Properties And Related Inequalities Of φ-frames In Normed Spaces*

Mahdi Taleb Alfakhr ${ }^{\dagger}$, Mohsen Erfanian Omidvar ${ }^{\ddagger}$, Hamid Reza Moradi ${ }^{\S}$ PK Harikrishnan ${ }^{\|}$, Silvestru Sever Dragomir ${ }^{\|}$

Received 30 May 2018

Abstract

In this paper, we use the properties of sesquilinear forms to introduce a new class of frames, called φ-frames. The notion of continuous φ-frames, its various properties and characterizations in normed spaces are established. Also, some fundamental identities and certain inequalities related to φ-frames are obtained.

1 Notations and Preliminaries

The concept of frame in Hilbert spaces was introduced by Duffin and Schaeffer [14] to study some problems in non-harmonic Fourier series in 1952, reintroduced in 1986 by Daubechies, Grossmann, and Meyer [12] and popularized from then on. Now the theory of frames is widely studied by several authors and they have established a series of results (see $[1,4,8,9,10]$). A frame, which is redundant set of vectors in a Hilbert space \mathcal{H} with the property that provides non unique representations of vectors in terms of the frame elements, has been applied in filter bank theory [6], sigma-delta quantization [5], signal and image processing [7] and many other fields. A frame for a complex Hilbert space \mathcal{H} is a family of vectors $\left\{f_{i}\right\}_{i \in I}$ in \mathcal{H} so that there are two positive constants A and B satisfying

$$
\begin{equation*}
A\|f\|^{2} \leq \sum_{i \in I}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leq B\|f\|^{2}, \quad(f \in \mathcal{H}) \tag{1.1}
\end{equation*}
$$

The constants A and B are called the lower and upper frame bounds, respectively. A frame is said to be tight whenever $A=B$ and if we can take $A=B=1$ it is called a Parseval frame. If the right-hand inequality of (1.1) holds, then we say that $\left\{f_{i}\right\}_{i \in I}$

[^0]is a Bessel sequence for \mathcal{H} with bound B. The analytic operator associated to the frame $\left\{f_{i}\right\}_{i \in I}$ is defined as $T: L^{2} \rightarrow \mathcal{H}$ by $T\left\{a_{i}\right\}=\sum_{i \in I} a_{i} f_{i}$. It is easy to see that $T^{*}: \mathcal{H} \rightarrow L^{2}$ such that $T^{*}(f)=\left\{\left\langle f, f_{i}\right\rangle\right\}_{i \in I}$. The frame operator for the frame is the positive, self adjoint invertible operator $S=T T^{*}: \mathcal{H} \rightarrow \mathcal{H}$ satisfying
$$
S f=\sum_{i \in I}\left\langle f, f_{i}\right\rangle f_{i}, \quad(f \in \mathcal{H})
$$

This provides the frame decomposition

$$
f=S^{-1} S f=\sum_{i \in I}\left\langle f, f_{i}\right\rangle \widetilde{f}_{i}=\sum_{i \in I}\left\langle f, \widetilde{f}_{i}\right\rangle f_{i}
$$

where $\widetilde{f}_{i}=S^{-1} f_{i}$. The family $\left\{\widetilde{f}_{i}\right\}_{i \in I}$ is also a frame for \mathcal{H}, called the canonical dual frame of $\left\{f_{i}\right\}_{i \in I}$. If $\left\{f_{i}\right\}_{i \in I}$ is a Bessel sequence in \mathcal{H}, for every $J \subset I$ we define the operator S_{J} by

$$
S_{J} f=\sum_{i \in J}\left\langle f, f_{i}\right\rangle f_{i}
$$

We refer to $[9,11,18]$ for an introduction to the frame theory and its applications. In this section, we recall fundamental definitions, basic properties and notations of sesquilinear forms which are needed for a comprehensive reading of this paper. This background can be found in [13]. Let \mathscr{E} be a vector space then $\varphi: \mathscr{E} \times \mathscr{E} \rightarrow \mathbb{C}$ is a sesquilinear form on \mathscr{E} if the following two conditions holds:
(a) $\varphi\left(\alpha x_{1}+\beta x_{2}, y\right)=\alpha \varphi\left(x_{1}, y\right)+\beta \varphi\left(x_{2}, y\right)$,
(b) $\varphi\left(x, \alpha y_{1}+\beta y_{2}\right)=\bar{\alpha} \varphi\left(x, y_{1}\right)+\bar{\beta} \varphi\left(x, y_{2}\right)$
for any scalars α and β and any $x, x_{1}, x_{2}, y, y_{1}, y_{2} \in \mathscr{E}$. Two typical examples of sesquilinear forms are as follows:
(I) Let A and B be operators on an inner product space \mathscr{E}. Then $\varphi_{1}(x, y)=\langle A x, y\rangle$, $\varphi_{2}(x, y)=\langle x, B y\rangle$, and $\varphi_{3}(x, y)=\langle A x, B y\rangle$ are sesquilinear forms on \mathscr{E}.
(II) Let f and g be linear functionals on a vector space \mathscr{E}. Then $\varphi(x, y)=f(x) \overline{g(y)}$ is a sesquilinear form on \mathscr{E}.

Let φ be a sesquilinear form on vector space \mathscr{E}, then φ is called symmetric if $\varphi(x, y)=\overline{\varphi(y, x)}$ for all $x, y \in \mathscr{E}$. A sesquilinear form φ on vector space \mathscr{E} is said to be positive if $\varphi(x, x) \geq 0$ for all $x \in \mathscr{E}$. Moreover, φ is called Cauchy-Schwarz if $(\varphi(x, y))^{2} \leq \varphi(x, x) \varphi(y, y)$ for each $x, y \in \mathscr{E}$. The corresponding quadratic form associated to φ is defined as:

$$
\Phi(x)=\varphi(x, x)
$$

We remark that, if \mathscr{E} be a normed space and φ is a positive bounded sesquilinear form, then $\sqrt{\Phi(x)}$ defines a semi norm on \mathscr{E} (see [16, p. 52]). Let $\mathcal{B}(\mathscr{E})$ denote the algebra
of all bounded linear operators on a complex vector space \mathscr{E}. For operator $A \in \mathcal{B}(\mathscr{E})$ there exist $B \in \mathcal{B}(\mathscr{E})$ such that for each x and y in \mathscr{E}

$$
\varphi(A x, y)=\varphi(x, B y)
$$

In this case, B is φ-adjoint of A and it is denoted by A^{*}. For more information on related ideas and concepts we refer [17, p. 88-90]. The operator A in $\mathcal{B}(\mathscr{E})$ is called φ-positive if for all $x \in \mathscr{E}, \varphi(A x, x) \geq 0$. We note that, $A \geq B$ if $A-B \geq 0$.

In this paper, we develop the existing notions of frames on Hilbert spaces by using the definition of sesquilinear form on a normed space \mathscr{E}. Section 2 is devoted to some elementary considerations concerning the φ-frames. Some properties and results of such frames are investigated. In Section 3, we derive some characterizations of continuous φ-frames. Finally, in the last section, we give new Parseval type identities and inequalities for φ-frames in normed spaces (see Corollary 4.1 and Proposition 4.1). Our results generalize the remarkable results obtained recently by Gǎvruţa.

2φ-frames

The following basic results are essentially known as in [9], but our expression is a little bit different from those in [9]. In fact Hilbert space \mathcal{H} and inner product $\langle\cdot, \cdot\rangle$ are replaced with vector space \mathscr{E} and sesqulinear form φ respectively. Recall that a sequence $\left\{e_{k}\right\}_{k=1}^{m}$ in a vector space \mathscr{E} is a basis, if the following conditions are satisfied:
(a) $\mathscr{E}=\operatorname{span}\left\{e_{k}\right\}_{k=1}^{m}$;
(b) $\left\{e_{k}\right\}_{k=1}^{m}$ is linearly independent.

As a consequence of above definition, every $f \in \mathscr{E}$ has a unique representation in terms of the elements in the basis, i.e., there exists unique scalar coefficients $\left\{c_{k}\right\}_{k=1}^{m}$ such that

$$
f=\sum_{k=1}^{m} c_{k} e_{k} .
$$

If $\left\{e_{k}\right\}_{k=1}^{m}$ is a φ-orthonormal basis, i.e., a basis for which

$$
\varphi\left(e_{k}, e_{j}\right)=\delta_{k, j}= \begin{cases}1 & \text { if } k=j \\ 0 & \text { if } k \neq j\end{cases}
$$

then the coefficients $\left\{c_{k}\right\}_{k=1}^{m}$ are easy to find

$$
\varphi\left(f, e_{j}\right)=\varphi\left(\sum_{k=1}^{m} c_{k} e_{k}, e_{j}\right)=\sum_{k=1}^{m} c_{k} \varphi\left(e_{k}, e_{j}\right)=c_{j} .
$$

So

$$
f=\sum_{k=1}^{m} \varphi\left(f, e_{k}\right) e_{k}
$$

A sequence $\left\{f_{k}\right\}_{k=1}^{\infty}$ in a vector space \mathscr{E} is called φ-frame if there exist $A, B>0$ such that

$$
\begin{equation*}
A \varphi(f, f) \leq \sum_{k=1}^{n}\left|\varphi\left(f, f_{k}\right)\right|^{2} \leq B \varphi(f, f) \tag{2.1}
\end{equation*}
$$

for all $f \in \mathscr{E}$. The constants A and B are called φ-frame bounds. If $A=B$, this is a tight φ-frame and if $A=B=1$ this is a Parseval φ-frame. Consider a vector space \mathscr{E} equipped with a frame $\left\{f_{k}\right\}_{k=1}^{m}$ and define a linear mapping

$$
T: \mathbb{C}^{m} \rightarrow \mathscr{E}, T\left\{c_{k}\right\}_{k=1}^{m}=\sum_{k=1}^{m} c_{k} f_{k}
$$

T is called the φ-pre-frame operator. The adjoint operator is given by

$$
T^{*}: \mathscr{E} \rightarrow \mathbb{C}^{m}, T^{*} f=\left\{\varphi\left(f, f_{k}\right)\right\}_{k=1}^{m}
$$

in fact by the usual inner product on \mathbb{C}^{m} as the sesquilinear form φ^{\prime} we have

$$
\varphi(T x, y)=\varphi\left(\sum_{k=1}^{m} c_{k} f_{k}, y\right)=\sum_{k=1}^{m} c_{k} \varphi\left(f_{k}, y\right)
$$

and

$$
\varphi^{\prime}\left(x, T^{*} y\right)=\varphi^{\prime}\left(\left\{c_{k}\right\}_{k=1}^{m},\left\{\varphi\left(y, f_{k}\right)\right\}_{k=1}^{m}\right)=\sum_{k=1}^{m} c_{k} \varphi\left(f_{k}, y\right)
$$

In this case, T^{*} is called the analytic operator and by composing T with its adjoint T^{*}, we obtain the φ-frame operator

$$
S: \mathscr{E} \rightarrow \mathscr{E}, S f=T T^{*} f=\sum_{k=1}^{m} \varphi\left(f, f_{k}\right) f_{k}
$$

Note that in terms of the φ-frame operator,

$$
\varphi(T f, f)=\sum_{k=1}^{m}\left|\varphi\left(f, f_{k}\right)\right|^{2}, f \in \mathscr{E}
$$

REMARK 2.1. Let φ be a Cauchy-Schwarz bounded sesquilinear form, then

$$
\begin{equation*}
\sum_{k=1}^{m}\left|\varphi\left(f, f_{k}\right)\right|^{2} \leq \sum_{k=1}^{m} \Phi\left(f_{k}\right) \Phi(f) \tag{2.2}
\end{equation*}
$$

PROPOSITION 2.1. Let $\left\{f_{k}\right\}_{k=1}^{m}$ be a sequence in \mathscr{E}. Then $\left\{f_{k}\right\}_{k=1}^{m}$ is a φ-frame for span $\left\{f_{k}\right\}_{k=1}^{m}$.

PROOF. Assume that none of the f_{k} 's are zeros. From, Remark 2.1, the upper φ-frame condition is satisfied with $B=\sum_{k=1}^{m} \Phi\left(f_{k}\right)$. Now let

$$
W=\operatorname{span}\left\{f_{k}\right\}_{k=1}^{m}
$$

and consider the continuous mapping

$$
\psi: W \rightarrow \mathbb{R}, \psi(f)=\sum_{k=1}^{m}\left|\varphi\left(f, f_{k}\right)\right|^{2}
$$

The unit ball in W is compact since, W is finite dimensional. So the function ψ takes its infimum on the unit ball W. We can find $g \in W$ with $\sqrt{\Phi(g)}=1$ such that

$$
A=\sum_{k=1}^{m}\left|\varphi\left(g, f_{k}\right)\right|^{2}=\inf \left\{\sum_{k=1}^{m}\left|\varphi\left(f, f_{k}\right)\right|^{2}: f \in W, \sqrt{\Phi(f)}=1\right\}
$$

It is clear that $A>0$. Now for $f \in W, f \neq 0$, we have

$$
\sum_{k=1}^{m}\left|\varphi\left(f, f_{k}\right)\right|^{2}=\sum_{k=1}^{m} \varphi\left(\frac{f}{\sqrt{\Phi(f)}}, f_{k}\right)^{2}|\Phi(f)| \geq A|\Phi(f)|
$$

COROLLARY 2.1. A family of elements $\left\{f_{k}\right\}_{k=1}^{m}$ in \mathscr{E} is a φ-frame for \mathscr{E} if and only if $\operatorname{span}\left\{f_{k}\right\}_{k=1}^{m}=\mathscr{E}$.

THEOREM 2.1. Let $\left\{f_{k}\right\}_{k=1}^{m}$ be a φ-frame for \mathscr{E} with φ-frame operator S. Then
(a) S is invertible and self adjoint.
(b) Every $f \in \mathscr{E}$ can be represented as

$$
\begin{equation*}
f=\sum_{k=1}^{m} \varphi\left(f, S^{-1} f_{k}\right) f_{k}=\sum_{k=1}^{m} \varphi\left(f, f_{k}\right) S^{-1} f_{k} \tag{2.3}
\end{equation*}
$$

PROOF. Since $S=T T^{*}$, it is clear that S is a self adjoint. We have to prove that S is injective. Let $f \in \mathscr{E}$ and assume that $S f=0$. Then

$$
0=\varphi(S f, f)=\sum_{k=1}^{m}\left|\varphi\left(f, f_{k}\right)\right|^{2}
$$

by the φ-frame condition $f=0 . S$ is injective implies that S is surjective, but let us give direct proof. By Corollary 2.1, the φ-frame condition implies that $\operatorname{span}\left\{f_{k}\right\}_{k=1}^{m}=\mathscr{E}$, so the φ-pre frame operator T is surjective. For $f \in \mathscr{E}$ we can find $g \in \mathscr{E}$ such that
$T g=f$. We can choose $g \in N_{T}^{\perp}=R_{T^{*}}$, so it follows that $R_{S}=R_{T T^{*}}=\mathscr{E}$. Thus S is surjective. Each $f \in \mathscr{E}$ has the representation

$$
f=S S^{-1} f=T T^{*} S^{-1} f=\sum_{k=1}^{m} \varphi\left(S^{-1} f, f_{k}\right) f_{k}
$$

Since S is self adjoint, we get

$$
f=\sum_{k=1}^{m} \varphi\left(f, S^{-1} f_{k}\right) f_{k}
$$

The second representation in (2.3) is obtained in the same way, hence $f=S^{-1} S f$.
THEOREM 2.2. Let $\left\{f_{k}\right\}_{k=1}^{m}$ be a φ-frame for \mathscr{E} with φ-frame operator T. Then If $f \in \mathscr{E}$ also has the representation $f=\sum_{k=1}^{m} c_{k} f_{k}$ for some scalar coefficients $\left\{c_{k}\right\}_{k=1}^{m}$, then

$$
\begin{equation*}
\sum_{k=1}^{m}\left|c_{k}\right|^{2}=\sum_{k=1}^{m}\left|\varphi\left(f, T^{-1} f_{k}\right)\right|^{2}+\sum_{k=1}^{m}\left|c_{k}+\varphi\left(f, T^{-1} f_{k}\right)\right|^{2} \tag{2.4}
\end{equation*}
$$

PROOF. Suppose that $f=\sum_{k=1}^{m} c_{k} f_{k}$. We can write

$$
\left\{c_{k}\right\}_{k=1}^{m}=\left\{c_{k}\right\}_{k=1}^{m}-\left\{\varphi\left(f, T^{-1} f_{k}\right)\right\}_{k=1}^{m}+\left\{\varphi\left(f, T^{-1} f_{k}\right)\right\}_{k=1}^{m}
$$

By the choice of $\left\{c_{k}\right\}_{k=1}^{m}$ we have

$$
\sum_{k=1}^{m}\left(c_{k}-\varphi\left(f, T^{-1} f_{k}\right)\right) f_{k}=0
$$

i.e.,

$$
\left\{c_{k}\right\}_{k=1}^{m}-\left\{\varphi\left(f, T^{-1} f_{k}\right)\right\}_{k=1}^{m} \in N_{S}=R_{S^{*}}^{\perp}
$$

since

$$
\left\{\varphi\left(f, T^{-1} f_{k}\right)\right\}_{k=1}^{m}=\left\{\varphi\left(T^{-1} f, f_{k}\right)\right\}_{k=1}^{m} \in R_{S^{*}}
$$

we obtain (2.4).
REMARK 2.2. If $\left\{f_{k}\right\}_{k=1}^{m}$ is a φ-frame but not a basis, there exist non zero sequences $\left\{d_{k}\right\}_{k=1}^{m}$ such that $\sum_{k=1}^{m} d_{k} f_{k}=0$. Therefore $f \in \mathscr{E}$ can be written

$$
f=\sum_{k=1}^{m} \varphi\left(f, T^{-1} f_{k}\right) f_{k}+\sum_{k=1}^{m} d_{k} f_{k}
$$

and

$$
=\sum_{k=1}^{m}\left(\varphi\left(f, T^{-1} f_{k}\right)+d_{k}\right) f_{k}
$$

showing that f has many representations as superpositions of the φ-frame elements.
PROPOSITION 2.2. Let $\left\{f_{k}\right\}_{k=1}^{m}$ be a basis for \mathscr{E}. Then there exists a unique family $\left\{g_{k}\right\}_{k=1}^{m}$ in \mathscr{E} such that

$$
\begin{equation*}
f=\sum_{k=1}^{m} \varphi\left(f, g_{k}\right) f_{k}, \quad(\forall f \in \mathscr{E}) . \tag{2.5}
\end{equation*}
$$

PROOF. The existence of a family $\left\{g_{k}\right\}_{k=1}^{m}$ satisfying (2.5) follows from Theorem 2.1, also the uniqueness part is direct.

REMARK 2.3. Applying (2.5) on a fixed element f_{j} and since $\left\{f_{k}\right\}_{k=1}^{m}$ is a basis, we get $\varphi\left(f_{j}, g_{k}\right)=\delta_{j, k}$ for all $k=1,2, \ldots, m$.

THEOREM 2.3. Let $\left\{f_{k}\right\}_{k=1}^{m}$ be a φ-frame for subspace F of the vector space \mathscr{E}. Then the φ-orthogonal projection of \mathscr{E} onto F is given by

$$
\begin{equation*}
P f=\sum_{k=1}^{m} \varphi\left(f, T^{-1} f_{k}\right) f_{k} \tag{2.6}
\end{equation*}
$$

PROOF. It is enough to prove that if we define P by (2.6), then

$$
P f=f \text { for } f \in F \text { and } P f=0 \text { for } f \in F^{\perp} .
$$

The first equation follows by Theorem 2.1, and the second by the fact that the range of T^{-1} equals F because T is a bijection on F.

3 Continuous φ-frames

In this section, we introduce the concept of continuous φ-frames, which is a partial extension of continuous frames. To prove our main result related to continuous φ frames, we need the following essential definitions. Let I be a locally compact group, and \mathscr{E} be a vector space, and φ be a sesquilinear form on \mathscr{E}. A function

$$
f: I \rightarrow \mathscr{E}
$$

is called a continuous φ-frame in \mathscr{E}, if there are positive numbers A, B, such that for all x in \mathscr{E}

$$
\begin{equation*}
A \varphi(x, x) \leq \int_{I}\left|\varphi\left(x, f_{i}\right)\right|^{2} d i \leq B \varphi(x, x) \tag{3.1}
\end{equation*}
$$

where $d i$ is a Haar measure on I. The constants A and B are called the frame bounds. In this case, we define the corresponding frame operator as $S: I \rightarrow I$ such that

$$
\begin{equation*}
S(x)=\int_{I} \varphi\left(x, f_{i}\right) d i \tag{3.2}
\end{equation*}
$$

Moreover, we can define the analysis operator as this $T: \mathscr{E} \rightarrow L^{2}(I)$ such that

$$
\begin{equation*}
x \rightarrow\left(\varphi\left(x, f_{i}\right)\right)_{i \in I} \tag{3.3}
\end{equation*}
$$

The notation $\left(\varphi\left(x, f_{i}\right)\right)_{i \in I}$ in (3.3) denotes the function in $L^{2}(I)$

$$
i \rightarrow\left(\varphi\left(x, f_{i}\right)\right)_{i \in I}
$$

It easy to prove that $T^{*}: L^{2}(I) \rightarrow \mathscr{E}$ which

$$
g \rightarrow \int_{I} f_{i} g_{i} d i
$$

and it implies that

$$
S=T^{*} T
$$

THEOREM 3.1. Let I be a locally compact group, φ be a symmetric sesquilinear form on a vector space \mathscr{E}, and let $f: I \rightarrow \mathscr{E}$ be a φ-frame in \mathscr{E}, with frame bounds A and B. Then the operator S is a positive, self adjoint, invertible operator on \mathscr{E}, moreover

$$
A I_{E} \leq S \leq B I_{\mathscr{E}}
$$

PROOF. By definition, we can write

$$
\begin{aligned}
\varphi(S x, x)=\varphi\left(\int_{I} \varphi\left(x, f_{i}\right) f_{i} d i, x\right) & =\int_{I} \varphi\left(\varphi\left(x, f_{i}\right) f_{i}, x\right) d i \\
& =\int_{I} \varphi\left(x, f_{i}\right) \varphi\left(f_{i}, x\right) d i \\
& =\int_{I} \varphi\left(x, f_{i}\right) \overline{\varphi\left(x, f_{i}\right)} d i \\
& =\int_{I}\left|\varphi\left(x, f_{i}\right)\right|^{2} d i
\end{aligned}
$$

Therefore from definition of frame bounds, we conclude that

$$
A \varphi(x, x) \leq \varphi(S x, x) \leq B \varphi(x, x)
$$

which is equivalent to

$$
A I_{\mathscr{E}} \leq S \leq B I_{\mathscr{E}}
$$

EXAMPLE 3.1. Let I be the positive real number, and \mathscr{E} be $L^{2}(R)$. Define $f: R^{+} \rightarrow L^{2}(R)$ which

$$
\alpha \rightarrow f_{\alpha}
$$

where

$$
f_{\alpha}(x)=e^{2 \pi i \alpha x}
$$

Then it easy to show that the frame operator corresponding to the inner product of $L^{2}(R)$ is the identity on \mathscr{E}. In other words, for any function f

$$
f=\int_{0}^{+\infty} \varphi\left(f, f_{\alpha}\right) f_{\alpha} d \alpha
$$

or equivalently

$$
f(x)=\int_{0}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x) \overline{f_{\alpha}(x)} d x\right) f_{\alpha}(x) d \alpha
$$

or

$$
f(x)=\int_{0}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x) e^{-2 \pi i \alpha x} d x\right) e^{2 \pi i \alpha x} d \alpha
$$

This is the Fourier integral for the function f.
EXAMPLE 3.2. In the previous, let I be the set of all positive integers, then we have

$$
f=\sum_{0}^{\infty} \varphi\left(f, f_{n}\right) f_{n}
$$

or

$$
f(x)=\sum_{0}^{\infty}\left(\int_{-\infty}^{+\infty} f(x) e^{-2 \pi i \alpha x} d x\right) e^{2 \pi i \alpha x} d \alpha
$$

which is the Fourier series for the function f.
Example 3.2 shows that the Fourier system is a continuous φ-frame, which has a discrete sub frame, but not in a same measure.

REMARK 3.1. In general, it is not necessary for I to be a group, it is enough that I is a subset of a locally compact group with a suitable measure. As we see in the examples, it is important to define an integral or summation on I.

4 Applications

As an application of previous sections, we prove the following inequalities and by using the model technique of Balan et al. [2, 3] and Gavruta [15], we obtain an analogue, called Parseval's identity of φ-frames in normed spaces.

THEOREM 4.1. Let $\left\{f_{i}\right\}_{i \in I}$ be a φ-frame for a vector space \mathscr{E} with frame bounds A, B. Let $J \subset I$, so that $\left\{f_{i}\right\}_{i \in J}$ has Bessel bound $B(J)<A$. Then $\left\{f_{i}\right\}_{i \in J^{c}}$ is a φ-frame for \mathscr{E}.

PROOF. Since $\left\{f_{i}\right\}_{i \in J^{c}}$ has B as a Bessel bound, we only need to check its lower frame bound. For this just compute for any $f \in \mathscr{E}$

$$
\begin{aligned}
\sum_{i \in J^{c}}\left|\varphi\left(f, f_{i}\right)\right|^{2} & =\sum_{i \in I}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2} \\
& \geq A \Phi(f)-B(J) \Phi(f)=(A-B(J)) \Phi(f)
\end{aligned}
$$

Since $A-B(J)>0$, we deduce the desired result.
COROLLARY 4.1. Let $\left\{f_{i}\right\}_{i \in I}$ be a Parseval φ-frame for \mathscr{E} and $J \subset I$. In order for $\left\{f_{i}\right\}_{i \in J}$ to be a φ-frame for \mathscr{E} is necessary and sufficient that $B\left(J^{c}\right)<1$. In this case, the optimal lower frame bound for $\left\{f_{i}\right\}_{i \in J}$ is $1-B\left(J^{c}\right)$.

PROOF. For any $f \in \mathscr{E}$ we have

$$
\begin{aligned}
\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2} & =\sum_{i \in I}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in J^{c}}\left|\varphi\left(f, f_{i}\right)\right|^{2} \\
& \geq \Phi(f)-B\left(J^{c}\right) \Phi(f)=\left(1-B\left(J^{c}\right)\right) \Phi(f)
\end{aligned}
$$

It is easy to see that the inequality above is optimal, hence the proof.
The following result can be stated as well.
THEOREM 4.2. Assume that φ is a bounded positive sesquilinear form. If $U, V \in$ $\mathcal{L}(\mathscr{E})$ are φ-self adjoint operators satisfying $U+V=1_{\mathscr{E}}$, then for all $f \in \mathscr{E}$ we have

$$
\varphi(U f, f)+\Phi(V f)=\varphi(V f, f)+\Phi(V f) \geq \frac{3}{4} \Phi(f)
$$

PROOF. We have

$$
\begin{aligned}
\varphi(U f, f)+\Phi(V f) & =\varphi(U f, f)+\varphi(V f, V f) \\
& =\varphi\left(\left(I_{\mathscr{E}}-V\right) f, f\right)+\varphi\left(V^{2} f, f\right) \\
& =\varphi\left(\left(V^{2}-V+I_{\mathscr{E}}\right) f, f\right) \\
& =\varphi(V f, f)+\varphi(U f, U f)+\varphi\left(\left(I_{\mathscr{E}}-V\right)^{2} f, f\right) \\
& =\varphi\left(\left(V^{2} f-V+I_{\mathscr{E}}\right) f, f\right) \\
& =\varphi\left(\left(\left(V-\frac{1}{2} I_{\mathscr{E}}\right)^{2}+\frac{3}{4} I_{\mathscr{E}}\right) f, f\right) \\
& \geq \frac{3}{4} \Phi(f)
\end{aligned}
$$

This completes the proof of Theorem 4.2.
REMARK 4.1. We consider now $\left\{f_{i}\right\}_{i \in I}$, a φ-frame for \mathscr{E} with S its frame operator and $\left\{\widetilde{f}_{i}\right\}_{i \in I}$ its canonical dual frame and $J \subset I$. We have

$$
S_{J}+S_{J^{c}}=S
$$

hence

$$
S^{-\frac{1}{2}} S_{J} S^{-\frac{1}{2}}+S^{-\frac{1}{2}} S_{J^{c}} S^{-\frac{1}{2}}=1_{\mathscr{E}}
$$

PROOF. If in the Theorem 4.2 we take $U=S^{-\frac{1}{2}} S_{J} S^{-\frac{1}{2}}, V=S^{-\frac{1}{2}} S_{J^{c}} S^{-\frac{1}{2}}$ and $S^{\frac{1}{2}} f$ instead of f, we get

$$
\begin{aligned}
\varphi\left(S^{-\frac{1}{2}} S_{J} f, S^{\frac{1}{2}} f\right)+\Phi\left(S^{-\frac{1}{2}} S_{J^{c}} f\right) & =\varphi\left(S^{-\frac{1}{2}} S_{J} f, S^{\frac{1}{2}} f\right)+\Phi\left(S^{-\frac{1}{2}} S_{J} f\right) \\
& \geq \frac{3}{4} \Phi\left(S^{\frac{1}{2}} f\right)
\end{aligned}
$$

or

$$
\begin{aligned}
\varphi\left(S_{J} f, f\right)+\varphi\left(S^{-\frac{1}{2}} S_{J^{c}} f, S^{-\frac{1}{2}} S_{J^{c}} f\right) & =\varphi\left(S_{J^{c}} f, f\right)+\varphi\left(S^{-1} S_{J} f, S_{J} f\right) \\
& \geq \frac{3}{4} \varphi(S f, f)
\end{aligned}
$$

The following result also holds (see [15, Theorem 3.2] for the case of Hilbert space).
THEOREM 4.3. Let $\left\{f_{i}\right\}_{i \in I}$ be a φ-frame for \mathscr{E} and $\left\{g_{i}\right\}_{i \in I}$ be an alternative dual of $\left\{f_{i}\right\}_{i \in I}$. Then for all $J \subset I$ and all $f \in \mathscr{E}$, we have

$$
\begin{aligned}
& \operatorname{Re} \sum_{i \in J} \varphi\left(f, g_{i}\right) \overline{\varphi\left(f, f_{i}\right)}+\Phi\left(\sum_{i \in J^{c}} \varphi\left(f, g_{i}\right) f_{i}\right) \\
= & \operatorname{Re} \sum_{i \in J} \varphi\left(f, g_{i}\right) \overline{\varphi\left(f, f_{i}\right)}+\Phi\left(\sum_{i \in J} \varphi\left(f, g_{i}\right) f_{i}\right) \\
\geq & \frac{3}{4} \Phi(f)
\end{aligned}
$$

PROOF. For every $J \subset I$ we define the operator L_{J} by

$$
L_{J} f=\sum_{i \in J} \varphi\left(f, g_{i}\right) f_{i}
$$

By the Cauchy-Schwarz inequality it follows that this series converges unconditionally and $L_{J} \in \mathcal{L}(\mathscr{E})$. Since $L_{J}+L_{J^{c}}=I_{\mathbb{E}}$,

$$
\begin{aligned}
\varphi\left(\left(L_{J}^{*} L_{J}\right) f, f\right)+\frac{1}{2} \varphi\left(\left(L_{J^{c}}^{*} L_{J^{c}}\right) f, f\right) & =\varphi\left(\left(L_{J^{c}}^{*} L_{J^{c}}\right) f, f\right)+\frac{1}{2} \varphi\left(\left(L_{J}^{*}+L_{J}^{*}\right) f, f\right) \\
& \geq \frac{3}{4} \Phi(f)
\end{aligned}
$$

or

$$
\begin{aligned}
& \Phi\left(\sum_{i \in J} \varphi\left(f, g_{i}\right) f_{i}\right)+\frac{1}{2}\left(\overline{\varphi\left(L_{J^{c}} f, f\right)}+\varphi\left(L_{J^{c}} f, f\right)\right) \\
& \quad=\Phi\left(\sum_{i \in J^{c}} \varphi\left(f, g_{i}\right) f_{i}\right)+\frac{1}{2}\left(\overline{\varphi\left(L_{J} f, f\right)}+\varphi\left(L_{J} f, f\right)\right) \\
& \quad \geq \frac{3}{4} \Phi(f)
\end{aligned}
$$

To prove Theorem 4.4, we need the following lemma.

LEMMA 4.1. If S, T are operators on \mathscr{E} satisfying $S+T=I$, then $S-T=S^{2}-T^{2}$.

PROOF. Easy computation and simplification yield

$$
S-T=S-(I-S)=2 S-I=S^{2}-\left(I-2 S+S^{2}\right)=S^{2}-(I-S)^{2}=S^{2}-T^{2}
$$

THEOREM 4.4. Let $\left\{f_{i}\right\}_{i \in I}$ be a φ-frame for \mathscr{E} with canonical frame $\left\{\tilde{f}_{i}\right\}_{i \in I}$. Then for all $J \subset I$ and for all $f \in \mathscr{E}$ we have

$$
\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in I}\left|\varphi\left(S_{J} f, \tilde{f}_{i}\right)\right|^{2}=\sum_{i \in J^{c}}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in I}\left|\varphi\left(S_{J^{c}} f, \tilde{f}_{i}\right)\right|^{2}
$$

PROOF. Let S denote the frame operator for $\left\{f_{i}\right\}_{i \in I}$. Since $S=S_{J}+S_{J^{c}}$, it follows that $I=S^{-1} S_{J}+S^{-1} S_{J^{c}}$. Applying Lemma 4.1 to the two operators $S^{-1} S_{J}$ and $S^{-1} S_{J^{c}}$ yields

$$
\begin{equation*}
S^{-1} S_{J}-S^{-1} S_{J} S^{-1} S_{J}=S^{-1} S_{J^{c}}-S^{-1} S_{J^{c}} S^{-1} S_{J^{c}} \tag{4.1}
\end{equation*}
$$

Further, for every $f, g \in \mathscr{E}$ we obtain

$$
\begin{equation*}
\varphi\left(S^{-1} S_{J} f, g\right)-\varphi\left(S^{-1} S_{J} S^{-1} S_{J} f, g\right)=\varphi\left(S_{J} f, S^{-1} g\right)-\varphi\left(S^{-1} S_{J} f, S_{J} S^{-1} g\right) . \tag{4.2}
\end{equation*}
$$

Now, we choose g to be $g=S f$. Then we can continue the equality (4.2) in the following as

$$
\varphi\left(S_{J} f, f\right)-\varphi\left(S^{-1} S_{J} f, S_{J} f\right)=\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in I}\left|\varphi\left(S_{J} f, \tilde{f}_{i}\right)\right|^{2}
$$

Setting equality (4.2) equal to the corresponding equality for J^{c} and using (4.1), we finally get

$$
\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in I}\left|\varphi\left(S_{J} f, \widetilde{f}_{i}\right)\right|^{2}=\sum_{i \in J^{c}}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in I}\left|\varphi\left(S_{J^{c}} f, \widetilde{f}_{i}\right)\right|^{2}
$$

PROPOSITION 4.1. Let $\left\{f_{i}\right\}_{i \in I}$ be a Parseval φ-frame for \mathscr{E}. For every subset $J \subset I$ and every $f \in \mathscr{E}$, we have

$$
\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\Phi\left(\varphi\left(f, f_{i}\right) f_{i}\right)=\sum_{i \in J^{c}}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\Phi\left(\sum_{i \in J^{c}} \varphi\left(f, f_{i}\right) f_{i}\right)
$$

PROOF. Let $\left\{\widetilde{f}_{i}\right\}_{i \in I}$ denote the dual frame of $\left\{f_{i}\right\}_{i \in I}$. Since $\left\{f_{i}\right\}_{i \in I}$ is a Parseval φ-frame, its frame operator equal identity operator and hence $\widetilde{f}_{i}=f_{i}$ for all $i \in I$. Employing Theorem 4.4 and the fact that $\left\{f_{i}\right\}_{i \in I}$ is a Parseval φ-frame yields

$$
\begin{aligned}
\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\Phi\left(\sum_{i \in J} \varphi\left(f, f_{i}\right) f_{i}\right) & =\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\Phi\left(S_{J} f\right) \\
& =\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in I}\left|\varphi\left(S_{J} f, f_{i}\right)\right|^{2} \\
& =\sum_{i \in J}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in I}\left|\varphi\left(S_{J} f, \widetilde{f}_{i}\right)\right|^{2} \\
& =\sum_{i \in J^{c}}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\sum_{i \in I}\left|\varphi\left(S_{J^{c}} f, \widetilde{f}_{i}\right)\right|^{2} \\
& =\sum_{i \in J^{c}}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\Phi\left(S_{J^{c}} f\right) \\
& =\sum_{i \in J^{c}}\left|\varphi\left(f, f_{i}\right)\right|^{2}-\Phi\left(\sum_{i \in J^{c}} \varphi\left(f, f_{i}\right) f_{i}\right) .
\end{aligned}
$$

Acknowledgment. The authors are grateful to the referee for many useful suggestions.

References

[1] P. Anielloa, G. Cassinellib, E. De Vitoc and A. Levrerod, Frames from imprimitivity systems. J. Math. Phys., 40(1999), 5184-5202.
[2] R. Balan, P. Casazza, D. Edidin and G. Kutyniok, A new identity for Parseval frames, Proc. Amer. Math. Soc., 135(2007), 1007-1015.
[3] R. Balan, P. Casazza, D. Edidin, G. Kutyniok, Decompositions of Frames and a New Frame Identity, Optics \& Photonics 2005. International Society for Optics and Photonics, 2005.
[4] F. Bagarello, Intertwining operators between different Hilbert spaces: connection with frames, J. Math. Phys., 50(2009), 043509.
[5] J. Benedetto, A. Powell and O. Yilmaz, Sigma-delta $\left(\sum \Delta\right)$ quantization and finite frames, IEEE Trans. Inform. Theory., 52(2006), 1990-2005.
[6] H. Bolcskei, F. Hlawatsch and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Process., 46(1998), 3256-3268.
[7] E. J. Candé and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C^{2} singularities, Comm. Pure and Applied Mathematics., 57(2004), 219-266.
[8] P. G. Casazza, The art of frame theory, Taiwanese J. Math, 4(2000), 129-201.
[9] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
[10] O. Christensen, Frames, Riesz bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc., 38(2001), 273-291.
[11] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[12] I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys., 27(1986), 1271-1283.
[13] L. Debnath and P. Mikusiski, Hilbert Spaces with Applications, Academic Press, 2005.
[14] R. J. Duffin and A. C. Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., (1952), 341-366.
[15] P. Gǎvruţa, On some identities and inequalities for frames in Hilbert spaces, J. Math. Anal. Appl., 321(2006), 469-478.
[16] J. G. Murphy, Operator Theory and C^{*}-Algebras, Academic Press, San Diego, 1990.
[17] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[18] R. Young, An Introduction to Non-Harmonic Fourier Series, Academic Press, New York, 1980.

[^0]: *Mathematics Subject Classifications: 20F05, 20F10, 20F55, 68Q42.
 ${ }^{\dagger}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
 ${ }^{\ddagger}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
 §Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
 ${ }^{\text {I }}$ Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Deemed to be University, Manipal-576104 Karnataka, India
 $\|$ Department Of Mathematics, College of Engineering and Science, Victoria University, P.O. Box 14428, Melbourne City, MC 8001, Australia

