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Abstract

The aim of this work is to study the global nonexistence of solutions for the
Klein-Gordon equation with variable exponents with bounded domain.

1 Introduction

In this paper, we consider the initial-boundary value problem for a nonlinear Klein-
Gordon equation

wge — A+ mPu+ Jug P2y = )P0, (2,8) € Q x (0,T), (1)

with the inital-boundary conditions
u(x,0) =ug (z), w (x,0) =us (), z€Q, (2)

and
u(x,t) =0, z€09Q, (3)

where Q is a bounded domain with smooth boundary 0 in R" (n > 1).
The variable exponents p (.) and ¢ (.) are given as measurable functions on € satis-

fying

2<p <pr)<p"<q <q)<qg" < (4)
where
p~ = essinfp(z), p' =esssupp(x),
€N zeQ
¢~ = essinfq(z), ¢ =esssupq(x),
zEQ €N
and

- { 00, if n=1,2,
= 2 .
=, ifn > 3.
The Klein-Gordon equation arises in many scientific applications such as solid state

physics, nonlinear optics and quantum field theory. The Klein-Gordon equation is the
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316 Global Nonexistence of Solutions

first relativistic equation in quantum mechanics for the wave function of a particle with
Zero spin.
When p(z) and ¢ (x) are constants, (1) become the following the Klein-Gordon
equation
Uy — A4 m2u + [P uy = ul? . (5)

There have been extensive researches on the existence, the asymptotic behaviour and
the blow up for Eq. (5) (see [2, 8, 9]).
In the absence of the m? term (m = 0) the problem (1) reduces to the following

form
gy — D+ Jug [P 2y = ul "2, (6)

Messaoudi et al. [6] studied the local existence and blow up of the solutions of the
equation (6).

Motivated by the above results, in this paper, we prove the global nonexistence of
the solution (1) under some conditions.

The outline of this paper is as follows. In section 2, we state some results about the
variable exponent Lebesgue and Sobolev spaces LP(®) (Q) and WP(®) (Q). In section
3, the blow up results will be proved.

2 Preliminaries

In this section, we state some results about the variable exponent Lebesgue and Sobolev
spaces LP(*) (Q) and WP(®) (Q) (see [1, 3, 5, 7]). Also, ||- || and || - ||, denote the usual
L?(Q) norm and LP(Q2) norm, respectively.

Let p : @ — [1,00] be a measurable function, where  is a bounded domain of R™.
We define the variable exponent Lebesgue space by

LP@ (Q) = {u : 0 — R, u is measurable and p, ) (Au) < oo, for some A > 0}

where

Pp(.y () =/IUIW) dz.
Q

Also endowed with the Luxemburg norm

. u |P(®)
inf )\>0:/‘X‘ de <15,
Q

Hu”p(t) =

LP®) (Q) is a Banach space.
The variable exponent Sobolev space W'?(*) (Q) is defined by

whrE) (Q) = {u e LP®) (Q) : Vu exists and |Vu| € LP®) (Q)} .
Variable exponent Sobolev space is a Banach space with respect to the norm

[elly piay = Nullpy + 1Vl -
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The space W) (Q) is defined as the closure of C§° (€) in W@ (Q) with respect
to the norm [ull; . For u € Wol’p(x) (©), we can define an equivalent norm
el o) = 19200, -
Let the variable exponents p (.) and ¢ (.) satisfy the log-Hé6lder continuity condition:

A
Ip(w)—p(y)lélogil, for all z,y € Q with |z —y| <, (7)
lz—yl

where A >0and 0 < § < 1.
Next, we state the local existence theorem of problem (1), that can be obtained by
combining arguments in [4, 6].

THEOREM 1 (Local existence). Assume that (7) holds, and that (ug,u1) €
H} (Q) x L? (Q), then there exists a unique solution u of (1) satisfying

ue C([0,T); H (), u € C(0,T);L* () NLPY (2 x (0,T)).

3 Blow Up of Solutions

In this section, we are going to consider the blow up of the solution for problem (1).
Firstly, we give following lemma.

LEMMA 2. [6] If g : © — [1,00) is a measurable function and
_ + 2n
2<q <q(z)<q <o n=>3 (8)

holds. Then, we have following inequalities:

i)
piy ) < ¢ (IVull® + py ) (), (9)
ii) )
ey < e (IVul” + w2, (10)
i) 5
pacy (W) < ¢ (IH @)+ lluel* + py() (). (1)
iv)

lully < e (1 @)+ el + ull2) (12)
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cllully- < py () (13)

for any u € H} (Q) and 2 < s < ¢~. Where ¢ > 1 a positive constant and
H (t) = —E (t) will be specified later.

Now, we state and prove our blow up result.

THEOREM 3. Under the assumptions of Theorem 1, and the initial energy £ (0) <
0. Then the solution (1) blows up in finite time 7™, and

TR
§o¥ = (0)
where 0 < £ < 1 constant, also ¥ (t) and o are given in (17) and (18) respectively.

PROOF. Multiplying u; on two sides of the problem (1), and integrating by part,
we get

d |1 1 m? 1 . N
% |5 el + 19l + - i - [ T T de| = - [ .
Q
B ()=~ [ lul"” s (14)
Q
where )
1 2 1 2 m 2 / 1 q(z)
E(t) == = — - — d 15
(O) = 3 lual + 3 IVl + Tl = [ s ful " da (15)
Q
Set
(t):_E(t)v

then E (0) < 0 and (14) gives H (¢) > H (0) > 0. Also, by the definition H (t), we have

1 2 1 2 m? 2 1 q(z)
H(t) = —= - - —
0 = —glhul® = 51Vl = 5l + [ sl o
Q
< [l ds
q(z)
Q
1
< qipq(_) (u) - (16)
We define
U(t)=H"° (t)—i—s/uutdx, (17)
Q
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where € small to be chosen later and

— + —
. qg —p q —2
0 < ) 18
<U_mm{(p+—1)q’ 2q~ } (18)

By taking a derivative of (17) and using Eq. (1), we obtain

Vt) = (1—o)H () H (1) +s/ (uf + uuy ) do
Q
(L=o) H7 () H' () + ¢ el ® = | Vul|* — em? ul|”

+€/ |u?) da — 5/ wug ug PV % . (19)
) )

By using the definition of the H (t), it follows that

(11— (11—

“(1—Om? . B _
F O g (1= ) [ s i da (20

—eq (1= H({) =

where 0 < & < 1.
Adding and subtracting (20) into (19), we obtain

V() = (1-o)H @) H (t)+eq (1-&)H(t)
e <q (12—5) N 1) luell? + ¢ (q (12— 6 1) IVl

—(1—

+em? (q (2 & 1) Jul|?

+s§/ |u|?) da — 5/ wug |ug[PO 2 da. (21)
Q Q

Then, for £ small enough, we get

V() 2 2B [H @)+ w19l +m? ul? + oy (u)]

(=) H " (t) H (t) —e / e [ug PO da. (22)
Q
where B B
Bzmin{q‘(l—ﬁ), et, & (12_'5) -1, 1 (12_5) +1} >0
and

by (@ = [ ol da.
Q

In order to estimate the last term in (22), we make use of the following Young inequality

5k xk N 5yt

XY <
— k l )
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where X,Y >0, § > 0, k,l € RT such that % + % = 1. Consequently, applying the
previous we have

/ | [P da
Q

IA
R—

1 —1 p(z)
57 |y P@ s 1 / p(w() 5T |y PO i

p(z) p(z)
Q
1 " -1 __p@) z
< 7_/517(@ fulP™) dz + P /5 T [u P d,  (23)
p p A

where § specified later. Inserting estimates (23) into (22), we get

V() = B [H O+ udl + [Vul® +m? full® + py (u)]
+(1—0o)H 7 (t)H' (t)
et /5p<z> P d — 2L

b Q

p+

p(x)
/ 5O |y PP dr (24)
Q

p(x

)
Let us choose 4, so that 6~ »@-T = kH 7 (t), where k > 0 is specified later, we obtain

v (t)

Y

o8 [H (O)+ Jwill® + IVul® +m? ull® + py() ()]
+(1—0o)H 7 (t)H' (t)

1 +_1
—e / R @ o@D (1) [P gy — P / RE (8) |u ") do
Q Q

p+

Y

&8 [H (1) + lludl> + [Vul* +m? [[ull* + pyy ()]
+(1—0o)H 7 (t)H (t)

I N . pr—1 —o @
L (pT-1) (t) / |u|iﬂ( ) de — ( e ) kH™° (1) / |ut|P( ) dz
o o)

p

Y

e [H (1) + el + 1Vl +m2 ] + pyg, (u)]

; [u o) ¢ (f - 1) k] H= () H' (1)

p+

kP +
et g D) @) [ ™ da. (25)
/

p
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By using (13) and (16), we get

7 (@) [ P de
/

IN

Ho(P" 1) (1) /|u|p’ <ia;+/\u|p+ dx
Q_ Qp

IA
T
=

+
L
=

o

—
=
_Q

Y
)
+

—
=
_Q
<y

8

IA

= @ [ull?” + ]

— + 7

o(pt-1) 2z o=
c <q1_,0q(_) (U)) l(pq(-) (u)) s (p‘l(') (u)> q

IA

= ro(p 1) -
= o [(pq<.) (w)) + (g ) (26)
where Q_ ={zx € Q:|u| <1} and Qy ={z € Q: |u] > 1}.
We then use (9) in Lemma 2 and (18), for
s=p t+oq¢ (pT-1)<q
and
s=p+oq (pF—1)<q,
to deduce, from (26),
o1 (1) / 0 da < o1 [[Vull* + oy (u)] (27)
Q
Thus, inserting estimate (27) into (25), we have
, ki=p 2 2 211,112
V(D) > e e | [H )+ el Vel ful® 4+ ) ()
pt—1
—|—[(1—U)—a< o )k}H“’(t)H’(t). (28)

El-P

Let us choose k large enough so that v = g — 5= C1 > 0, and picking € small enough
such that (1 —o0) —¢ (er_l) k>0 and

pt

U(t) >V (0) = H'=° (0) —|—€/ ugurdx > 0, Vt > 0.
Q
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Consequently, (28) yields

v (t)

v

2 2 2
ey [H (0)+ ull* + 1Vl? +m2 ul? + p, ) ()]

v

&y [H (@) + lluall® + Vel +m? flull® + ], (29)

due to (13).
On the other hand, applying Holder inequality, we obtain

1

1=o 1 1
Jowwds] "< ™ ] 7
Q
e 1
< (Il hul ™).
Young inequality gives
1
1-o B 6
'/ uugdx <C (||u|\;:” + ||| 1*“) ) (30)
Q

for 54—% = 1. We take 0 = 2(1 —0), to obtain s = - = 1_220 < ¢~ by (18).
Therefore, (30) becomes

1
1
‘/ uurde
Q

where ﬁ < ¢ . By using (12), we get

2 s
< C (Jlwall® + ;- ).

1
1
/ uurdr
Q

< C (el + llull " + H (®)) .

Thus,
e
Ve (t) = {Hla (t)+€/uutd3:} -
¢ 1
< 215 (H(t)—I—allv /uutdx 10)
Q
< O (Ml + " + B ()
< C(H®+ fudl®+ [Vul® +m? ful® + ) @1
where

(a+b)P < 2P71 (aP +1P)

is used. By combining of (29) and (31), we arrive at

V() > 0T (1), (32)
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where £ is a positive constant.
A simple integration of (32) over (0,t) yields W™= (t) > ———1——— which
implies that the solution blows up in a finite time 7™, with
TR ek
§ol== (0)

This completes the proof of the theorem.
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