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Abstract

The subclasses of univalent functions are closely related to the class of func-
tions with positive real part, also known as the class of Carathéodory functions.
Several information about the subclasses of univalent functions can be inferred,
just by associating them with a suitable function in the Carathéodory class. The
coeffi cient problems are among many problems which can be easily dealt with the
help of the functions in this class. The present article is a survey trying to cover
the important results heretofore known about the estimate on coeffi cients of the
functions in the class of Carathéodory functions.

1 Introduction

Let S denote the class of univalent analytic functions f defined on the unit disk D :=
{z ∈ C : |z| < 1} and normalized by the conditions f(0) = 0 = f ′(0)− 1. For analytic
functions f and g, we say that f is subordinate to g, denoted by f ≺ g, if there is
a Schwarz function w with |w(z)| ≤ |z| such that f(z) = g(w(z)). Further, if g is
univalent, then f ≺ g if and only if f(0) = g(0) and f(D) ⊆ g(D). It is well-known
that the coeffi cient of the functions in the class S satisfy |an| ≤ n with equality in case
of the Koebe function k(z) = z/(1 − z)2. This result was proposed by Bieberbach [9,
1916] in a footnote, and it took around 68 years before it is settled affi rmatively by de
Branges [10]. During this period, many researchers tried to prove it which led to the
exploration of several subclasses of the class S introduced by imposing certain geometric
conditions on the univalent functions. The class S∗ of starlike functions is a collection
of functions f ∈ S for which Re(zf ′(z)/f(z)) > 0 (z ∈ D). The class K of convex
functions is a collection of all those functions f ∈ S for which Re(1+zf ′′(z)/f ′(z)) > 0
(z ∈ D). The subclasses of univalent functions are closely associated with functions
having positive real part. The functions with positive real part are useful in claiming
some normalized analytic function to be univalent. For example, for some real α, if the
function f ∈ A satisfies Re

(
eiαf ′(z)

)
> 0 for all z in a convex domain D, then f is

univalent inD. This beautiful simple suffi cient condition was independently established
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by Noshiro [49] and Warschawski [64], see also [17, Theorem 13, p. 88]. A particular
case of this result, that is, for α = 0 with convex domain D = D, was established by
Alexander [1] as early as in 1915, see also [17, Theorem 12, p. 88].
Let P be the class of analytic functions p : D→ C of the form p(z) = 1+

∑∞
n=1 pnz

n

with Re p(z) > 0 (z ∈ D). This class is known as the Carathéodory class or the class
of functions with positive real part [12, 13], pioneered by Carathéodory. The function

p̂0(z) :=
1 + z

1− z
belongs to the class P and plays a vital role similar to the Koebe function for the class
S. The function p̂0 maximizes |pn| in the class P, but if n ≥ 2, there are infinitely many
other functions for which pn = 2 and none of which can be obtained from others by a
rotation. For example, if n = 2, then the function (1+z2)/(1−z2) = 1+2

∑∞
n=1 z

2n ∈ P
and p2 = 2. For other values of n ≥ 2, several examples may be constructed with
the help of the result [17, Theorem 3, p. 80] (see also [12]). Since the function p̂0
is univalent in D and maps the unit disk to the right half-plane, it follows that an
analytic function p normalized by p(0) = 1 belongs to the class P if and only if p ≺ p̂0
in D. We also note that P is a convex set and also a compact subset of the set of
analytic functions in D, see [19, Graham and Kohr, p. 28]. Now it is a simple matter
to conclude that f ∈ S∗ if and only if zf ′(z)/f(z) ∈ P and also f ∈ K if and only if
1 + zf ′′(z)/f ′(z) ∈ P. These implications reveals that information about the classes of
starlike and convex functions can be drawn whenever the properties of functions in the
class P are known. For example, suppose a function f(z) = z +

∑∞
n=2 anz

n satisfies
Re f ′(z) > 0. Then f ′(z) = p(z) ∈ P, for some function p(z) = 1 +

∑∞
n=1 pnz

n ∈ P,
and so an = pn/n. Thus if bound on the coeffi cients of Carathéodory functions are
known, then estimate on |an| can be obtained easily. In 1970, Janowski [25] considered
the class PM := {p ∈ P : |p(z)−M | < M} and investigated the bounds on Re p(z) and
Re (zp′(z)/p(z)) within the class PM . Further, these bounds were used by Janowski [25]
to investigate the growth and distortion theorems and coeffi cient estimates for starlike
functions associated with the class PM . Later, we shall see that for such a function,
|an| ≤ 2/n holds (see, p. 8). The function in the class P need not be univalent as the
function p(z) = 1 + zn is a member of the class P but if for n ≥ 2, it is not univalent.
The subclass of P consisting of functions p ∈ P satisfying Re p(z) > α (0 ≤ α < 1) is
denoted by P(α). One of the most general forms of the class P is the class

P[A,B] =

{
p ∈ P : p(z) ≺ 1 +Az

1 +Bz
=: pA,B(z), −1 ≤ B < A ≤ 1

}
.

This class was first introduced and studied by Janowski [26, p. 297], in 1973. In
particular, P[1 − 2α,−1] =: P(α) (0 ≤ α < 1) and P[1,−1] = P. He also introduced
the subclasses, known as the classes of the Janowski starlike and convex functions,
respectively as follows:

S∗[A,B] :=

{
f ∈ S :

zf ′(z)

f(z)
∈ P[A,B]

}
,

K[A,B] :=

{
f ∈ S : 1 +

zf ′′(z)

f ′(z)
∈ P[A,B]

}
.
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Later, for fixed n ∈ N, a more general class

Pn[A,B] =
{
p(z) = 1 + pnz

n + pn+1z
n+1 + · · · : p(z) ≺ pA,B(z)

}
was introduced by Ravichandran et al. [54], in 1997. For convenience, we shall adopt the
following notations wherever needed in this manuscript: P1[A,B] = P[A,B], Pn(α) :=
Pn[1− 2α,−1] and Pn := Pn[1,−1].
In Section 2, several geometric properties such as the growth and distortion theor-

ems, and many other results for the class of Carathéodory functions and its subclasses
are covered. In Section 3, special attention is given to recall the results related to the
coeffi cient estimates in sequel. We also mention their use in handling the coeffi cient
problems related to some subclasses of univalent analytic functions. The results covered
in this article, with few exceptions, can be found elsewhere (see the cited references),
and therefore their proofs are omitted.

2 Some Geometric Properties

Let B be the class of Schwarz functions, that is, w ∈ B if and only if w is an analytic
function with w(0) = 0 and |w(z)| < 1 on D. The following correspondence between
the classes B and P holds [19, p. 28]:

p ∈ P if and only if w(z) =
p(z)− 1

p(z) + 1
∈ B. (1)

Therefore the properties of the functions in the class P can be inferred from those of
the class B, and vice-versa. Later, in Section 3, we shall make use of this relation to
establish the relation between coeffi cients of functions in the classes B and P.
The following result gives a suffi cient condition for a function to be in the class P.

THEOREM 1 ([17, Theorem 1, p. 79]). Let µ is a non-decreasing function on [0, 2π]

with
∫ 2π
0
dµ(t) = 2π. Then the function defined by

h(z) =
1

2π

∫ 2π

0

1 + ze−it

1− ze−it dµ(t) =
1

2π

∫ 2π

0

p0(ze
−it)dµ(t) (z ∈ D), (2)

is in the class P.

In 1911, Herglotz [23] proved that (2) is necessary as well. That is, for each p ∈ P,
there is an associated non-decreasing function µ(t) for which

∫ 2π
0
dµ(t) = 2π and (2)

holds. He gave a representation formula in terms of Stieltjes integrals (probability
measures) for a function p ∈ P as

p(z) =

∫ 2π

0

1 + ze−it

1− ze−it dµ(t) (z ∈ D), (3)

where µ(t) is a non-decreasing function on [0, 2π] with µ(2π) − µ(0) = 1. It gives a
one-to-one correspondence between the functions in class P and the set of probability
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measures on ∂D. This fundamental result leads to integral representation theorems for
several subclasses of S. The symbol µ, defined so, is called the Herglotz measure of the
function p ∈ P.
The following theorem gives a number of transformations under which the class P

is preserved.

THEOREM 2 ([17, Theorem 2, p. 79]). Let the functions h, h1 and h2 be in P.
Then each of the function H, under the subjected condition noted, is also in P.

1. H(z) = h(eitz) (t ∈ R),

2. H(z) = h(z)t or H(z) = h(tz) (t ∈ [−1, 1]),

3. H(z) = 1/h(z),

4. H(z) = (h1(z))
t1(h2(z))

t2 (t1, t2, t1 + t2 ∈ [0, 1]),

5. H(z) = (1/a)h
(
(z + λ)/(1 + λ̄z)

)
− ib (h(z) = a+ ib, λ ∈ D),

6. H(z) = (h(z) + ib)/(1 + ibh(z)) (b ∈ R).

Likewise there are several other transformations under which the class P is preserved,
see [33]. These transformations are very useful in establishing the estimates on the suc-
cessive coeffi cients. The following equivalence was proved by using the Helly selection
theorem and can be found in [51].

THEOREM 3. [51, Theorem 2.4, p. 40] Let p(z) = 1 +
∑∞
n=1 pnz

n be analytic in
D. Then the following are equivalent:

1. the function p ∈ P,

2. there exists an increasing function µ(t) on [0, 2π] with µ(2π)−µ(0) = 1 such that
(3) holds,

3. for m = 1, 2, 3, · · · ,
∑m
k=0

∑m
l=0 pk−lλkλ̄l (λi ∈ C, i = 0, 1, 2 · · ·m) is non-

negative, where we have adopted the convention p−k = p̄k (k ≥ 1).

The representation in (3) immediately gives the following growth and distortion
estimates, respectively:

1− |z|
1 + |z| ≤ Re p(z) ≤ |p(z)| ≤ 1 + |z|

1− |z| and |p
′(z)| ≤ 2 Re p(z)

1− |z|2 ≤
2

(1− |z|)2 . (4)

In both cases, equality holds in case of the function p̂0. A more general result related
to the upper bound on modulus of higher derivatives of the Carathéodory functions is
given in [17, Theorem 6, p. 83]:

|p(k)(z)| ≤ 2(k!)

(1− |z|)k+1 (k ≥ 0).
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In particular, for k = 1, the above inequality gives the growth estimate for the
Carathéodory functions as in (4). It is easy to deduce that for each fixed z ∈ D,
the function p ∈ P lies in the disk∣∣∣∣p(z)− 1 + |z|2

1− |z|2

∣∣∣∣ ≤ 2|z|
1− |z|2 . (5)

We can obtain the growth estimate from (5). Further, from the growth estimate, we
can infer that the class P is locally uniformly bounded, and thus it is a normal family.
In fact this family is compact, see [19, Corollary 2.1.6, p. 32].
The Herglotz representation formula [17, p. 172] for the function p ∈ P(α) is given

by

p(z) =

∫ 2π

0

1 + (1− 2α)ze−it

1− ze−it dµ(t) =

∫ 2π

0

pα(ze−it)dµ(t) (z ∈ D), (6)

where µ(t) is a non-decreasing function on [0, 2π] with µ(2π) − µ(0) = 1, and the
function pα(z) := (1 + (1 − 2α)z)/(1 − z). The representation formula (6) gives the
growth and distortion estimates for function p ∈ P(α) as follows:

1− (1− 2α)|z|
1 + |z| ≤ Re p(z) ≤ |p(z)| ≤ 1 + (1− 2α)|z|

1− |z| and |p′(z)| ≤ 2(Re p(z)− α)
1− α

1

1− |z|2 .

These can also be easily obtained by noting that the function h(z) = (p(z)−α)/(1−α)
belongs to the class P, see [17, Problem 43, p. 105].
In 1963, MacGregor [42, Lemma 1, p. 514], proved that if p ∈ Pn, then∣∣∣∣zp′(z)p(z)

∣∣∣∣ ≤ 2n|z|n−1
1− |z|2n .

He also gave an alternate and short proof of the second inequality in (4) and used these
results to discuss radius problems. Later, Shah [62, 1972] gave a generalization to this
MacGregor’s result as stated in the following Theorem 4. Shah also discussed radius
problems for starlike functions of order α and many other classes.

THEOREM 4 ([62, Lemma 2, p. 239]). If p ∈ Pn(α), then∣∣∣∣zp′(z)p(z)

∣∣∣∣ ≤ 2(1− α)n|z|n
(1− |z|n)(1 + (1− 2α)|z|n)

.

THEOREM 5 ([62, Lemma 3, p. 240]). If p ∈ Pn(α), then

Re p(z) ≥ 1 + (2α− 1)|z|n
1 + |z|n .

In 1973, Janowski [26, Lemma 1, p. 298] proved that a function p in the class
P[A,B] also belongs to the class P if and only if

p(z) =
(1 +A)l(z) + 1−A
(1 +B)l(z) + 1−B
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for some l ∈ P. An equivalent Herglotz representation formula for function p ∈ P[A,B]
is given by

p(z) =

∫ 2π

0

1 +Aze−it

1 +Bze−it
dµ(t) =

∫ 2π

0

pA,B(ze−it)dµ(t) (z ∈ D).

Janowski also deduced a general version of (5):∣∣∣∣p(z)− 1−AB|z|2
1−B2|z|2

∣∣∣∣ ≤ (A−B)|z|
1−B2|z|2 . (7)

Janowski used the variational method to obtain the bounds on Re(p(z) + zp′(z)/p(z)),
Re(zp′(z)/p(z)) and Re p(z) within the class P[A,B]. These results then are utilized
by him to discuss the radius of convexity of Janowski starlike functions. Geometrically,
p ∈ P[A,B] if and only if p(0) = 1 and p(D) is inside the open disk centered on the
real axis with diameter end points d1 := (1 − A)/(1 − B) = pA,B(−1) and d2 :=
(1 +A)/(1 +B) = pA,B(1). In other words, given any pair d1, d2 with 0 < d1 < 1 < d2,
there are real numbers A and B with −1 ≤ B < A ≤ 1 such that p(D) is in the
open disk with d1 and d2 as diameter end points. For special choices of A and B, the
class P[A,B] reduces to several familiar subclasses, see [18, p. 111—112]. The class
for which the derivative of a normalized analytic function belongs to the class P[A,B]
was studied by Juneja and Mogra [27], in 1979. For more results related to the class
P[A,B], the reader can refer to [26]. Observing closely the Herglotz representation of
the Carathéodory functions, Kaczmarski [28] introduced the class P̃[A,B] as the set of
functions p of the form

p(z) =

∫ 2π

0

1 +Azeit

1 +Bzeit
dµ(t) (z ∈ D),

where µ is a non-decreasing function on [0, 2π] with µ(2π) − µ(0) = 1 and −1 ≤ B <
A ≤ 1. Kaczmarski also discussed the radius of convexity problem for the set P̃[A,B]
and proved that if |B| < 1, then P̃[A,B] 6= P[A,B]. Later, in 1993, Ma and Owa [45]
gave another generalization of (5) as follows:

THEOREM 6 ([45]). (see also, [6, Lemma 7, p. 489]) Let p ∈ P. Then, for
0 < γ ≤ 1, ∣∣∣∣1 + |z|2

1− |z|2 − p
γ(z)

∣∣∣∣ ≤ 1 + |z|2
1− |z|2 −

(
1− |z|
1 + |z|

)γ
.

The result is sharp.

In 1997, Ravichandran et al. [54], proved the ensuing result which is a generalization
of (7).

THEOREM 7 ([54, Lemma 2.1, p. 267]). Let p ∈ Pn[A,B]. Then∣∣∣∣p(z)− 1−AB|z|2n
1−B2|z|2n

∣∣∣∣ ≤ (A−B)|z|n
1−B2|z|2n .
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In particular, for p ∈ Pn(α), we have∣∣∣∣p(z)− 1 + (1− 2α)|z|2n
1− |z|2n

∣∣∣∣ ≤ 2(1− α)|z|n
1− |z|2n .

They dealt with the properties of convexity and starlikeness of positive order, uni-
form convexity and a special type of starlikeness that is in a natural way corresponds
to uniform convexity. In 2011, for any complex numbers A and B with A 6= B and
|B| ≤ 1, Theorem 7 was further generalized by Ali et al. [3, p. 256].

In 2015, for −1 ≤ B < A ≤ 1, 0 ≤ α < 1 and 0 < β ≤ 1, Arif et al. [7] introduced
a more general class Pβ [A,B, α] consisting of analytic functions of the form p with
p(0) = 1 and satisfying

p(z) ≺ α+ (1− α)

(
1 +Az

1 +Bz

)β
=: pα,βA,B(z).

Clearly p0,1A,B(z) =: pA,B(z) and P1[A,B, 0] =: P[A,B]. Let Pβ [A,B, 0] =: Pβ [A,B].
The Herglotz representation for functions p ∈ Pβ [A,B, α] is given by (see, [7, Eqn.
(1.4), p. 62])

p(z) = α+
1− α

2π

∫ 2π

0

(
1 +Aze−it

1 +Bze−it

)β
dµ(t) =

1

2π

∫ 2π

0

pα,βA,B(ze−it)dµ(t) (z ∈ D),

where µ is a non-decreasing function on [0, 2π] with
∫ 2π
0
dµ(t) = 2π. In addition to

these, they also established the growth estimate.

THEOREM 8 ([7, Lemma 2.1, p. 63]). Let p ∈ Pβ [A,B]. Then(
1−A|z|
1−B|z|

)β
≤ Re p(z) ≤ |p(z)| ≤

(
1 +A|z|
1 +B|z|

)β
.

The result is sharp with extremal function p0,βA,B(z).

THEOREM 9 ([7, Lemma 2.3, p. 63]). Let p(z) = 1+p1z+p2z
2+ · · · ∈ Pβ [A,B, α].

Then
|pn| ≤ β(1− α)(A−B).

The result is sharp with extremal function pα,βA,B(z).

It should be noted that the above two theorems, in particular cases, give the growth
theorem and coeffi cient bounds for functions in the class P[A,B]. Besides these results,
Arif et al. [7] also investigated the properties of certain classes related to the class
of generalized Janowski functions and the class of functions with bounded boundary
rotation. For several other results on functions with positive part, the reader may refer
to the works by Robertson [57, 56, 58], Bernardi [8], Ruscheweyh and Singh [60] and
the related references cited therein.
In the next section we shall focus on coeffi cient estimates for the Carathéodory

functions.
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3 Coeffi cient Estimates

The class P of functions with positive real part plays a significant role in Geometric
Function Theory. Its importance can be seen from the fact that most of the subclasses
of the class of univalent functions are associated with this class P. In this section,
several coeffi cient estimates for functions with positive real part are discussed. As
mentioned earlier, since the proof of the results covered here can be found in the cited
references, their proofs are omitted.
For brevity, let us assume that the function w ∈ B has the form w(z) = b1z +

b2z
2+ b3z

3+ · · · and from now on, unless otherwise stated specifically, we shall assume
that a function p ∈ P is of the form p(z) = 1 + p1z + p2z

2 + p3z
3 + · · · . In view of

the interconnection in (1), we see that the coeffi cients of w and p are related by the
following relations, see [17, Theorem 8, p. 58-59].

pn :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 −1 0 0 · · · 0 0
b2 b1 −1 0 · · · 0 0
b3 b2 b1 −1 · · · 0 0
...

...
...

...
. . .

...
...

bn−1 bn−2 bn−3 bn−4 · · · b1 −1
bn bn−1 bn−2 bn−3 · · · b2 b1

∣∣∣∣∣∣∣∣∣∣∣∣∣
and

bn :=
(−1)n+1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 2 0 0 · · · 0 0
p2 p1 2 0 · · · 0 0
p3 p2 p1 2 · · · 0 0
...

...
...

...
. . .

...
...

pn−1 pn−2 pn−3 pn−4 · · · p1 2
pn pn−1 pn−2 pn−3 · · · p2 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The following are some special cases of the above:

p1 = 2b1, p2 = 2b2+2b21, p3 = 2b3+4b1b2+2b31, p4 = 2b4+4b1b3+2b22+6b21b2+2b41 (8)

and

b1 =
p1
2
, b2 =

2p2 − p21
4

, b3 =
4p3 − 4p1p2 + p31

8
, b4 =

8p4 − 8p1p3 − 4p22 + 6p21p2 − p41
16

.

(9)
Thus estimate on the coeffi cients of the Schwarz functions and the Carathéodory func-
tions can be obtained if the bound of any of them are known. Now by applying the
triangle inequality and using the well-known fact |bi| ≤ 1 (i ∈ N), it follows from (9)
that

|p1| ≤ 2, |2p2−p21| ≤ 4, |4p3−4p1p3+p31| ≤ 8 and |8p4−8p1p3−4p22+6p21p2−p41| ≤ 16.

We now relook the Herglotz representation formula (3). It at once gives

pn = 2

∫ 2π

0

e−intdµ(t),
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which shows that |pn| ≤ 2. This sharp result was proved by Carathéodory [12] (see
also [17, Theorem 3, p. 80]). Moreover, if η = e2πi/n0 and

F (z) =

n0∑
k=1

µk
1 + ηkz

1− ηkz = 1 +

∞∑
n=1

pnz
n,

where µk ≥ 0, for k = 1, 2, 3, . . . n0 and
∑n0
k=1 µk = 1, then F ∈ P and pn0 = 2.

This result is popularly known as the Carathéodory theorem. There are many proofs
available of this result in literature, see [17, 24, 55]. Another useful inequality (see [19])
for Carathéodory functions is ∣∣∣∣p2 − p21

2

∣∣∣∣ ≤ 2− |p1|
2

2
. (10)

Now we can use the estimate |pn| ≤ 2 to derive the following from (8):

|b1| ≤ 1, |b2 + b21| ≤ 1, |b3 + 2b1b2 + b31| ≤ 1 and |b4 + 2b1b3 + b22 + 3b21b2 + b41| ≤ 1.

Moreover, for normalized analytic functions satisfying Re f ′(z) > 0 (z ∈ D), we have
|an| = |pn|/n ≤ 2/n.
In 1973, by using the Grunsky-Nehari’s [47] inequalities and their extensions by

Schiffer and Tammi [61], Leutwiler and Schober [35] investigated many results related
to the functions with positive real part. In particular, they obtained the conditions
that Toeplitz [63] gave as an algebraic characterization of Carathéodory’s [12] geometric
description of the coeffi cient region for functions with positive real part. They proved
the following results:

THEOREM 10 ([35, Theorem 1, p. 131]). Let p ∈ P. Then∣∣∣∣∣
n0∑

m,n=0

pm+nxmxn

∣∣∣∣∣ ≤
n0∑

m,n=0

pm−nxmx̄n (x0, x1, . . . xn0 ∈ C),

where by definition, p0 = 2 and p−n = p̄n (n = 1, 2, 3, . . .).

By taking the extreme value of the inequality in the above theorem with respect to
x0, we get the following result.

THEOREM 11 ([35, Theorem 2, p. 132]). Let p ∈ P. Then∣∣∣∣∣
n0∑

m,n=1

(
pm+n −

pmpn
2

)
xmxn

∣∣∣∣∣ ≤
n0∑

m,n=1

(
pm−n −

pmp̄n
2

)
xmx̄n (x1, . . . xn0 ∈ C).

By choosing certain special values for xi, we can obtain some classical results for
functions with positive real part. In particular, the choice xk = 1 and xn = 0 (n 6= k)
gives the following result.



Cho et al. 379

THEOREM 12 ([35, Corollary 1, p. 133]). Let p ∈ P. Then∣∣∣∣p2k − p2k
2

∣∣∣∣ ≤ 2− |p
2
k|
2
.

The equality is attained in case of the function

p(z) =
2 + (pk + ηp̄k)zk + 2ηz2k

2− (pk − ηp̄k)zk − 2ηz2k
, |η| ≤ 1.

We can observe that within the class B, the functionals |b4 − 2b3b1 + b2b
2
1| and

|b4+2b3b1+b2b
2
1| have the same upper bound because if w ∈ B, then w1(z) = −w(−z) ∈

B. Further computation using (9) shows that 2(b4 + 2b3b1 + b2b
2
1) = p4 − p22/2. From

Theorem 12, since |p2| ≤ 2, we have |p4− p22/2| ≤ 2− |p2|2/2 ≤ 2. Thus, we have |b4 +
2b3b1 + b2b

2
1| ≤ 1. Dorff and Szynal [14] used this result to obtain the sharp bound for

the first three consecutive Schwarzian derivatives of higher order. Another important
results in this direction related to the estimate on the functional Ψ(µ, ν, w) := |b3 +
µb1b2 + νb31|, for any real numbers µ and ν and Schwarz function w with complex
coeffi cients bi, was investigated by Prokhorov and Szynal [52]. For details, we refer
the readers to the concerned cite papers [14, 52]. Later, in 2001, Kiepiela et al. [30]
investigated the sharp bound on Ψ(µ, ν, w), by assuming the Schwarz function w with
real coeffi cients bi. Later, the result investigated in [52, Lemma 2, p. 128] was employed
by Ali et al. [4] to discuss the sharp coeffi cient estimate for certain classes of p−valent
analytic functions.
To discuss the bound on the second Hankel determinant for p−valent starlike func-

tions of order α, Hayami and Owa gave the following result which generalizes the bound
on the nth coeffi cient of the Carathéodory functions.

THEOREM 13 ([21, Lemma 2, p. 33]). Let p(z) = b0 + p1z + p2z
2 + · · · with

Re p(z) > α. Then for α ∈ [0, b0), we have |pn| ≤ 2(b0−α) with equality in case of the
function p defined by

p(z) =
b0 + (b0 − 2α)z

1− z .

PROOF. The result follows immediately by noting that the transformation

qb0,α(z) :=
p(z)− α
b0 − α

= 1 +

∞∑
k=1

pk
b0 − α

(11)

is in P and the fact that the modulus of the coeffi cients of Carathéodory functions are
bounded by 2.

Another generalization of the estimate |pn| ≤ 2 was given by Peng, in 2010.

THEOREM 14. [50, Lemma 1, p. 1450] Let p(z) = 1+
∑∞
n=1 pnz

n ≺ (1+Az)/(1+
Bz). Then |pn| ≤ B −A (−1 ≤ A < B ≤ 1). The inequality is sharp.
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From (11), it can be noted that the function q1,α belongs to the class P, where

q1,α(z) =
p(z)− α

1− α = 1 +

∞∑
k=1

pk
1− α.

Noting this, recently Liu et al. [38] (see also [39]) established the following result for
the class P(α).

THEOREM 15 ([38, Lemma 2.2]). Let p ∈ P(α). Then we have∣∣∣∣p2 − p21
2(1− α)

∣∣∣∣ ≤ 2(1− α)− |p1|2
2(1− α)

,

and ∣∣∣∣p3 − p1p2
1− α +

p31
4(1− α)2

∣∣∣∣ ≤ 2(1− α)− |p1|2
2(1− α)

.

Furthermore, |p1| ≤ 2(1− α) and∣∣∣∣p2 − p21
1− α

∣∣∣∣ ≤ 2(1− α).

In 1969, Livingston proved the following result and used a particular case of this
to investigate the sharp bound on the coeffi cients of a certain subclass of multivalent
close-to-convex functions.

THEOREM 16 ([41, Lemma 1, p. 546]). Let p(z) = b0 + p1z + p2z
2 + · · · with

Re p(z) > 0. Then for 1 ≤ s ≤ n− 1∣∣∣∣pnb0 − pspn−s
b20

∣∣∣∣ ≤ 2

∣∣∣∣Re b0
b0

∣∣∣∣ ≤ 2.

These inequalities are sharp for all n and s, equality being attained in case of the
function

p(z) = (Re b0)
1 + z

1− z + i Im b0 (Re b0 > 0).

This inequality was later used by Libera and Zlotkiewicz [37] in their study of the
coeffi cient problem for the inverse of convex functions. In particular, if b0 = 1, then the
above result takes the following form which is popularly known as Livingston inequality.

THEOREM 17. Let p ∈ P. Then for 1 ≤ s ≤ n− 1

|pn − pspn−s| ≤ 2. (12)

These inequalities are sharp for all n and s, equality being attained in case of the
function

p(z) =
1 + z

1− z .
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REMARK 1. Writing pn − p2spn−2s = pn − pspn−s + ps(pn−s − pspn−2s) and using
the triangle inequality, we have |pn − p2spn−2s| ≤ |pn − pspn−s|+ |ps(pn−s − pspn−2s)|.
Now by using the inequality in 12 and |pn| ≤ 2, we have |pn − p2spn−2s| ≤ 6, see [65,
Lemma 1.4, p. 3].

Theorem 16 has another general form due to Hayami and Owa [22] in 2010. They
proved that:

THEOREM 18 ([22, Lemma 2.4, p. 2576]). Let p(z) = b0 + p1z + p2z
2 + · · · with

Re p(z) > 0. Then for 1 ≤ s ≤ n− 1

∣∣∣∣ν pnb0 − pspn−s
b20

∣∣∣∣ ≤
 2Re b0|b0|

√
ν2 + 4

(
<(b0)
|b0|

)2
(1− ν) ≤ 2(2− ν), ν ≤ 1;

2ν Re b0|b0| ≤ 2ν, ν ≥ 1.

Equality is attained for

p(z) = (Re b0)
1 + zd

1− zd + i Im b0 (µ ≤ 1) and p(z) = (Re b0)
1 + zl

1− zl + i Im b0 (µ ≥ 1),

Set h(z) = p(z) − α = 1 − α +
∑∞
k=1 pkz

k (0 ≤ α < 1). Then Reh(z) > 0 and
b0 = 1− α > 0; and thus the following result can be deduced:

COROLLARY 1 ([22, Corollary 2.5, p. 2577]). Let p ∈ P(α). Then for 1 ≤ s ≤ n−1

|(1− α)µpn − pspn−s| ≤
{

2(1− α)2(2− µ), µ ≤ 1;
2(1− α)2µ, µ ≥ 1.

Equality is attained for

p(z) =
1 + (1− 2α)zd

1− zd (µ ≤ 1) and p(z) =
1 + (1− 2α)zl

1− zl (µ ≥ 1),

Hayami and Owa [22] further used these results to obtain the sharp estimate for
the generalized Hankel determinant.
In 2016, Efraimidis [16] generalized Theorem 17 and gave a much simpler proof

than that of Livingston [41]. Before presenting his results we need some definitions
and notations. Let n ∈ N and denote by Un =

{
e2kπi/n : k = 1, 2, 3, . . . , n

}
, the set of

n-th root of unity. For n = 0 we write U0 = ∂D = T. Let (X,T) be a topological
space. The support of a measure µ is defined as the set of all points x ∈ X for which
every open neighbourhood Nx of x has a positive measure. The symbol µ denote the
Herglotz measure of p and we write supp(µ) for its support which is given by

supp(µ) := {x ∈ X : x ∈ Nx with µ(Nx) > 0} .

He proved that the following result holds for all ν such that |1− 2ν| ≤ 1.



382 A Survey on Coeffi cient Estimates for Carathéodory Functions

THEOREM 19 ([16, Theorem 1, p. 370]). Let p ∈ P. Then for ν ∈ C and for all
integers n and s with 1 ≤ s ≤ n− 1

|pn − νpspn−s| ≤ 2 max {1, |1− 2ν|} .

Let ν be the Herglotz measure of p. In the case |1 − 2ν| < 1, equality holds if and
only if pk = 0 and supp(µ) ⊆ eiϕUn, for some ϕ ∈ [0, 2π). In the case |1 − 2ν| > 1,
equality holds if and only if supp(µ) ⊆ eiθUk ∩ eiϕUn for some θ, ϕ ∈ [0, 2π). In the
case |1− 2ν| = 1, equality holds if supp(µ) consists of one point.

For ν ∈ C and p ∈ P, Efraimidis [16] defined the determinant

Ak,n(ν) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

pn+k pn+k−1 pn+k−1 · · · pn+1 pn
νp1 1 0 · · · 0 0
νp2 νp1 0 · · · 0 0
...

...
...

. . .
...

...
νpk−1 νpk−2 νpk−3 · · · 1 0
νpk νpk−1 νpk−2 · · · νp1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
and proved the following:

THEOREM 20 ([16, Theorem 2, p. 370]). If p ∈ P, then for all ν ∈ C, k ≥ 0 and
n ≥ 1, we have the following sharp inequality

|Ak,n(ν)| ≤ 2 max
{

1; |1− 2ν|k
}
.

Let µ be the Herglotz measure of p. In the case |1−2ν| < 1, equality holds if and only if
pk = 0 and supp(µ) ⊆ eiϕUn+k, for some ϕ ∈ [0, 2π) and p1 = p2 = p3 = · · · = pk = 0.
In the case |1− 2ν| ≥ 1, if supp(µ) consists of one point, then equality holds.

Both Theorems 19 and 20 have a similar version for non-normalized functions p(z) =
b0+

∑∞
n=1 pnz

n with positive real part. For such a function p, let b0 = x+iy (x > 0) and
q(z) = (p(z)− iy)/x, which is obviously a function in P. To this q, having coeffi cients
q0 = 1, qn = pn/x (n ∈ N), we can apply Theorems 19 and 20. Then multiply both
inequalities by x/|b0| and set νx/b0 in place of ν. This gives∣∣∣∣pnb0 − ν pkpn−kb20

∣∣∣∣ ≤ 2
Re b0
|b0|

max

{
1;

∣∣∣∣1− 2ν
Re b0
b0

∣∣∣∣}
and ∣∣A∗k,n(ν)

∣∣ ≤ 2
Re b0
|b0|

max

{
1;

∣∣∣∣1− 2ν
Re b0
b0

∣∣∣∣k
}
.

Here A∗k,n(ν) is the modified form of Ak,n(ν) with pj being replaced by pj/b0 for all j.
One of the most popular results in this direction is due to Ma and Minda [44]. This

result is very useful in deriving the Fekete-Szegö coeffi cient inequality.

THEOREM 21. [44, Lemma 1, p. 162] If p ∈ P, then
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|p2 − νp21| ≤

 −4ν + 2 (ν ≤ 0),
2 (0 ≤ ν ≤ 1),
4ν − 2 (ν ≥ 1).

When ν < 0 or ν > 1, equality holds if and only if p(z) = (1 + z)/(1− z) or one of its
rotations. If 0 < ν < 1, then equality holds if and only if p(z) = (1 + z2)/(1 − z2) or
one of its rotations. If ν = 0, then equality holds if and only if

p(z) =

(
1 + γ

2

)
1 + z

1− z +

(
1− γ

2

)
1− z
1 + z

(0 ≤ γ ≤ 1, z ∈ D) (13)

or one of its rotations. For ν = 1, equality holds if and only if p is the reciprocal of
one of the functions such that equality holds in case of ν = 0. Also for 0 < ν < 1, the
following improved estimate holds:

|p2 − νp21|+ ν|p1|2 ≤ 2 (0 < ν ≤ 1/2)

and
|p2 − νp21|+ (1− ν)|p1|2 ≤ 2 (1/2 ≤ ν < 1).

For any complex number ν, the above inequality was proved by Koegh and Merkes [29]:

THEOREM 22 ([29]). (see also [53]) If p ∈ P, then for any complex number ν,

|p2 − νp21| ≤ 2 max{1; |2ν − 1|}

and the equality holds for the functions given by

p(z) =
1 + z2

1− z2 and p(z) =
1 + z

1− z .

Another estimate on the functional |p2 − νp21|, for any real number ν, was given by
Mishra and Gochhayat [46], see also [15].

THEOREM 23 ([46, Theorem 1.2, p. 2817]) If p ∈ P, then, for any real number v,

|p2 − νp21| ≤

 2 + (ν − 1)|p1|2 (ν > 1/2),
2− 1

2 |p1|
2 (ν = 1/2),

2− ν|p1|2 (ν ≤ 1/2).

A consequence of the Schwarz lemma is that p ∈ P implies |pn| ≤ 2 with equality
if and only if p(z) = (1 + xz)/(1− xz) for some |x| = 1. This includes the uniqueness
statement that

p ∈ P, p1 = 2x (|x| = 1)⇒ p(z) = (1 + xz)/(1− xz).
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Koepf [31], in 1994, gave a generalization of this statement. The proof is a consequence
of the Carathéodory-Toeplitz-Fejér theory on positive harmonic functions, in particular,
of the following result due to Carathéodory:

THEOREM 24 ([13, Theorem 2]).(see also [31])The power series of p ∈ P converges
in P if and only if the Teoplitz determinants

Dn :=

∣∣∣∣∣∣∣∣∣
2 p1 p2 · · · pn
p−1 2 p1 · · · pn−1
...

...
...

. . .
pn−1 p−n+1 p−n+2 · · · 2

∣∣∣∣∣∣∣∣∣
and p−k = p̄k, are all non-negative. They are strictly positive except for p(z) =∑m
k=1 ρk(1 + eitkz)/(1− eitkz), ρk > 0 real and tk 6= tj , for k 6= j; in this case Dn > 0

for n < m− 1 and Dn = 0 for n ≥ m, n ∈ N.

By applying Theorem 24, Libera and Zlotkiewicz, in 1982, proved the following
result which gives an alternate representation for the coeffi cients p2 and p3 in terms of
p1. These representations have been abundantly used to find the bound for the initial
coeffi cients and of the Hankel determinants.

THEOREM 25 ([37, p. 228]). If p ∈ P, then

2p2 = p21 + x(4− p21)

and
4p3 = p31 + 2p1(4− p21)x− p1(4− p21)x2 + 2(4− p21)(1− |x|2)y

for some x and y such that |x| ≤ 1 and |y| ≤ 1.

In 2009, a similar representations for the Carathéodory functions of order α, were
derived by Hayami and Owa as stated in the following result.

THEOREM 26 ([21, Lemma 5, p. 35]). Let p(z) = b0 + p1z + p2z
2 + · · · with

Re p(z) > α. Then for α ∈ [0, b0), we have

2(b0 − α)p2 = p21 + x(4(b0 − α)2 − p21)

and

4(b0 − α)2p3 = p31 + 2p1(4(b0 − α)2 − p21)x− p1(4(b0 − α)2 − p21)x2

+2(b0 − α)(4(b0 − α)2 − p21)(1− |x|2)y,

for some complex numbers x and y such that |x| ≤ 1 and |y| ≤ 1.

The following theorem is due to Carathéodory and appeared in [20]:

THEOREM 27 ([20]).(see also [37, Lemma 3, p. 227]) Let p ∈ P. Then the following
expressions are all bounded by 2, and all are sharp:
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1. |p21 − p2|,

2. |p31 − 2p1p2 + p3|,

3. |p41 + 2p1p3 + p22 − 3p21p2 − p4|,

4. |p51 + 3p1p
2
2 + 3p21p3 − 4p31p2 − 2p1p4 − 2p2p3 + p5|,

5. |p61 + 6p21p
2
2 + 4p31p3 + 2p1p5 + 2p2p4 + p32 − p32 − 5p41p2 − 3p21p4 − 6p1p2p3 − p6|.

The following inequalities can also be obtained in the proof of a result in [37, p.
227-228]

1. |2p21 − p2| ≤ 6,

2. | − 6p31 + 7p1p2 − 2p3| ≤ 24,

3. |24p41 − 46p21p2 + 22p1p3 + 7p22 − 6p4| ≤ 120,

4. | − 120p51 + 96p4p1 + 50p2p3 + 326p31p2 − 202p21p3 − 127p1p
2
2 − 24p5| ≤ 720.

In 1985, Livingston [40] obtained sharp bounds on the modulus of certain determin-
ants, whose entries are the coeffi cients of a function of positive real part. He used these
inequalities to solve coeffi cient problems for a certain subclass of multivalent functions.
In the same paper, Livingston generalized Theorem 16 as follows:

THEOREM 28 ([40, Lemma 1, p. 140]). Let Re b0 > 0 and define the function p by

p(z) = (Re b0)

m∑
j=1

λj
1 + zeitj

1− zeitj + i Im b0 = b0 +

∞∑
n=1

pnz
n,

where tj and λj are real with λj ≥ 0 for all j = 1, 2, 3, . . . satisfying
∑m
j=1 λj = 1. For

fixed n and natural numbers s and k, define the determinant Q(s)k by

Q
(s)
k :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ei(n+s−2)tk pn+s−2/b0 pn+s−3/b0 · · · pn/b0
1 1 0 · · · 0
eitk p1/b0 1 · · · 0
e2itk p2/b0 p1/b0 · · · 0
...

...
...

. . .
...

ei(s−2)tk ps−2/b0 ps−3/b0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then, for all integers n ≥ 2 and s ≥ 1, we have

m∑
k=1

λk

∣∣∣Q(s)k ∣∣∣2 = 1.
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By using the concept of the uniform limits on compact subsets of the unit disk
D, for function p(z) = b0 +

∑∞
k=1 pnz

n with positive real part and Re b0 > 0, and
Theorem 28, Livingston established the following.

THEOREM 29 ([40, Corollary 1, p. 142]). Let p(z) = b0 +
∑∞
k=1 pnz

n satisfies
Re p(z) > 0 (z ∈ D) and Re b0 > 0. For all natural number s, define the determinant
A
(s)
k by

A
(s)
k :=

∣∣∣∣∣∣∣∣∣∣∣

pn+s/b0 pn+s−1/b0 pn+s−2/b0 · · · pn/b0
p1/b0 1 0 · · · 0
p2/b0 p1/b0 1 · · · 0
...

...
...

. . .
...

ps/b0 ps−1/b0 ps−2/b0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
.

Then for all integers n ≥ 1 and s ≥ 1,∣∣∣A(s)k ∣∣∣ ≤ 2

∣∣∣∣Re b0
b0

∣∣∣∣ ≤ 2.

Equality is attained for the function p̂0.

THEOREM 30 ([40, Theorem 1, p. 143, Livingston]). Let p(z) = b0 +
∑∞
k=1 pnz

n

satisfies Re p(z) > 0 (z ∈ D) and Re b0 > 0. Let 1/p(z) =
∑∞
k=0 qnz

n. Then for all
integers m ≥ 1, t ≥ 0 and n ≥ m∣∣∣∣∣

m∑
k=t

qk−tpn−k

∣∣∣∣∣ ≤ 2

∣∣∣∣Re b0
b0

∣∣∣∣ ≤ 2.

Earlier in 1956, Nehari and Netanyahu [48] proved the following results:

THEOREM 31 ([48, Lemma I, p. 17]). Let p(z) = 1 +
∑∞
k=1 pkz

k and q(z) =
1+
∑∞
k=1 qkz

k be functions in the class P. Then the function r(z) = 1+
∑∞
k=1(pkqk/2)zk

is also a member of P.

THEOREM 32 ([48, Lemma II, p. 17]). Let p(z) = 1 +
∑∞
k=1 pkz

k = 1 +G(z) and
h(z) = 1 +

∑∞
k=1 βkz

k be functions in the class P. If A′ns are defined by
∞∑
k=1

(−1)k+1γk−1G
k(z) =

∞∑
k=1

Akz
k,

where

γk =
1

2k

(
1 +

1

2

k∑
m=1

(
k

m

)
βm

)
with γ0 = 1,

then |An| ≤ 2.

By using Theorems 31 and 32, Nehari and Netanyahu [48, Theorem I, p. 16] obtained
the sharp bound of the initial coeffi cients of meromorphic starlike functions.
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3.1 Successive Coeffi cients

This subsection is devoted to recollecting the results on the successive coeffi cients re-
lated to the Carathéodory functions.
There are several transformations which preserve the class P, see [33] and The-

orem 2. In particular, if p ∈ P, then the function q defined by the transformation

q(z) =
1− z2
z
− (1− z)2

z
p(z)

satisfies Re q(z) > 0 (z ∈ D). Using this fact, Robertson [59], in 1981, proved the
following estimate on the successive coeffi cients difference of functions with positive
real part.

THEOREM 33 ([59, Theorem 10, p. 341]). Let p ∈ P. Then, for n ≥ 3,

|pn+1 − pn| ≤ (2n+ 1)|2− p1|

and
| |pn+1| − |pn| | ≤ (2n+ 1)|2− p1|.

The factor 2n+ 1 cannot be replaced by a smaller one. Equality occurs in case of the
function p defined by

p(z) =
1− z2

1− 2z cosφ+ z2
.

By using this result, Robertson also derived the sharp estimate on the difference of
successive coeffi cients for the starlike and convex functions. Goodman [17, Problem 35,
p. 104], raised a question about the sharp bound on |pn+1− pn| for fixed p1. A partial
answer to this question may be obtained from Theorem 17 by setting b0 = 1, p1 = 1
and s = n− 1. This gives |pn+1 − pn| ≤ 2. If we set b0 = 1, p1 = 2 and s = n− 1, then
|pn+1 − 2pn| ≤ 2.
For functions f(z) = 1 + 2

∑∞
k=1 akz

k and g(z) = 1 + 2
∑∞
k=1 bkz

k ∈ P, consider
the weighted Hadamard product defined by

(f ∗ g)(z) = 1 + 2

∞∑
k=1

akbkz
k.

Komatu [32, Theorem 1, p. 141], in 1958, proved that if f, g ∈ P, then f ∗ g ∈ P.
Using this result, Brown [11], in 2010, proved several results related to the power of
successive coeffi cients of functions with the positive real part.

THEOREM 34 ([11, Theorem 2.1, p. 2492]). Let p ∈ P. Then for m,n ∈ N and
ν ∈ R, ∣∣eiνpn+m − pn∣∣ ≤ 2

√
2− Re(eiνpm).

The result is sharp.
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Recently, in 2016, Efraimidis [16] also provided an alternate and easy proof of
Theorem 34. Setting m = 1 and ν = 0 in Theorem 34, we get the following result:

THEOREM 35 ([11, Corollary 2.2, p. 2493]). Let p ∈ P and n ∈ N. Then

|pn+1 − pn| ≤ 2
√

2− Re(p1).

The result is sharp. Equality holds for the function p(z) = (1 + eiαz)/(1− eiαz), where
α = arccos(b/2) and Re p1 = 2b.

Theorem 34 can also be generalized to the powers of successive coeffi cients as follows:

THEOREM 36 ([11, Theorem 2.3, p. 2493]). Let p ∈ P and ν ∈ R. Then, for
m,n,N ∈ N, ∣∣eiνpNn+m − pNn ∣∣ ≤ 2N

√
2N − 21−N Re(eiνpNm).

The result is sharp.

THEOREM 37 ([11, Theorem 4.1, p. 2497]). Let p ∈ P. Then, for n ≥ 3,

|(pn+1 − pn)− (pn−1 − pn−2)| ≤ 2
√

(Re(2− p1))(Re(2− p2)).

The result is sharp.

Using the fact that the functions in the class P retain their properties under certain
transformations, Lecko [33], in 2000, proved the following result:

THEOREM 38 ([33, Theorem 2.1, p. 62]). For fixed α ∈ [0, 1) and ζ ∈ D̄, let
p ∈ P(α). Then, for n ≥ 2,

1. |ζp2 − (1 + |ζ|2)p1 + 2(1− α)ζ̄| ≤ 2
[
(1 + |ζ|2)(1− α)− Re(ζp1)

]
,

2. |ζpn+1 − (1 + |ζ|2)pn + ζ̄pn−1| ≤ 2
[
(1 + |ζ|2)(1− α)− Re(ζp1)

]
,

3. |(||ζ|pn+1 − pn|)− |ζ|(||ζ|pn − pn−1|)| ≤ 2
[
(1 + |ζ|2)(1− α)− |ζ|Re(p1)

]
.

The results are sharp and the function defined by

p(z) =
1 + (1− 2α)z

1− z

acts as an extremal function for all the cases above.

Setting α = 0 in the above theorem, we have the following corollary:

THEOREM 39 ([33, Corollary 2.2, p. 63]). For ζ ∈ D̄, let p ∈ P. Then, for n ≥ 2,

1. |ζp2 − (1 + |ζ|2)p1 + 2ζ̄| ≤ 2
[
(1 + |ζ|2)− Re(ζp1)

]
,
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2. |ζpn+1 − (1 + |ζ|2)pn + ζ̄pn−1| ≤ 2
[
1 + |ζ|2 − Re(ζp1)

]
,

3.
∣∣∣∣∣|ζ|pn+1 − pn∣∣− |ζ|∣∣|ζ|pn − pn−1∣∣∣∣∣ ≤ 2

[
(1 + |ζ|2)− |ζ|Re(p1)

]
.

The results are sharp and the extremal function is p̂0.

It should be noted that many useful results can be derived from Theorem 39 by
assigning suitable values to ζ. The inequality (1) of Theorem 39 gives the following
specific results:

1. if ζ = 1, then |p2 − 2p1 + 2| ≤ 2(2− Re(p1)),

2. if ζ = −1, then |p2 + 2p1 + 2| ≤ 2(2 + Re(p1)),

3. if ζ = i, then |p2 + 2ip1 − 2| ≤ 2(2 + Im(p1)),

4. if ζ = −i, then |p2 − 2ip1 − 2| ≤ 2(2− Im(p1)).

The inequality (2) of Theorem 39 gives the following results:

1. if ζ = 1, then |pn+1 − 2pn + pn−1| ≤ 2(2− Re(p1)),

2. if ζ = −1, then |pn+1 + 2pn + pn−1| ≤ 2(2 + Re(p1)),

3. if ζ = i, then |pn+1 + 2ipn − pn−1| ≤ 2(2 + Im(p1)),

4. if ζ = −i, then |pn+1 − 2ipn − pn−1| ≤ 2(2− Im(p1)),

5. if ζ = 1/n (n = 2, 3, 4, . . .), then∣∣∣∣pn+1 − (n+
1

n

)
pn + pn−1

∣∣∣∣ ≤ 2

(
n+

1

n
− Re(p1)

)
,

6. if ζ = 1− 1/n (n = 2, 3, 4, . . .), then∣∣∣∣pn+1 − ( n

n− 1
+
n− 1

n

)
pn + pn−1

∣∣∣∣ ≤ 2

(
n

n− 1
+
n− 1

n
− Re(p1)

)
.

Setting |ζ| = 1 in the third inequality of the above theorem, we have∣∣|pn+1 − pn| − |pn − pn−1|∣∣ ≤ 2(2− Re(p1)).

Lecko [33], further proved the following:

THEOREM 40 ([33, Theorem 2.7, p. 64]). For fixed α ∈ [0, 1) and ζ ∈ D̄, let
p ∈ P(α). Then, for n ≥ 2,

|ζpn+1−pn| ≤
{

2 1−|ζ|
n

1−|ζ| [(1− α)(1 + |ζ|2)− Re(ζp1)] + |2(1− α)− ζp1||ζ|n, |ζ| < 1;
(2n+ 1)|2(1− α)− ζp1|, |ζ| = 1.
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and

∣∣|ζpn+1|−|pn|∣∣ ≤ { 2 1−|ζ|
n

1−|ζ| [(1− α)(1 + |ζ|
2)− Re(ζ)|p1|] +

∣∣2(1− α)− ζ|p1|∣∣|ζ|n, |ζ| < 1;
(2n+ 1)

∣∣2(1− α)− ζ|p1|∣∣, |ζ| = 1.

The estimates are sharp for each ζ ∈ [0, 1]. When ζ ∈ [0, 1), the function

p(z) =
1 + (1− 2α)z

1− z

acts as an extremal function,whereas if ζ = 1, then equality holds in case of the function

p(z) =
1− 2(α cos θ)z − (1− 2α)z2

1− 2(cos θ)z + z2
= 1 + 2(1− α)

∞∑
n=2

(cosnθ)zn,

for suffi ciently small θ ∈ [0, 2π).

3.2 Tools for Bounds on Fourth and Fifth Coeffi cients

In this subsection, some results which could be useful in finding the sharp bounds of
the fourth and fifth coeffi cients of normalized analytic functions belonging to certain
subclasses of univalent functions are discussed.
Let f and g be analytic functions in the unit disk D. Leverenz [36] gave a new

derivation of the positive semi-definite Hermitian form equivalent to |g(z)| ≤ |f(z)|, z ∈
D and used it to investigate the Hermitian forms for some subclasses of univalent
functions. As a corollary to this main result, he established the following:

THEOREM 41 ([36, Theorem 4(b), p. 678]). A function p ∈ P if and only if

∞∑
j=0


∣∣∣∣∣2zj +

∞∑
k=1

pkzk+j

∣∣∣∣∣
2

−
∣∣∣∣∣
∞∑
k=1

pk+1zk+j

∣∣∣∣∣
2
 ≥ 0

for every sequence {zk}∞k=1 of complex numbers that satisfies limk→∞ |zk|1/k < 1.

Further, he derived the sharp coeffi cient estimates for these subclasses. He also
gave the specific functions required to make the Hermitian forms equal to zero.

By using Theorem 41, Ali and Singh [5], in 1996, proved the following result:

THEOREM 42 ([5, Lemma 3, p. 199]). Let p ∈ P. Then

|p4 − (p1p3 + ap22) + ap21p2| ≤
{

2, 0 < a ≤ 1;
2(2a− 1), a ≥ 1.

Equality attained in the first case when p(z) = (1+εz4)/(1−εz4), |ε| = 1. In the second
case, equality is attained when p is any one of the following p(z) = (1 + εz)/(1− εz) or
p(z) = (1 + εz2)/(1− εz2), |ε| = 1.
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By using Theorems 32, 4 and 42, Ali and Singh [5] obtained the sharp upper bound
for the fourth and fifth coeffi cients for strongly starlike functions. However, minor
corrections were reported and the correct version of the proof of these results were
given by Lecko and Sim [34]. Earlier, in 1993, Ma and Minda [43] prove the following
results related to the coeffi cients of the functions in the class P.

THEOREM 43 ([43, Lemma 1, p. 278]). Let p ∈ P. Then the following holds:

1.
∣∣p2n − 1

2p
2
n

∣∣ ≤ 2− 1
2 |pn|

2,

2. |µp2np2n − p4n| ≤ 8(µ− 2) (µ ≥ 4),

3. |µp2npn − p3n| ≤ 4(µ− 2) (µ ≥ 6).

Theorem 41 is very useful in deducing the sharp upper bound on initial coeffi cients.
In particular, to obtain the sharp bound of the fourth and fifth coeffi cients of certain
analytic functions, Ali [2] gave an alternate proof of Theorem 43 proved by Ma and
Minda [44, 43] by choosing a particular sequence {zk}∞k=1 in Theorem 41, see [2, Lemma
2, p. 65]. In 2003, Ali [2] proved the following:

THEOREM 44 ([2, Lemma 3, p. 66]). Let p ∈ P and 0 ≤ β ≤ 1 and β(2β − 1) ≤
δ ≤ β, then

|p3 − 2βp1p2 + δp31| ≤ 2.

Further, if δ = β, then by Theorem 44, we have

THEOREM 45 ([2, Corollary 1, p. 67]). Let p ∈ P and 0 ≤ β ≤ 1. Then

|p3 − 2βp1p2 + βp31| ≤ 2.

When β = 0, equality holds if and only if

p(z) = p3(z) =

3∑
k=1

λk
1 + εe(−2πik)z/3

1− εe(−2πik)z/3 (|ε| = 1),

where λk > 0 with λ1 + λ2 + λ3 = 1. If β = 1, equality holds if and only if p is the
reciprocal of p3. If 0 < β < 1, equality holds if and only if p(z) = (1 + εz)/(1− εz) or
p(z) = (1 + εz3)/(1− εz3) (|ε| = 1).

THEOREM 46 ([2, Corollary 1, p. 68]). Let p ∈ P. Then

|p3 − (µ+ 1)p1p2 + µp31| ≤
{

2, 0 ≤ µ ≤ 1;
2|µ− 1|, elsewere.

Ali [2] used Theorems 44 and 45 to determine the sharp bounds on the first four
coeffi cients and the estimate on the Fekete-Szegö functional of the inverse for strongly
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starlike functions. In 2015, Ravichandran and Verma [55] proved the following results
by using Theorem 41.

THEOREM 47 ([55, Lemma 2.1, p. 506]). Let α, β, γ and a satisfy the inequalities
0 < α < 1, 0 < a < 1 and

8a(1− a)[(αβ − 2γ)2 + (α(a+ α)− β)2] + α(1− α)(β − 2aα)2 ≤ 4aα2(1− α)2(1− a).

If p ∈ P, then
|γp41 + ap22 + 2αp1p3 − (3/2)βp21p2 − p4| ≤ 2.

As an application of Theorem 47, Ravichandran and Verma [55] proved some con-
jectures related to the sharp bound on the fifth coeffi cient for certain subclasses of
starlike functions. They also reproved the inequalities (iii), (iv) and (v) of Theorem 27
by using Theorem 41, see [55, Lemma 2.2, p. 507].

THEOREM 48 ([55, Lemma 2.3, p. 507]). Let p ∈ P. Then for all n,m ∈ N,

|µpnpm − pm+n| ≤
{

2, 0 ≤ µ ≤ 1;
2|2µ− 1|, elsewhere.

If 0 < µ < 1, then the inequality is sharp for the function p(z) = (1+zm+n)/(1−zm+n).
In the other cases, the inequality is sharp for the function p̂0.

THEOREM 49 ([55, Corollary 2.4, p. 508]). Let p ∈ P. Then, for all n ∈ N and
µ ≤ 1,

|µpnp2n − p3n| ≤ 4(2− µ), and |µp2np2n − p4n| ≤ 8(2− µ)

The inequality is sharp for the function p̂0.

For normalized analytic function f(z) = z + a2z
2 + a3z

3 + · · · , Zaprawa [65], in
2017, mentioned a problem of finding the sharp estimate on the generalized form of
the second Hankel determinant Jn = an+1an+2 − anan+3. In his paper, it was shown
that for starlike functions, |J2| ≤ 2. He further conjectured that for starlike functions,
|Jn| ≤ 2 for all natural numbers n. To prove the estimate on J2, he proved that if
p ∈ P, then |p51 + 2p31p2 − 4p21p3 + 3p1p

2
2 − 6p1p4 + 4p2p3| ≤ 48, see [65, Theorem 2.2,

p. 5].
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