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Abstract

In this paper, we use the properties of sesquilinear forms to introduce a new

class of frames, called ϕ-frames. The notion of continuous ϕ-frames, its various

properties and characterizations in normed spaces are established. Also, some

fundamental identities and certain inequalities related to ϕ-frames are obtained.

1 Notations and Preliminaries

The concept of frame in Hilbert spaces was introduced by Duffin and Schaeffer [14]
to study some problems in non-harmonic Fourier series in 1952, reintroduced in 1986
by Daubechies, Grossmann, and Meyer [12] and popularized from then on. Now the
theory of frames is widely studied by several authors and they have established a
series of results (see [1, 4, 8, 9, 10]). A frame, which is redundant set of vectors in a
Hilbert space H with the property that provides non unique representations of vectors
in terms of the frame elements, has been applied in filter bank theory [6], sigma-delta
quantization [5], signal and image processing [7] and many other fields. A frame for
a complex Hilbert space H is a family of vectors {fi}i∈I in H so that there are two
positive constants A and B satisfying

A‖f‖
2
≤
∑

i∈I

|〈f, fi〉|
2
≤ B‖f‖

2
, (f ∈ H) . (1.1)

The constants A and B are called the lower and upper frame bounds, respectively. A
frame is said to be tight whenever A = B and if we can take A = B = 1 it is called
a Parseval frame. If the right-hand inequality of (1.1) holds, then we say that {fi}i∈I
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is a Bessel sequence for H with bound B. The analytic operator associated to the
frame {fi}i∈I is defined as T : L2 → H by T {ai} =

∑
i∈I

aifi. It is easy to see that

T ∗ : H → L2 such that T ∗ (f) = {〈f, fi〉}i∈I . The frame operator for the frame is the
positive, self adjoint invertible operator S = TT ∗ : H → H satisfying

Sf =
∑

i∈I

〈f, fi〉 fi, (f ∈ H) .

This provides the frame decomposition

f = S−1Sf =
∑

i∈I

〈f, fi〉 f̃i =
∑

i∈I

〈
f, f̃i

〉
fi,

where f̃i = S−1fi. The family
{
f̃i

}

i∈I
is also a frame for H, called the canonical dual

frame of {fi}i∈I . If {fi}i∈I is a Bessel sequence in H, for every J ⊂ I we define the
operator SJ by

SJf =
∑

i∈J

〈f, fi〉 fi.

We refer to [9, 11, 18] for an introduction to the frame theory and its applications.
In this section, we recall fundamental definitions, basic properties and notations of
sesquilinear forms which are needed for a comprehensive reading of this paper. This
background can be found in [13]. Let E be a vector space then ϕ : E × E → C is a
sesquilinear form on E if the following two conditions holds:

(a) ϕ (αx1 + βx2, y) = αϕ (x1, y) + βϕ (x2, y),

(b) ϕ (x, αy1 + βy2) = αϕ (x, y1) + βϕ (x, y2)

for any scalars α and β and any x, x1, x2, y, y1, y2 ∈ E . Two typical examples of
sesquilinear forms are as follows:

(I) Let A and B be operators on an inner product space E . Then ϕ1 (x, y) = 〈Ax, y〉,
ϕ2 (x, y) = 〈x, By〉, and ϕ3 (x, y) = 〈Ax,By〉 are sesquilinear forms on E .

(II) Let f and g be linear functionals on a vector space E . Then ϕ (x, y) = f (x) g (y)
is a sesquilinear form on E .

Let ϕ be a sesquilinear form on vector space E , then ϕ is called symmetric if
ϕ (x, y) = ϕ (y, x) for all x, y ∈ E . A sesquilinear form ϕ on vector space E is said
to be positive if ϕ (x, x) ≥ 0 for all x ∈ E . Moreover, ϕ is called Cauchy-Schwarz

if (ϕ (x, y))
2
≤ ϕ (x, x)ϕ (y, y) for each x, y ∈ E . The corresponding quadratic form

associated to ϕ is defined as:

Φ (x) = ϕ (x, x) .

We remark that, if E be a normed space and ϕ is a positive bounded sesquilinear form,
then

√
Φ (x) defines a semi norm on E (see [16, p. 52]). Let B (E ) denote the algebra
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of all bounded linear operators on a complex vector space E . For operator A ∈ B (E )
there exist B ∈ B (E ) such that for each x and y in E

ϕ (Ax, y) = ϕ (x, By) .

In this case, B is ϕ-adjoint of A and it is denoted by A∗. For more information on
related ideas and concepts we refer [17, p. 88-90]. The operator A in B (E ) is called
ϕ-positive if for all x ∈ E , ϕ (Ax, x) ≥ 0. We note that, A ≥ B if A −B ≥ 0.

In this paper, we develop the existing notions of frames on Hilbert spaces by using
the definition of sesquilinear form on a normed space E . Section 2 is devoted to
some elementary considerations concerning the ϕ-frames. Some properties and results
of such frames are investigated. In Section 3, we derive some characterizations of
continuous ϕ-frames. Finally, in the last section, we give new Parseval type identities
and inequalities for ϕ-frames in normed spaces (see Corollary 4.1 and Proposition 4.1).
Our results generalize the remarkable results obtained recently by Gǎvruţa.

2 ϕ-frames

The following basic results are essentially known as in [9], but our expression is a
little bit different from those in [9]. In fact Hilbert space H and inner product 〈·, ·〉
are replaced with vector space E and sesqulinear form ϕ respectively. Recall that a
sequence {ek}

m

k=1
in a vector space E is a basis, if the following conditions are satisfied:

(a) E = span {ek}
m

k=1
;

(b) {ek}
m

k=1
is linearly independent.

As a consequence of above definition, every f ∈ E has a unique representation in
terms of the elements in the basis, i.e., there exists unique scalar coefficients {ck}

m

k=1

such that

f =

m∑

k=1

ckek.

If {ek}
m

k=1
is a ϕ-orthonormal basis, i.e., a basis for which

ϕ (ek, ej) = δk,j =

{
1 if k = j,

0 if k 6= j,

then the coefficients {ck}
m

k=1
are easy to find

ϕ (f, ej) = ϕ

(
m∑

k=1

ckek, ej

)
=

m∑

k=1

ckϕ (ek, ej) = cj .

So

f =

m∑

k=1

ϕ (f, ek)ek.
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A sequence {fk}
∞

k=1
in a vector space E is called ϕ-frame if there exist A,B > 0 such

that

Aϕ (f, f) ≤

n∑

k=1

|ϕ (f, fk)|
2
≤ Bϕ (f, f) , (2.1)

for all f ∈ E . The constants A and B are called ϕ-frame bounds. If A = B, this is a
tight ϕ-frame and if A = B = 1 this is a Parseval ϕ-frame. Consider a vector space E

equipped with a frame {fk}
m

k=1
and define a linear mapping

T : C
m → E , T {ck}

m

k=1
=

m∑

k=1

ckfk.

T is called the ϕ-pre-frame operator. The adjoint operator is given by

T ∗ : E → C
m, T ∗f = {ϕ (f, fk)}

m

k=1

in fact by the usual inner product on Cm as the sesquilinear form ϕ
′

we have

ϕ (Tx, y) = ϕ

(
m∑

k=1

ckfk, y

)
=

m∑

k=1

ckϕ (fk, y)

and

ϕ′ (x, T ∗y) = ϕ′ ({ck}
m

k=1
, {ϕ (y, fk)}

m

k=1
) =

m∑

k=1

ckϕ (fk, y).

In this case, T ∗ is called the analytic operator and by composing T with its adjoint
T ∗, we obtain the ϕ-frame operator

S : E → E , Sf = TT ∗f =

m∑

k=1

ϕ (f, fk)fk.

Note that in terms of the ϕ-frame operator,

ϕ (Tf, f) =

m∑

k=1

|ϕ (f, fk)|
2
, f ∈ E .

REMARK 2.1. Let ϕ be a Cauchy-Schwarz bounded sesquilinear form, then

m∑

k=1

|ϕ (f, fk)|
2
≤

m∑

k=1

Φ (fk)Φ (f) . (2.2)

PROPOSITION 2.1. Let {fk}
m

k=1
be a sequence in E . Then {fk}

m

k=1
is a ϕ-frame

for span {fk}
m

k=1
.
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PROOF. Assume that none of the fk’s are zeros. From, Remark 2.1, the upper

ϕ-frame condition is satisfied with B =
m∑

k=1

Φ (fk). Now let

W = span {fk}
m

k=1

and consider the continuous mapping

ψ : W → R, ψ (f) =

m∑

k=1

|ϕ (f, fk)|
2
.

The unit ball in W is compact since, W is finite dimensional. So the function ψ takes
its infimum on the unit ball W . We can find g ∈ W with

√
Φ (g) = 1 such that

A =

m∑

k=1

|ϕ (g, fk)|
2

= inf

{
m∑

k=1

|ϕ (f, fk)|
2

: f ∈W,
√

Φ (f) = 1

}
.

It is clear that A > 0. Now for f ∈W , f 6= 0, we have

m∑

k=1

|ϕ (f, fk)|
2

=

m∑

k=1

ϕ

(
f√

Φ (f)
, fk

)2

|Φ (f)| ≥ A |Φ (f)| .

COROLLARY 2.1. A family of elements {fk}
m

k=1
in E is a ϕ-frame for E if and

only if span {fk}
m

k=1
= E .

THEOREM 2.1. Let {fk}
m

k=1
be a ϕ-frame for E with ϕ-frame operator S. Then

(a) S is invertible and self adjoint.

(b) Every f ∈ E can be represented as

f =

m∑

k=1

ϕ
(
f, S−1fk

)
fk =

m∑

k=1

ϕ (f, fk)S−1fk. (2.3)

PROOF. Since S = TT ∗, it is clear that S is a self adjoint. We have to prove that
S is injective. Let f ∈ E and assume that Sf = 0. Then

0 = ϕ (Sf, f) =

m∑

k=1

|ϕ (f, fk)|
2
,

by the ϕ-frame condition f = 0. S is injective implies that S is surjective, but let us give
direct proof. By Corollary 2.1, the ϕ-frame condition implies that span {fk}

m

k=1
= E ,

so the ϕ-pre frame operator T is surjective. For f ∈ E we can find g ∈ E such that
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Tg = f . We can choose g ∈ N⊥
T = RT∗ , so it follows that RS = RTT∗ = E . Thus S is

surjective. Each f ∈ E has the representation

f = SS−1f = TT ∗S−1f =
m∑

k=1

ϕ
(
S−1f, fk

)
fk.

Since S is self adjoint, we get

f =

m∑

k=1

ϕ
(
f, S−1fk

)
fk.

The second representation in (2.3) is obtained in the same way, hence f = S−1Sf .

THEOREM 2.2. Let {fk}
m

k=1
be a ϕ-frame for E with ϕ-frame operator T . Then

If f ∈ E also has the representation f =
m∑

k=1

ckfk for some scalar coefficients {ck}
m

k=1
,

then
m∑

k=1

|ck|
2

=

m∑

k=1

∣∣ϕ
(
f, T−1fk

)∣∣2 +

m∑

k=1

∣∣ck + ϕ
(
f, T−1fk

)∣∣2. (2.4)

PROOF. Suppose that f =
m∑

k=1

ckfk. We can write

{ck}
m

k=1
= {ck}

m

k=1
−
{
ϕ
(
f, T−1fk

)}m

k=1
+
{
ϕ
(
f, T−1fk

)}m

k=1
.

By the choice of {ck}
m

k=1
we have

m∑

k=1

(
ck − ϕ

(
f, T−1fk

))
fk = 0

i.e.,
{ck}

m

k=1
−
{
ϕ
(
f, T−1fk

)}m

k=1
∈ NS = R⊥

S∗ ,

since {
ϕ
(
f, T−1fk

)}m

k=1
=
{
ϕ
(
T−1f, fk

)}m

k=1
∈ RS∗

we obtain (2.4).

REMARK 2.2. If {fk}
m

k=1
is a ϕ-frame but not a basis, there exist non zero se-

quences {dk}
m

k=1
such that

m∑
k=1

dkfk = 0. Therefore f ∈ E can be written

f =

m∑

k=1

ϕ
(
f, T−1fk

)
fk +

m∑

k=1

dkfk

and

=

m∑

k=1

(
ϕ
(
f, T−1fk

)
+ dk

)
fk
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showing that f has many representations as superpositions of the ϕ-frame elements.

PROPOSITION 2.2. Let {fk}
m

k=1
be a basis for E . Then there exists a unique

family {gk}
m

k=1
in E such that

f =

m∑

k=1

ϕ (f, gk) fk, (∀f ∈ E ) . (2.5)

PROOF. The existence of a family {gk}
m

k=1
satisfying (2.5) follows from Theorem

2.1, also the uniqueness part is direct.

REMARK 2.3. Applying (2.5) on a fixed element fj and since {fk}
m

k=1
is a basis,

we get ϕ (fj, gk) = δj,k for all k = 1, 2, ..., m.

THEOREM 2.3. Let {fk}
m

k=1
be a ϕ-frame for subspace F of the vector space E .

Then the ϕ-orthogonal projection of E onto F is given by

Pf =

m∑

k=1

ϕ
(
f, T−1fk

)
fk. (2.6)

PROOF. It is enough to prove that if we define P by (2.6), then

Pf = f for f ∈ F and Pf = 0 for f ∈ F⊥.

The first equation follows by Theorem 2.1, and the second by the fact that the range
of T−1 equals F because T is a bijection on F .

3 Continuous ϕ-frames

In this section, we introduce the concept of continuous ϕ-frames, which is a partial
extension of continuous frames. To prove our main result related to continuous ϕ-
frames, we need the following essential definitions. Let I be a locally compact group,
and E be a vector space, and ϕ be a sesquilinear form on E . A function

f : I → E

is called a continuous ϕ-frame in E , if there are positive numbers A, B, such that for
all x in E

Aϕ (x, x) ≤

∫

I

|ϕ (x, fi)|
2
di ≤ Bϕ (x, x) , (3.1)

where di is a Haar measure on I. The constants A and B are called the frame bounds.
In this case, we define the corresponding frame operator as S : I → I such that

S (x) =

∫

I

ϕ (x, fi) di. (3.2)
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Moreover, we can define the analysis operator as this T : E → L2 (I) such that

x→ (ϕ (x, fi))i∈I . (3.3)

The notation (ϕ (x, fi))i∈I in (3.3) denotes the function in L2 (I)

i→ (ϕ (x, fi))i∈I .

It easy to prove that T ∗ : L2 (I) → E which

g →

∫

I

figidi,

and it implies that
S = T ∗T.

THEOREM 3.1. Let I be a locally compact group, ϕ be a symmetric sesquilinear
form on a vector space E , and let f : I → E be a ϕ-frame in E , with frame bounds
A and B. Then the operator S is a positive, self adjoint, invertible operator on E ,
moreover

AIE ≤ S ≤ BIE .

PROOF. By definition, we can write

ϕ (Sx, x) = ϕ




∫

I

ϕ (x, fi) fidi, x



 =

∫

I

ϕ (ϕ (x, fi) fi, x)di

=

∫

I

ϕ (x, fi)ϕ (fi, x)di

=

∫

I

ϕ (x, fi)ϕ (x, fi)di

=

∫

I

|ϕ (x, fi)|
2
di.

Therefore from definition of frame bounds, we conclude that

Aϕ (x, x) ≤ ϕ (Sx, x) ≤ Bϕ (x, x)

which is equivalent to
AIE ≤ S ≤ BIE .

EXAMPLE 3.1. Let I be the positive real number, and E be L2 (R). Define
f : R+ → L2 (R) which

α → fα
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where
fα (x) = e2πiαx.

Then it easy to show that the frame operator corresponding to the inner product of
L2 (R) is the identity on E . In other words, for any function f

f =

+∞∫

0

ϕ (f, fα) fαdα

or equivalently

f (x) =

+∞∫

0




+∞∫

−∞

f (x)fα (x)dx



fα (x) dα

or

f (x) =

+∞∫

0




+∞∫

−∞

f (x) e−2πiαxdx



e2πiαxdα.

This is the Fourier integral for the function f .

EXAMPLE 3.2. In the previous, let I be the set of all positive integers, then we
have

f =

∞∑

0

ϕ (f, fn) fn

or

f (x) =

∞∑

0




+∞∫

−∞

f (x) e−2πiαxdx


e2πiαxdα.

which is the Fourier series for the function f .
Example 3.2 shows that the Fourier system is a continuous ϕ-frame, which has a

discrete sub frame, but not in a same measure.

REMARK 3.1. In general, it is not necessary for I to be a group, it is enough that
I is a subset of a locally compact group with a suitable measure. As we see in the
examples, it is important to define an integral or summation on I.

4 Applications

As an application of previous sections, we prove the following inequalities and by using
the model technique of Balan et al. [2, 3] and Gavruta [15], we obtain an analogue,
called Parseval’s identity of ϕ-frames in normed spaces.

THEOREM 4.1. Let {fi}i∈I be a ϕ-frame for a vector space E with frame bounds
A,B. Let J ⊂ I, so that {fi}i∈J has Bessel bound B (J) < A. Then {fi}i∈Jc is a
ϕ-frame for E .
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PROOF. Since {fi}i∈Jc has B as a Bessel bound, we only need to check its lower
frame bound. For this just compute for any f ∈ E

∑

i∈Jc

|ϕ (f, fi)|
2

=
∑

i∈I

|ϕ (f, fi)|
2
−
∑

i∈J

|ϕ (f, fi)|
2

≥ AΦ (f) − B (J) Φ (f) = (A− B (J))Φ (f) .

Since A −B (J) > 0, we deduce the desired result.

COROLLARY 4.1. Let {fi}i∈I be a Parseval ϕ-frame for E and J ⊂ I. In order
for {fi}i∈J to be a ϕ-frame for E is necessary and sufficient that B (Jc) < 1. In this
case, the optimal lower frame bound for {fi}i∈J is 1 − B (Jc).

PROOF. For any f ∈ E we have
∑

i∈J

|ϕ (f, fi)|
2

=
∑

i∈I

|ϕ (f, fi)|
2
−
∑

i∈Jc

|ϕ (f, fi)|
2

≥ Φ (f) −B (Jc)Φ (f) = (1 − B (Jc))Φ (f) .

It is easy to see that the inequality above is optimal, hence the proof.
The following result can be stated as well.

THEOREM 4.2. Assume that ϕ is a bounded positive sesquilinear form. If U, V ∈
L (E ) are ϕ-self adjoint operators satisfying U + V = 1E , then for all f ∈ E we have

ϕ (Uf, f) + Φ (V f) = ϕ (V f, f) + Φ (V f) ≥
3

4
Φ (f) .

PROOF. We have

ϕ (Uf, f) + Φ (V f) = ϕ (Uf, f) + ϕ (V f, V f)

= ϕ ((IE − V ) f, f) + ϕ
(
V 2f, f

)

= ϕ
((
V 2 − V + IE

)
f, f
)

= ϕ (V f, f) + ϕ (Uf, Uf) + ϕ
(
(IE − V )

2
f, f
)

= ϕ
((
V 2f − V + IE

)
f, f
)

= ϕ

(((
V −

1

2
IE

)2

+
3

4
IE

)
f, f

)

≥
3

4
Φ (f) .

This completes the proof of Theorem 4.2.

REMARK 4.1. We consider now {fi}i∈I , a ϕ-frame for E with S its frame operator

and
{
f̃i

}

i∈I
its canonical dual frame and J ⊂ I. We have

SJ + SJc = S,
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hence
S− 1

2SJS
− 1

2 + S− 1

2 SJcS− 1

2 = 1E .

PROOF. If in the Theorem 4.2 we take U = S− 1

2SJS
− 1

2 , V = S− 1

2SJcS− 1

2 and
S

1

2 f instead of f , we get

ϕ
(
S− 1

2SJf, S
1

2 f
)

+ Φ
(
S− 1

2SJcf
)

= ϕ
(
S− 1

2SJf, S
1

2 f
)

+ Φ
(
S− 1

2SJf
)

≥
3

4
Φ
(
S

1

2 f
)
,

or

ϕ (SJf, f) + ϕ
(
S− 1

2SJcf, S− 1

2SJcf
)

= ϕ (SJcf, f) + ϕ
(
S−1SJf, SJf

)

≥
3

4
ϕ (Sf, f) .

The following result also holds (see [15, Theorem 3.2] for the case of Hilbert space).

THEOREM 4.3. Let {fi}i∈I be a ϕ-frame for E and {gi}i∈I be an alternative dual
of {fi}i∈I . Then for all J ⊂ I and all f ∈ E , we have

Re
∑

i∈J

ϕ(f, gi)ϕ(f, fi) + Φ

(
∑

i∈Jc

ϕ(f, gi)fi

)

= Re
∑

i∈J

ϕ(f, gi)ϕ(f, fi) + Φ

(
∑

i∈J

ϕ(f, gi)fi

)

≥
3

4
Φ (f) .

PROOF. For every J ⊂ I we define the operator LJ by

LJf =
∑

i∈J

ϕ (f, gi) fi.

By the Cauchy-Schwarz inequality it follows that this series converges unconditionally
and LJ ∈ L (E ). Since LJ + LJc = IE,

ϕ ((L∗

JLJ ) f, f) +
1

2
ϕ ((L∗

JcLJc) f, f) = ϕ ((L∗

JcLJc) f, f) +
1

2
ϕ ((L∗

J + L∗

J) f, f)

≥
3

4
Φ (f) ,

or

Φ

(
∑

i∈J

ϕ (f, gi) fi

)
+

1

2

(
ϕ (LJcf, f) + ϕ (LJcf, f)

)

= Φ

(
∑

i∈Jc

ϕ (f, gi) fi

)
+

1

2

(
ϕ (LJf, f) + ϕ (LJf, f)

)

≥
3

4
Φ (f) .
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To prove Theorem 4.4, we need the following lemma.

LEMMA 4.1. If S, T are operators on E satisfying S+T = I, then S−T = S2−T 2.

PROOF. Easy computation and simplification yield

S − T = S − (I − S) = 2S − I = S2 −
(
I − 2S + S2

)
= S2 − (I − S)

2
= S2 − T 2.

THEOREM 4.4. Let {fi}i∈I be a ϕ-frame for E with canonical frame
{
f̃i

}

i∈I
.

Then for all J ⊂ I and for all f ∈ E we have

∑

i∈J

|ϕ (f, fi)|
2
−
∑

i∈I

∣∣∣ϕ
(
SJf, f̃i

)∣∣∣
2

=
∑

i∈Jc

|ϕ (f, fi)|
2
−
∑

i∈I

∣∣∣ϕ
(
SJcf, f̃i

)∣∣∣
2

.

PROOF. Let S denote the frame operator for {fi}i∈I . Since S = SJ + SJc , it
follows that I = S−1SJ + S−1SJc . Applying Lemma 4.1 to the two operators S−1SJ

and S−1SJc yields

S−1SJ − S−1SJS
−1SJ = S−1SJc − S−1SJcS−1SJc . (4.1)

Further, for every f, g ∈ E we obtain

ϕ
(
S−1SJf, g

)
−ϕ

(
S−1SJS

−1SJf, g
)

= ϕ
(
SJf, S

−1g
)
−ϕ

(
S−1SJf, SJS

−1g
)
. (4.2)

Now, we choose g to be g = Sf . Then we can continue the equality (4.2) in the
following as

ϕ (SJf, f) − ϕ
(
S−1SJf, SJf

)
=
∑

i∈J

|ϕ (f, fi)|
2
−
∑

i∈I

∣∣∣ϕ
(
SJf, f̃i

)∣∣∣
2

.

Setting equality (4.2) equal to the corresponding equality for Jc and using (4.1), we
finally get

∑

i∈J

|ϕ (f, fi)|
2
−
∑

i∈I

∣∣∣ϕ
(
SJf, f̃i

)∣∣∣
2

=
∑

i∈Jc

|ϕ (f, fi)|
2
−
∑

i∈I

∣∣∣ϕ
(
SJcf, f̃i

)∣∣∣
2

.

PROPOSITION 4.1. Let {fi}i∈I be a Parseval ϕ-frame for E . For every subset
J ⊂ I and every f ∈ E , we have

∑

i∈J

|ϕ (f, fi)|
2 − Φ (ϕ (f, fi) fi) =

∑

i∈Jc

|ϕ (f, fi)|
2 − Φ

(
∑

i∈Jc

ϕ (f, fi) fi

)
.
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PROOF. Let
{
f̃i

}

i∈I
denote the dual frame of {fi}i∈I . Since {fi}i∈I is a Parseval

ϕ-frame, its frame operator equal identity operator and hence f̃i = fi for all i ∈ I.
Employing Theorem 4.4 and the fact that {fi}i∈I is a Parseval ϕ-frame yields

∑

i∈J

|ϕ (f, fi)|
2
− Φ

(
∑

i∈J

ϕ (f, fi) fi

)
=
∑

i∈J

|ϕ (f, fi)|
2
− Φ (SJf)

=
∑

i∈J

|ϕ (f, fi)|
2
−
∑

i∈I

|ϕ (SJf, fi)|
2

=
∑

i∈J

|ϕ (f, fi)|
2
−
∑

i∈I

∣∣∣ϕ
(
SJf, f̃i

)∣∣∣
2

=
∑

i∈Jc

|ϕ (f, fi)|
2
−
∑

i∈I

∣∣∣ϕ
(
SJcf, f̃i

)∣∣∣
2

=
∑

i∈Jc

|ϕ (f, fi)|
2 − Φ (SJcf)

=
∑

i∈Jc

|ϕ (f, fi)|
2
− Φ

(
∑

i∈Jc

ϕ (f, fi) fi

)
.
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