable Lyapunov function. Let’s
define a Lyapunov function

V (J,N) = K1J +K2N,

where K1,K2 are some positive constants determined later. One could easily see that
the function V is zero at the boundary equilibrium E0(0, 0) and is positive for all other
positive values of J and N . The time derivative of V along the trajectories of (1) is

D+V (t) = K1

( bvN

1 +N
− αJ − d0J − d1J2

)
+K2

(
αJ − µvN

)
≤

(
K1bv −K2µv

)
N +

(
K2α−K1(α+ d0)

)
J −K1d1J

2.

Now let’s take K1 =
α

α+ d0
, K2 = 1, it then follows from (2) that

D+V (t) =
( αbv
α+ d0

− µv
)
N − αd1

α+ d0
J2 < 0

strictly for all J,N > 0 except the trivial equilibrium E0(0, 0), where D+V (t) = 0.
Thus, V (J,N) satisfies Lyapunov’s asymptotic stability theorem ([13]), and the bound-
ary equilibrium E1(0, 0) of system (1) is globally asymptotically stable. This ends the
proof of Theorem 1.
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