# Common Fixed Points Of $(\alpha, \eta, \beta)$-b-Branciari $F$-Rational Type Contractions In $(\alpha, \eta)$-Complete Branciari b-Metric Spaces* 

Eskander Ameer ${ }^{\dagger}$, Muhammad Arshad ${ }^{\ddagger}$, Hassen Aydi ${ }^{\S}$

Received 17 May 2018


#### Abstract

The aim of this paper is to present the notion of $(\alpha, \eta, \beta)$ - $b$-Branciari $F$-rational type contractions. We also establish some new common fixed point theorems for such mappings in an $(\alpha, \eta)$-complete Branciari b-metric spaces. We then derive some common fixed point results in complete Branciari $b$-metric spaces endowed with a graph or a partial order. We give examples in support of the obtained results.


## 1 Introduction

Since the introduction of Banach contraction principle in 1922, the study of existence and uniqueness of fixed points and common fixed points has become a subject of great interest because of its wide applications. Many authors proved the Banach contraction principle in various generalized metric spaces. In [10], Bakhtin introduced the concept of $b$-metric spaces as a generalization of metric spaces. He proved the contraction mapping principle in $b$-metric spaces that generalized the famous Banach contraction principle in metric spaces and extensively applied by Czerwik in [11, 12]. Since then, several papers have dealt with fixed point theory or the variational principle for singlevalued and multi-valued operators in $b$-metric spaces, (see $[1,2,4,5,6,7,14,16,18]$ and the references therein).

In the sequel, the letters $\mathbb{N}, \mathbb{R}^{+}, \mathbb{R}, F i x(T)$ and $C F i x(S, T)$ will denote the set of natural numbers, the set of all positive real numbers, the set of all real numbers, the set of all fixed points of $T$ and the set of all common fixed points of $S$ and $T$, respectively.

DEFINITION 1.1 ([11]). Let $X$ be a nonempty set and $s \geq 1$ be a real number. A function $d: X \times X \rightarrow[0, \infty)$ is said to be a $b$-metric if for all $x, y, z \in X$,
(i) $d(x, y)=0$ if and only if $x=y$;

[^0](ii) $d(x, y)=d(y, x)$;
(iii) $d(x, y) \leq s[d(x, z)+d(z, y)]$.

In this case, the pair $(X, d)$ is called a $b$-metric space (with constant $s$ ).
In [13], Branciari introduced the following definition.
DEFINITION $1.2([13])$. Let X be a non-empty set and $d: X \times X \longrightarrow[0, \infty)$ be a mapping such that for all $x, y \in X$ and all distinct points $u, v \in X$, each of them is different from $x$ and $y$, one has
(i) $d(x, y)=0 \Longleftrightarrow x=y$;
(ii) $d(x, y)=d(y, x)$;
(iii) $d(x, y) \leq d(x, u)+d(u, v)+d(v, y)$.

Then $(X, d)$ is called a Branciari metric space (for short, BMS). Roshan et al. [27] announced the following notion by combining conditions used for definitions of $b$-metric and Branciari metric spaces.

DEFINITION 1.3 ([27]). Let X be a non-empty set and $s \geq 1$ be a real number. Given $B_{b}: X \times X \longrightarrow[0, \infty)$. Suppose that for all $x, y \in X$ and for all distinct points $u, v \in X$ such that each of them is different from $x$ and $y$, one has the following conditions:
(i) $B_{b}(x, y)=0 \Longleftrightarrow x=y ;$
(ii) $B_{b}(x, y)=B_{b}(y, x)$;
(iii) $B_{b}(x, y) \leq s\left[B_{b}(x, u)+B_{b}(u, v)+B_{b}(v, y)\right]$.

Then $\left(X, B_{b}\right)$ is called a Branciari $b$-metric space (for short, BbMS).
EXAMPLE 1.1. Let $X=A \cup B$ where $A=\left\{\frac{1}{n}: n \in\{2,3,4,5\}\right\}$ and $B=[1,2]$. Define $B_{b}: X \times X \longrightarrow[0, \infty)$ such that $B_{b}(x, y)=B_{b}(y, x)$ for all $x, y \in X$, and

$$
\begin{aligned}
B_{b}\left(\frac{1}{2}, \frac{1}{3}\right) & =B_{b}\left(\frac{1}{4}, \frac{1}{5}\right)=\frac{3}{100} \\
B_{b}\left(\frac{1}{2}, \frac{1}{5}\right) & =B_{b}\left(\frac{1}{3}, \frac{1}{4}\right)=\frac{2}{100} \\
B_{b}\left(\frac{1}{2}, \frac{1}{4}\right) & =B_{b}\left(\frac{1}{5}, \frac{1}{3}\right)=\frac{6}{100} \\
B_{b}(x, y) & =|x-y|^{2} \text { otherwise. }
\end{aligned}
$$

Then $\left(X, B_{b}\right)$ is a Branciari $b$-metric space with coefficient $s=4$. But, $\left(X, B_{b}\right)$ is neither a metric space, nor a Branciari metric space.

LEMMA 1.1 ([27]). Let $\left(X, B_{b}\right)$ be a Branciari $b$-metric space.
(i) Suppose that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $X$ are such that $x_{n} \longrightarrow x$ and $y_{n} \longrightarrow y$ as $n \longrightarrow \infty$, with $x_{n} \neq x$ and $y_{n} \neq y$ for all $n \in \mathbb{N}$. Then

$$
\frac{1}{s} B_{b}(x, y) \leq \lim _{n \longrightarrow \infty} \inf B_{b}\left(x_{n}, y_{n}\right) \leq \lim _{n \longrightarrow \infty} \sup B_{b}\left(x_{n}, y_{n}\right) \leq s B_{b}(x, y)
$$

(ii) If $y \in X$ and $\left\{x_{n}\right\}$ is a Cauchy sequence in $X$ with $x_{n} \neq x_{m}$ for infinitely many $m \neq n \in \mathbb{N}$, converging to $x \neq y$, then

$$
\frac{1}{s} B_{b}(x, y) \leq \lim _{n \longrightarrow \infty} \inf B_{b}\left(x_{n}, y\right) \leq \lim _{n \longrightarrow \infty} \sup B_{b}\left(x_{n}, y\right) \leq s B_{b}(x, y)
$$

for all $n \in \mathbb{N}$.

Hussain et al.[23] (see also [21]) extended the notions of $\alpha-\psi$-contractive and $\alpha$ admissible mappings. They stated some interesting results. Also, Hussain et al. [23] introduced a weaker notion than the concept of completeness and called it $\alpha$-completeness for a metric space.

DEFINITION 1.4 ([23]). Let $T: X \rightarrow X$ be a self-mapping and $\alpha, \eta: X \times X \rightarrow$ $[0,+\infty)$ be two functions. We say that $T$ is $(\alpha, \eta)$-admissible if

$$
x, y \in X, \alpha(x, y) \geq 1 \Longrightarrow \alpha(T x, T y) \geq 1
$$

and

$$
x, y \in X, \eta(x, y) \leq 1 \Longrightarrow \eta(T x, T y) \leq 1
$$

DEFINITION 1.5 ([23]). Given $T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0,+\infty) . T$ is said triangular $(\alpha, \eta)$-admissible if
$\left(T_{1}\right) \alpha(x, y) \geq 1 \Longrightarrow \alpha(T x, T y) \geq 1, x, y \in X ;$
$\left(T_{2}\right) \eta(x, y) \leq 1 \Longrightarrow \eta(T x, T y) \leq 1, x, y \in X ;$
$\left(T_{3}\right)\left\{\begin{array}{l}\alpha(x, u) \geq 1 \\ \alpha(u, y) \geq 1\end{array} \Longrightarrow \alpha(x, y) \geq 1\right.$, for all $x, u, y \in X$;
$\left(T_{4}\right)\left\{\begin{array}{l}\eta(x, u) \leq 1 \\ \eta(u, y) \leq 1\end{array} \Longrightarrow \eta(x, y) \leq 1\right.$, for all $x, u, y \in X$.

DEFINITION 1.6 ([23]). Let $(X, d)$ be a metric space or a Branciari $b$-metric space and $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ be two functions. Then $X$ is said to be $(\alpha, \eta)$-complete if every Cauchy sequence $\left\{x_{n}\right\}$ in $X$ satisfying $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ or $\eta\left(x_{n}, x_{n+1}\right) \leq 1$ for all $n \in \mathbb{N}$, is convergent in $X$.

DEFINITION $1.7([23])$. Let $(X, d)$ be a metric space or a Branciari $b$-metric space. Let $T: X \rightarrow X$ be a mapping and $\alpha, \eta: X \times X \rightarrow[0,+\infty)$ be two given functions.
$T$ is $(\alpha, \eta)$-continuous on $(X, d)$ if for given $x \in X$ and a sequence $\left\{x_{n}\right\}$ in $X$ with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ or $\eta\left(x_{n}, x_{n+1}\right) \leq 1$ for all $n \in \mathbb{N}$ such that $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then $T x_{n} \rightarrow T x$ as $n \rightarrow+\infty$.

DEFINITION 1.8. Let $(X, d)$ be a metric space or a Branciari $b$-metric space and $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ be two given functions. We say that $(X, d)$ is $(\alpha, \eta)$-regular if $x_{n} \longrightarrow x^{*}$ as $n \longrightarrow \infty$ where $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ or $\eta\left(x_{n}, x_{n+1}\right) \leq 1$, for all $n \in \mathbb{N} \cup\{0\}$, imply that $\alpha\left(x_{n}, x^{*}\right) \geq 1$ or $\eta\left(x_{n}, x^{*}\right) \leq 1$ for all $n \in \mathbb{N} \cup\{0\}$.

In 2012, Wardowski [20] introduced the notion of $F$-contractions and proved variant fixed point theorems concerning $F$-contractions. For particular cases for functions $F$, one can obtain several known contractions from the literature, including the Banach contraction (see [3, 9, 22, 28]).

DEFINITION 1.9 ([20]). Let $(X, d)$ be a metric space. A mapping $T: X \rightarrow X$ is said to be a $F$-contraction if there exist $F \in \digamma$ and $\tau>0$ such that

$$
\forall x, y \in X, d(T x, T y)>0 \Rightarrow \tau+F(d(T x, T y)) \leq F(d(x, y))
$$

where $\digamma$ is the set of functions $F:(0, \infty) \rightarrow(-\infty, \infty)$ satisfying the following conditions:
$(F 1) F$ is strictly increasing, i.e., for all $x, y \in \mathbb{R}^{+}$such that $x<y, F(x)<F(y)$;
(F2) For each sequence $\left\{\alpha_{n}\right\}$ of positive numbers,

$$
\lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=-\infty \text { if and only if } \lim _{n \rightarrow \infty} \alpha_{n}=0
$$

(F3) There exists $k \in(0,1)$ such that $\lim _{\alpha \rightarrow 0^{+}} \alpha^{k} F(\alpha)=0$.

THEOREM 1.1 ([20]). Let $(X, d)$ be a complete metric space and let $T: X \rightarrow X$ be a $F$ - contraction. Then $T$ has a unique fixed point $x^{*} \in X$ and for every $x \in X$, the sequence $\left\{T^{n} x\right\}_{n \in \mathbb{N}}$ converges to $x^{*}$.

Later, Piri and Kumam [17] modified the notion of $F$-contractions by changing (F3) by $\left(F^{\prime} 3\right)$ : $F$ is continuous.

Denote $\Delta_{F}$ the set of functions $F:(0, \infty) \rightarrow(-\infty, \infty)$ satisfying $(F 1),(F 2)$ and ( $F^{\prime} 3$ ).

EXAMPLE 1.2. The following are some examples of functions belonging to $\Delta_{F}$ :
(1) $F_{1}(t)=\ln t$,
(3) $F_{3}(t)=t-\frac{1}{t}$,
(5) $F_{5}(t)=\frac{1}{1-e^{t}}$.
(2) $F_{2}(t)=\frac{1}{t^{r}}, r>0$,
(4) $F_{4}(t)=\frac{e^{t}}{1-e^{2 t}}$,

DEFINITION 1.10 ([28]). Let $(X, d)$ be a Branciari metric space. Then $T: X \longrightarrow$ $X$ is said to be a Branciari $F$-rational contraction, if there exist $F \in \digamma$ and $\tau>0$ such that

$$
\forall x, y \in X, \quad d(T x, T y)>0 \Rightarrow \tau+F(d(T x, T y)) \leq F(M(x, y))
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T x) d(y, T y)}{1+d(x, y)}, \frac{d(x, T x) d(y, T y)}{1+d(T x, T y)}\right\}
$$

THEOREM $1.2([28])$. Let $(X, d)$ be a complete Branciari metric space and $T$ : $X \longrightarrow X$ be a Branciari $F$-rational contraction. If $T$ or $F$ is continuous, then $T$ has a unique fixed point in $X$.

As in [29], let $\Delta_{\beta}$ be the set of functions $\beta:(0, \infty) \longrightarrow(0, \infty)$ satisfying the following conditions:
$(\beta 1) \liminf _{i \longrightarrow \infty} \beta\left(t_{i}\right)>0$ for all real sequences $\left\{t_{i}\right\}$ with $t_{i}>0$;
$(\beta 2) \sum_{i=0}^{\infty} \beta\left(t_{i}\right)=+\infty$ for each positive sequence $\left\{t_{i}\right\}$.

Hussain et al. [29] established some fixed point results for generalized $F$-contractive mappings in the setup of Branciari b-metric spaces as follows.

THEOREM $1.3([29])$. Let $\left(X, B_{b}\right)$ be a complete Branciari $b$-metric space with parameter $s \geq 1$. Given $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ and $T: X \longrightarrow X$. Assume that
(i) $T$ is triangular $(\alpha, \eta)$-admissible;
(ii) for all $x, y \in X$ ( with $\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1)$ and $B_{b}(T x, T y)>0$, we have

$$
\beta\left(B_{b}(x, y)\right)+F\left(s^{2} B_{b}(T x, T y)\right) \leq F\binom{\alpha_{1} B_{b}(x, y)+\alpha_{2} B_{b}(x, T x)+}{\alpha_{3} B_{b}(y, T y)+\alpha_{4} B_{b}(y, T x)}
$$

where $\beta \in \Delta_{\beta}, F \in \Delta_{F}$ and $\alpha_{i} \geq 0$ for $i \in\{1,2,3,4\}$ such that $\sum_{i=1}^{4} \alpha_{i}=1$ and $\alpha_{3}<\frac{1}{s}$;
(iii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ or $\eta\left(x_{0}, T x_{0}\right) \leq 1$;
(iv) $T$ is $(\alpha, \eta)$-continuous.

Then $T$ has a fixed point. If in addition, $\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1$ for all $x, y \in F i x(T)$, then such fixed point is unique.

## 2 Main Results

We begin with the following concepts.

DEFINITION 2.1. Let $S, T: X \rightarrow X$ be self-mappings and $\alpha, \eta: X \times X \rightarrow[0,+\infty)$ be two functions. We say that the pair $(S, T)$ is $(\alpha, \eta)$-admissible if

$$
x, y \in X, \alpha(x, y) \geq 1 \Longrightarrow \alpha(S x, T y) \geq 1 \text { and } \alpha(S x, T y) \geq 1
$$

and

$$
x, y \in X, \eta(x, y) \leq 1 \Longrightarrow \eta(S x, T y) \leq 1 \text { and } \eta(S x, T y) \leq 1
$$

DEFINITION 2.2. Let $S, T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0,+\infty)$. We say that the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible if
$\left(T_{1}\right) \alpha(x, y) \geq 1 \Longrightarrow \alpha(S x, T y) \geq 1$ and $\alpha(S x, T y) \geq 1$ for all $x, y \in X ;$
$\left(T_{2}\right) \eta(x, y) \leq 1 \Longrightarrow \eta(S x, T y) \leq 1$ and $\eta(S x, T y) \leq 1$ for all $x, y \in X ;$
$\left(T_{3}\right)\left\{\begin{array}{l}\alpha(x, u) \geq 1 \\ \alpha(u, y) \geq 1\end{array} \Longrightarrow \alpha(x, y) \geq 1\right.$ for all $x, u, y \in X ;$
$\left(T_{4}\right)\left\{\begin{array}{l}\eta(x, u) \leq 1 \\ \eta(u, y) \leq 1\end{array} \Longrightarrow \eta(x, y) \leq 1\right.$ for all $x, u, y \in X$.

Note that the concepts given in Definition 2.1 and Definition 2.2 are not concerned by the note of Berzig and Karapinar [30]. Now, we state and prove our main results.

DEFINITION 2.3. Let $\left(X, B_{b}\right)$ be a Branciari $b$-metric space with parameter $s \geq 1$ and let $S, T$ be self-mappings on $X$. Suppose that $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ are two functions. We say that the pair $(S, T)$ is an $(\alpha, \eta, \beta)$ - $b$-Branciari $F$-rational contraction, if for all $x, y \in X$ with $(\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1)$ and $B_{b}(S x, T y)>0$, we have

$$
\begin{equation*}
\forall x, y \in X, d(T x, T y)>0 \Rightarrow \beta\left(B_{b}(x, y)\right)+F\left(s^{2} B_{b}(S x, T y)\right) \leq F\left(W_{b}(x, y)\right) \tag{1}
\end{equation*}
$$

where $\beta \in \Delta_{\beta}, F \in \Delta_{F}$ and

$$
W_{b}(x, y)=\max \left\{\begin{array}{c}
B_{b}(x, y), B_{b}(x, S x), B_{b}(y, T y), B_{b}(y, S x)  \tag{2}\\
\frac{B_{b}(x, S x) B_{b}(y, T y)}{s+B_{b}(x, y)}, \frac{B_{b}(x, S x) B_{b}(y, T y)}{s+B_{b}(S x, T y)}
\end{array}\right\} .
$$

THEOREM 2.1. Let $\left(X, B_{b}\right)$ be a complete Branciari $b$-metric space with parameter $s$ and let $S, T: X \longrightarrow X$ be self-mappings satisfying the following conditions:
(i) the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible;
(ii) $(S, T)$ is an $(\alpha, \eta, \beta)$-b-Branciari $F$-rational contraction;
(iii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, S x_{0}\right) \geq 1$ or $\eta\left(x_{0}, S x_{0}\right) \leq 1$;
(iv) $S$ and $T$ are $(\alpha, \eta)$-continuous.

Then $S$ and $T$ have a common fixed point. Moreover, $S$ and $T$ have a unique common fixed point when $\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1$ for all $x, y \in \operatorname{CFix}(S, T)$.

PROOF. Let $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ or $\eta\left(x_{0}, T x_{0}\right) \leq 1$. Define a sequence $\left\{x_{n}\right\}$ by $x_{2 i+1}=S x_{2 i}$ and $x_{2 i+2}=T x_{2 i+1}$ for $i=0,1,2, \ldots$. Since the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible, we get $\alpha\left(x_{1}, x_{2}\right)=\alpha\left(S x_{0}, T x_{1}\right) \geq 1$ or $\eta\left(x_{1}, x_{2}\right)=\eta\left(S x_{0}, T x_{1}\right) \leq 1$. Continuing in this process, we get

$$
\alpha\left(x_{n}, x_{n+1}\right) \geq 1 \text { or } \eta\left(x_{n}, x_{n+1}\right) \leq 1,
$$

for all $n \in \mathbb{N} \cup\{0\}$. If for some $n, x_{n}=x_{n+1}$, then $x_{n}$ is a common fixed point of $T$ and $S$. From now on, without loss of generality, we can assume that

$$
x_{n} \neq x_{n+1}, \forall n \in \mathbb{N} \cup\{0\}
$$

Since $(S, T)$ is an $(\alpha, \eta, \beta)$ - $b$-Branciari $F$-rational contraction, we derive

$$
\begin{align*}
F\left(B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)\right) & =F\left(B_{b}\left(S x_{2 i}, T x_{2 i+1}\right)\right) \\
& <\beta\left(B_{b}\left(x_{2 i}, x_{2 i+1}\right)\right)+F\left(B_{b}\left(S x_{2 i}, T x_{2 i+1}\right)\right) \\
& \leq F\left(W_{b}\left(x_{2 i}, x_{2 i+1}\right)\right) \tag{3}
\end{align*}
$$

where

$$
\begin{aligned}
W_{b}\left(x_{2 i}, x_{2 i+1}\right) & =\max \left\{\begin{array}{c}
B_{b}\left(x_{2 i}, x_{2 i+1}\right), B_{b}\left(x_{2 i}, S x_{2 i}\right), \\
B_{b}\left(x_{2 i+1}, T x_{2 i+1}\right), B_{b}\left(x_{2 i+1}, S x_{2 i}\right), \\
\frac{B_{b}\left(x_{2 i}, S x_{2 i}\right) B_{b}\left(x_{2 i+1}, T x_{2 i+1}\right)}{s+B_{b}\left(x_{2 i}, x_{2 i+1}\right)}, \\
\frac{B_{b}\left(x_{2 i}, S x_{2 i}\right) B_{b}\left(x_{\left.2 i+1, T x_{2 i+1}\right)}^{s+B_{b}\left(S x_{2 i}, T x_{2 i+1}\right)}\right.}{}
\end{array}\right\} \\
& =\max \left\{\begin{array}{c}
B_{b}\left(x_{2 i}, x_{2 i+1}\right), B_{b}\left(x_{2 i}, x_{2 i+1}\right), \\
B_{b}\left(x_{2 i+1}, x_{2 i+2}\right), B_{b}\left(x_{2 i+1}, x_{2 i+1}\right), \\
\frac{B_{b}\left(x_{2 i}, x_{2 i+1}\right) B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)}{s+B_{b}\left(x_{2 i}, x_{2 i+1)}\right)} \\
\frac{B_{b}\left(x_{2 i}+x_{2 i+1}\right) B_{b}\left(x_{\left.2 i+1, x_{2 i+2}\right)}^{s+B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)}\right.}{}
\end{array}\right\} \\
& =\max \left\{B_{b}\left(x_{2 i}, x_{2 i+1}\right), B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)\right\} .
\end{aligned}
$$

If $W_{b}\left(x_{2 i}, x_{2 i+1}\right)=B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)$ for some $i$, then from (3), we have

$$
F\left(B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)\right)<F\left(B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)\right)
$$

which is a contradiction. We conclude that $W_{b}\left(x_{2 i}, x_{2 i+1}\right)=B_{b}\left(x_{2 i}, x_{2 i+1}\right)$ for all $i$. By (3), we get that

$$
F\left(B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)\right)<F\left(B_{b}\left(x_{2 i}, x_{2 i+1}\right)\right) .
$$

Since $F$ is strictly increasing, we deduce that

$$
B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)<B_{b}\left(x_{2 i}, x_{2 i+1}\right) \text { for all } i \in \mathbb{N} \cup\{0\}
$$

This implies that

$$
B_{b}\left(x_{n+1}, x_{n+2}\right)<B_{b}\left(x_{n}, x_{n+1}\right) \text { for all } n \in \mathbb{N} \cup\{0\}
$$

Again, (1) implies that

$$
F\left(B_{b}\left(x_{n+1}, x_{n+2}\right)\right)<F\left(B_{b}\left(x_{n}, x_{n+1}\right)\right)-\beta\left(B_{b}\left(x_{n}, x_{n+1}\right)\right)
$$

Therefore,

$$
\begin{aligned}
F\left(B_{b}\left(x_{n+1}, x_{n+2}\right)\right)< & F\left(B_{b}\left(x_{n}, x_{n+1}\right)\right)-\beta\left(B_{b}\left(x_{n}, x_{n+1}\right)\right) \\
< & F\left(B_{b}\left(x_{n}, x_{n+1}\right)\right)-\beta\left(B_{b}\left(x_{n}, x_{n+1}\right)\right)-\beta\left(B_{b}\left(x_{n-1}, x_{n}\right)\right) \\
& \cdots \\
< & F\left(B_{b}\left(x_{0}, x_{1}\right)\right)-\sum_{z=0}^{n} \beta\left(B_{b}\left(x_{z}, x_{z+1}\right)\right) .
\end{aligned}
$$

Letting $n \longrightarrow \infty$ in above inequality and using $(\beta 2)$, we have

$$
\lim _{n \rightarrow \infty} F\left(B_{b}\left(x_{n+1}, x_{n+2}\right)\right)=-\infty
$$

and from $(F 2)$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} B_{b}\left(x_{n+1}, x_{n+2}\right)=0 \tag{4}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
F\left(B_{b}\left(x_{2 i+1}, x_{2 i+3}\right)\right) & <F\left(s^{2} B_{b}\left(x_{2 i+1}, x_{2 i+3}\right)\right) \\
& <\beta\left(B_{b}\left(x_{2 i}, x_{2 i+2}\right)\right)+F\left(s^{2} B_{b}\left(S x_{2 i}, T x_{2 i+2}\right)\right) \\
& \leq F\left(W_{b}\left(x_{2 i}, x_{2 i+2}\right)\right) \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
W_{b}\left(x_{2 i}, x_{2 i+2}\right) & =\max \left\{\begin{array}{c}
B_{b}\left(x_{2 i}, x_{2 i+2}\right), B_{b}\left(x_{2 i}, S x_{2 i}\right), \\
B_{b}\left(x_{2 i+2}, T x_{2 i+2}\right), B_{b}\left(x_{2 i+2}, S x_{2 i}\right), \\
\frac{B_{b}\left(x_{2 i}, S x_{2 i}\right) B_{b}\left(x_{2 i+2}, T x_{2 i+2}\right)}{s+B_{b}\left(x_{2 i}, x_{2 i+2}\right)}, \\
\frac{B_{b}\left(x_{2 i}, S x_{2 i}\right) B_{b}\left(x_{2 i+2}, T x_{2 i+2}\right)}{s+B_{b}\left(S x_{2 i}, T x_{2 i+2}\right)}
\end{array}\right\} \\
& =\max \left\{\begin{array}{c}
B_{b}\left(x_{2 i}, x_{2 i+2}\right), B_{b}\left(x_{2 i}, x_{2 i+1}\right), \\
B_{b}\left(x_{2 i+1}, x_{2 i+3}\right), B_{b}\left(x_{2 i+2}, x_{2 i+1}\right), \\
\frac{B_{b}\left(x_{2 i}, x_{2 i+1}\right) B_{b}\left(x_{2 i+2}, x_{2 i+3}\right)}{s+B_{b}\left(x_{2 i} i, x_{2 i+2}\right.}, \\
\frac{B_{b}\left(x_{2 i}, x_{2 i+1}\right) B_{b}\left(x_{2 i+2}, x_{2 i+3}\right)}{s+B_{b}\left(x_{2 i+1}, x_{2 i+3}\right)}
\end{array}\right\} \\
& =\max \left\{B_{b}\left(x_{2 i}, x_{2 i+2}\right), B_{b}\left(x_{2 i+1}, x_{2 i+3}\right)\right\} .
\end{aligned}
$$

If $W_{b}\left(x_{2 i}, x_{2 i+2}\right)=B_{b}\left(x_{2 i+1}, x_{2 i+3}\right)$ for some $i$, then from (5), we have

$$
F\left(B_{b}\left(x_{2 i+1}, x_{2 i+3}\right)\right)<F\left(B_{b}\left(x_{2 i+1}, x_{2 i+3}\right)\right),
$$

which is a contradiction. We conclude that $W_{b}\left(x_{2 i}, x_{2 i+1}\right)=B_{b}\left(x_{2 i}, x_{2 i+2}\right)$ for all $i$. By (5), we get that

$$
F\left(B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)\right)<F\left(B_{b}\left(x_{2 i}, x_{2 i+1}\right)\right) .
$$

Since $F$ is strictly increasing, we deduce that

$$
B_{b}\left(x_{2 i+1}, x_{2 i+3}\right)<B_{b}\left(x_{2 i}, x_{2 i+2}\right) \text { for all } i \in \mathbb{N} \cup\{0\}
$$

This implies that

$$
B_{b}\left(x_{n+1}, x_{n+3}\right)<B_{b}\left(x_{n}, x_{n+2}\right) \text { for all } n \in \mathbb{N} \cup\{0\}
$$

Taking the limit as $n \longrightarrow \infty$ in the above and using (4), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} B_{b}\left(x_{n+1}, x_{n+3}\right)=0 \tag{6}
\end{equation*}
$$

Next, we show that $\left\{x_{n}\right\}$ is a $B_{b}$-Cauchy sequence in $X$. Suppose that there exists $\varepsilon>0$ such that for all $k \in \mathbb{N}$, there exist $m_{j}>n_{j}>j$ such that $B_{b}\left(x_{m_{j}}, x_{n_{j}}\right) \geq \varepsilon$. Let $n_{j}$ be the smallest number satisfying the condition above. We have

$$
\begin{equation*}
B_{b}\left(x_{m_{j}}, x_{n_{j}-1}\right)<\varepsilon \tag{7}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\varepsilon & \leq B_{b}\left(x_{m_{j}}, x_{n_{j}}\right) \\
& \leq s\left[B_{b}\left(x_{m_{j}}, x_{m_{j}+1}\right)+B_{b}\left(x_{m_{j}+1}, x_{n_{j}+1}\right)+B_{b}\left(x_{n_{j}}, x_{n_{j+1}}\right)\right] \tag{8}
\end{align*}
$$

By taking the upper limit as $j \rightarrow \infty$ in (8) and using (4), we get

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \lim _{j \rightarrow \infty} \sup B_{b}\left(x_{m_{j}+1}, x_{n_{j+1}}\right) \tag{9}
\end{equation*}
$$

From rectangular inequality, we have

$$
\begin{equation*}
B_{b}\left(x_{m_{j}}, x_{n_{j}}\right) \leq s\left[B_{b}\left(x_{m_{j}}, x_{n_{j}-1}\right)+B_{b}\left(x_{n_{j}-1}, x_{n_{j}+1}\right)+B_{b}\left(x_{n_{j}-1}, x_{n_{j}}\right)\right] . \tag{10}
\end{equation*}
$$

By (4), (6) and (7), we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \sup B_{b}\left(x_{m_{j}}, x_{n_{j}}\right) \leq s \varepsilon \tag{11}
\end{equation*}
$$

Also,

$$
B_{b}\left(x_{n_{j}}, x_{m_{j}+1}\right) \leq s\left[B_{b}\left(x_{n_{j}}, x_{n_{j}-1}\right)+B_{b}\left(x_{n_{j}-1}, x_{m_{j}}\right)+B_{b}\left(x_{m_{j}}, x_{m_{j}+1}\right)\right] .
$$

Again, from (4) and (7),

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \sup B_{b}\left(x_{n_{j}}, x_{m_{j}+1}\right) \leq s \varepsilon \tag{12}
\end{equation*}
$$

Applying (1) to conclude that

$$
\begin{aligned}
F\left(s^{2} B_{b}\left(x_{m_{j}+1}, x_{n j+1}\right)\right) & =F\left(s^{2} B_{b}\left(S x_{m_{j}}, T x_{n j}\right)\right) \\
& \leq F\left(W_{b}\left(x_{m_{j}}, x_{n_{j}}\right)\right)-\beta\left(B_{b}\left(x_{m_{j}}, x_{n_{j}}\right)\right)
\end{aligned}
$$

where

$$
W_{b}\left(x_{m_{j}}, x_{n_{j}}\right)=\max \left\{\begin{array}{c}
B_{b}\left(x_{m_{j}}, x_{n_{j}}\right), B_{b}\left(x_{m_{j}}, x_{m_{j}+1}\right) \\
B_{b}\left(x_{n_{j}}, x_{n_{j}+1}\right), B_{b}\left(x_{n_{j}}, x_{m_{j}+1}\right) \\
\frac{B_{b}\left(x_{m_{j}}, x_{m_{j}+1}\right) B_{b}\left(x_{n_{j}}, x_{n_{j}+1}\right)}{s+B_{b}\left(x_{m_{j}}, x_{n_{j}}\right)}, \frac{B_{b}\left(x_{m_{j}}, x_{m_{j}+1}\right) B_{b}\left(x_{\left.n_{j}, x_{n_{j}+1}\right)}^{s+B_{b}\left(x_{m_{j}+1}, x_{n_{j}+1}\right)}\right.}{}
\end{array}\right\}
$$

Taking the upper limit as $j \rightarrow \infty$ and using (F1), (9), (11) and (12), we have

$$
\begin{aligned}
F\left(s^{2} \frac{\varepsilon}{s}\right) & \leq F\left(s^{2} \lim _{j \rightarrow \infty} \sup B_{b}\left(x_{m_{j}+1}, x_{n j+1}\right)\right) \\
& \leq F\left(\max \left\{\begin{array}{c}
\lim _{j \rightarrow \infty} \sup B_{b}\left(x_{m_{j}}, x_{n_{j}}\right) \\
\lim _{j \rightarrow \infty} \sup B_{b}\left(x_{n_{j}}, x_{m_{j}+1}\right)
\end{array}\right\}\right)-\lim _{j \rightarrow \infty} \inf \beta\left(B_{b}\left(x_{m_{j}}, x_{n_{j}}\right)\right) \\
& \leq F(\max \{s \varepsilon, s \varepsilon\})-\lim _{j \rightarrow \infty} \inf \beta\left(B_{b}\left(x_{m_{j}}, x_{n_{j}}\right)\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \inf \beta\left(B_{b}\left(x_{m_{j}}, x_{n_{j}}\right)\right)=0 \tag{13}
\end{equation*}
$$

It is a contradiction with respect to the fact that $B_{b}\left(x_{m_{j}}, x_{n_{j}}\right) \geq \varepsilon$, because of the property $(\beta 1)$. Therefore, $\left\{x_{n}\right\}$ is a $B_{b}$-Cauchy sequence. Since $\left(X, B_{b}\right)$ is $(\alpha, \eta)$-complete and $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ or $\eta\left(x_{n}, x_{n+1}\right) \leq 1$ for all $n \in \mathbb{N} \cup\{0\}$, the sequence $\left\{x_{n}\right\}$ $B_{b}$-converges to some point $x^{*} \in X$, that is, $\lim _{n \longrightarrow \infty} B_{b}\left(x_{n}, x^{*}\right)=0$. This implies that $\lim _{i \longrightarrow \infty} B_{b}\left(x_{2 i+1}, x^{*}\right)=0$ and $\lim _{i \longrightarrow \infty} B_{b}\left(x_{2 i+2}, x^{*}\right)=0$. Since $T$ is $(\alpha, \eta)$-continuous, by Lemma 1.1, one writes

$$
\begin{aligned}
\frac{1}{s} B_{b}\left(x^{*}, T x^{*}\right) & =\liminf _{i \longrightarrow \infty} B_{b}\left(x_{2 i+1}, T x_{2 i+1}\right) \\
& \leq \limsup _{i \longrightarrow \infty} B_{b}\left(x_{2 i+1}, T x_{2 i+1}\right)=\limsup _{i \longrightarrow \infty} B_{b}\left(x_{2 i+1}, x_{2 i+2}\right)=0
\end{aligned}
$$

Hence $B_{b}\left(x^{*}, T x^{*}\right)=0$, and so $x^{*}=T x^{*}$. Similarly, $x^{*}=S x^{*}$. Therefore, $x^{*}$ is a common fixed point of $S$ and $T$. Let $y^{*} \in \operatorname{CFix}(S, T)$ such that $y^{*} \neq x^{*}$, and $\alpha\left(x^{*}, y^{*}\right) \geq 1$ or $\eta\left(x^{*}, y^{*}\right) \leq 1$. Then

$$
\begin{aligned}
& \beta\left(B_{b}\left(x^{*}, y^{*}\right)\right)+F\left(B_{b}\left(S x^{*}, T y^{*}\right)\right) \\
\leq & \beta\left(B_{b}\left(x^{*}, y^{*}\right)\right)+F\left(s^{2} B_{b}\left(S x^{*}, T y^{*}\right)\right) \\
\leq & F\left(\max \left\{\begin{array}{c}
B_{b}\left(x^{*}, y^{*}\right), B_{b}\left(x^{*}, S x^{*}\right), B_{b}\left(y^{*}, T y^{*}\right), \\
B_{b}\left(y^{*}, S x^{*}\right), \\
\frac{B_{b}\left(x^{*}, S x^{*}\right) B_{b}\left(y^{*}, T y^{*}\right)}{s+B_{b}\left(x^{*}, y^{*}\right)}, \\
\frac{B_{b}\left(x^{*}, S x^{*}\right) B_{b}\left(y^{*}, T y^{*}\right)}{s+B_{b}\left(S x^{*}, T y^{*}\right)}
\end{array}\right\}\right) .
\end{aligned}
$$

We get

$$
\beta\left(B_{b}\left(x^{*}, y^{*}\right)\right)+F\left(B_{b}\left(x^{*}, y^{*}\right)\right) \leq F\left(B_{b}\left(x^{*}, y^{*}\right)\right)
$$

which is a contradiction. Hence $x^{*}=y^{*}$. Therefore, $S$ and $T$ have a unique common fixed point.

Theorem 2.1 is illustrated by the following example.
EXAMPLE 2.1. Let $X=\{1,2,3,4,5\}$. It is easy to check that the mapping $B_{b}: X \times X \rightarrow[0,+\infty)$ given by

$$
\begin{aligned}
B_{b}(x, x) & =0, \text { for all } x \in X, \\
B_{b}(1,3) & =B_{b}(1,5)=B_{b}(2,3)=B_{b}(3,5)=1, \\
B_{b}(2,4) & =B_{b}(2,5)=B_{b}(4,5)=4, \\
B_{b}(1,2) & =9, \\
B_{b}(1,4) & =B_{b}(3,4)=10, \\
B_{b}(x, y) & =B_{b}(y, x), \text { for all } x, y \in X,
\end{aligned}
$$

is a Branciari $b$-metric on $X$ with $s=3$. Define $\beta:(0, \infty) \longrightarrow(0, \infty)$ by $\beta(t)=t+\frac{1}{150}$. Then $\beta \in \Delta_{\beta}$. Also, define $F:(0, \infty) \longrightarrow(-\infty, \infty)$ by $F(t)=t+\ln t$, for all $t>0$. Then $F \in \Delta_{F}$. Define the mappings $S, T: X \longrightarrow X$ and $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ by

$$
S x=3 \text { for all } \mathrm{x} \in X,
$$

$$
\begin{array}{ll}
T(1)=3, & T(2)=5, \\
T(4)=1, & T(5)=2,
\end{array}
$$

and

$$
\begin{gathered}
\alpha(x, y)= \begin{cases}1+\cosh (x+y), & (x, y) \in\left\{\begin{array}{c}
(1,4), \\
(3,4),(3,1)
\end{array}\right\}, \\
\frac{1}{2+e^{(x+y)}}, & \text { otherwise, }\end{cases} \\
\eta(x, y)= \begin{cases}\tanh (x+y), & (x, y) \in\left\{\begin{array}{c}
(1,4), \\
(3,4),(3,1)
\end{array}\right\}, \\
3+e^{-(x+y)}, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Then $S$ and $T$ are $(\alpha, \eta)$-continuous and the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible. Let $x_{0}=1$. We have

$$
\alpha(1, S(1))=\alpha(1,1) \geq 1 \text { or } \eta(1, S(1))=\eta(1,1) \leq 1 .
$$

For $(x, y) \in\{(1,4),(3,4)\}, \alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1$ and $B_{b}(S x, T y)>0$, we have

$$
\beta\left(B_{b}(x, y)\right)+F\left(s^{2} B_{b}(S x, T y)\right) \leq F\left(W_{b}(x, y)\right) .
$$

Thus all conditions of Theorem 2.1 are satisfied and 3 is the unique common fixed point of $S$ and $T$.

THEOREM 2.2. Let $\left(X, B_{b}\right)$ be a complete Branciari $b$-metric space with parameter $s \geq 1$ and let $S, T: X \longrightarrow X$ be self-mappings satisfying the following conditions:
(i) the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible;
(ii) $(S, T)$ is an $(\alpha, \eta, \beta)$-b-Branciari $F$-rational contraction;
(iii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, S x_{0}\right) \geq 1$ or $\eta\left(x_{0}, S x_{0}\right) \leq 1$;
(iv) $\left(X, B_{b}\right)$ is an $(\alpha, \eta)$-regular Branciari $b$-metric space.

Then $S$ and $T$ have a common fixed point. Moreover, $S$ and $T$ have a unique common fixed point when $\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1$ for all $x, y \in C F i x(S, T)$.

PROOF. Let $x_{0} \in X$ such that $\alpha\left(x_{0}, S x_{0}\right) \geq 1$ or $\eta\left(x_{0}, S x_{0}\right) \leq 1$. As in the proof as in Theorem 2.1, we construct a sequence $\left\{x_{n}\right\}$ in $X$ defined by $x_{2 i+1} \in S x_{2 i}$ and $x_{2 i+2} \in T x_{2 i+1}(i \geq 0)$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ or $\eta\left(x_{n}, x_{n+1}\right) \leq 1$, for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \longrightarrow x^{*} \in X$ as $n \longrightarrow \infty$. By condition (iv), we have $\alpha\left(x_{n}, x^{*}\right) \geq 1$ or $\eta\left(x_{n}, x^{*}\right) \leq 1$ for all $n \in \mathbb{N} \cup\{0\}$. From (1), we have

$$
\begin{aligned}
& \beta\left(B_{b}\left(x_{2 n}, x^{*}\right)\right)+F\left(B_{b}\left(S x_{2 n}, T x^{*}\right)\right) \\
\leq & \beta\left(B_{b}\left(x_{2 n}, x^{*}\right)\right)+F\left(s^{2} B_{b}\left(S x_{2 n}, T x^{*}\right)\right) \\
\leq & F\left(\max \left\{\begin{array}{c}
B_{b}\left(x_{2 n}, x^{*}\right), B_{b}\left(x_{2 n}, S x_{2 n}\right), B_{b}\left(x^{*}, T x^{*}\right), \\
B_{b}\left(x^{*}, S x_{2 n}\right), \\
\frac{B_{b}\left(x_{2 n}, S x_{2 n}\right) B_{b}\left(x^{*}, T x^{*}\right)}{s+B_{b}\left(x_{2 n}, x^{*}\right)}, \\
\frac{B_{b}\left(x_{2 n}, S x_{2 n}\right) B_{b}\left(x^{*}, T x^{*}\right)}{s+B_{b}\left(S x_{2 n}, T x^{*}\right)}
\end{array}\right\}\right)
\end{aligned}
$$

which implies

$$
F\left(B_{b}\left(x_{2 n+1}, T x^{*}\right)\right) \leq F\left(\max \left\{\begin{array}{c}
B_{b}\left(x_{2 n}, x^{*}\right), B_{b}\left(x_{2 n}, x_{2 n+1}\right), B_{b}\left(x^{*}, T x^{*}\right) \\
B_{b}\left(x^{*}, x_{2 n+1}\right), \\
\frac{B_{b}\left(x_{2 n}, x_{2 n+1}\right) B_{b}\left(x^{*}, T x^{*}\right)}{s+B_{b}\left(x_{2 n}, x^{*}\right)}, \\
\frac{B_{b}\left(x_{n}, x_{2 n+1}\right) B_{b}\left(x^{*}, T x^{*}\right)}{s+B_{b}\left(x_{2 n+1}, T x^{*}\right)}
\end{array}\right\}\right)
$$

From (F1), we have

$$
B_{b}\left(x_{2 n+1}, T x^{*}\right) \leq \max \left\{\begin{array}{c}
B_{b}\left(x_{2 n}, x^{*}\right), B_{b}\left(x_{2 n}, x_{2 n+1}\right), B_{b}\left(x^{*}, T x^{*}\right), \\
B_{b}\left(x^{*}, x_{2 n+1}\right), \\
\frac{B_{b}\left(x_{2 n}, x_{2 n+1}\right) B_{b}\left(x^{*}, T x^{*}\right)}{s+B_{b}\left(x_{2 n}, x^{*}\right)}, \\
\frac{B_{b}\left(x_{2 n}, x_{2 n+1)} B_{b}\left(x^{*}, T x^{*}\right)\right.}{s+B_{b}\left(x_{2 n+1}, T x^{*}\right)}
\end{array}\right\}
$$

Suppose that $x^{*} \neq T x^{*}$, then $B_{b}\left(x^{*}, T x^{*}\right)>0$. From Lemma 1.1, we get

$$
\begin{aligned}
\frac{1}{s} B_{b}\left(x^{*}, T x^{*}\right) & =\liminf _{n \longrightarrow} B_{b}\left(x_{2 n+1}, T x^{*}\right) \\
& \leq \limsup _{n \longrightarrow \infty} B_{b}\left(x_{2 n+1}, T x^{*}\right) \leq B_{b}\left(x^{*}, T x^{*}\right)
\end{aligned}
$$

Hence $B_{b}\left(x^{*}, T x^{*}\right)=0$, which is a contradiction. Therefore, $x^{*}=T x^{*}$. Similarly, $x^{*}=S x^{*}$, so $x^{*}$ is a common fixed point of $S$ and $T$. The uniqueness follows similarly as in Theorem 2.1.

Now, we state the following corollaries. The first one is easy.
COROLLARY 2.1. Let $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ be two functions and $\left(X, B_{b}\right)$ be an $(\alpha, \eta)$-complete Branciari $b$-metric space. Consider $S, T: X \longrightarrow X$ two self-mappings satisfying the following conditions:
(i) for all $x, y \in X$ with $(\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1)$ and $B_{b}(S x, T y)>0$, we have

$$
\begin{aligned}
& \beta\left(B_{b}(x, y)\right)+F\left(s^{2} B_{b}(S x, T y)\right) \\
\leq \quad & F\left(\alpha_{1} B_{b}(x, y)+\alpha_{2} B_{b}(x, S x)+\alpha_{3} B_{b}(y, T y)+\alpha_{4} B_{b}(y, S x)\right)
\end{aligned}
$$

where $\beta \in \Delta_{\beta}$ and $\alpha_{i} \geq 0$ for $i \in\{1,2,3,4\}$ such that $\sum_{i=1}^{4} \alpha_{i}=1, \alpha_{3}<\frac{1}{s}$ and $F \in \Delta_{F}$;
(ii) the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible;
(iii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, S x_{0}\right) \geq 1$ or $\eta\left(x_{0}, S x_{0}\right) \leq 1$;
(iv) either $S$ and $T$ are $(\alpha, \eta)$-continuous, or $\left(X, B_{b}\right)$ is an $(\alpha, \eta)$-regular Branciari $b$-metric space.

Then $S$ and $T$ have a common fixed point.
Taking $S=T$ in Corollary 2.1, we state the following result.
COROLLARY $2.2([29])$. Let $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ be two functions and $\left(X, B_{b}\right)$ be an $(\alpha, \eta)$-complete Branciari $b$-metric space. Let $T: X \longrightarrow X$ be a self-mapping satisfying the following conditions:
(i) for all $x, y \in X$ with $(\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1)$ and $B_{b}(T x, T y)>0$, we have

$$
\begin{aligned}
& \beta\left(B_{b}(x, y)\right)+F\left(s^{2} B_{b}(T x, T y)\right) \\
\leq \quad & F\left(\alpha_{1} B_{b}(x, y)+\alpha_{2} B_{b}(x, T x)+\alpha_{3} B_{b}(y, T y)+\alpha_{4} B_{b}(y, T x)\right)
\end{aligned}
$$

where $\beta \in \Delta_{\beta}$ and $\alpha_{i} \geq 0$ for $i \in\{1,2,3,4\}$ such that $\sum_{i=1}^{4} \alpha_{i}=1, \alpha_{3}<\frac{1}{s}$ and $F \in \Delta_{F} ;$
(ii) $T$ is triangular $(\alpha, \eta)$-admissible;
(iii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ or $\eta\left(x_{0}, T x_{0}\right) \leq 1$;
(iv) either $T$ is $(\alpha, \eta)$-continuous, or $\left(X, B_{b}\right)$ is an $(\alpha, \eta)$-regular Branciari $b$-metric space.

Then $T$ has a fixed point. Taking $\beta(t)=\tau(>0)$ in Theorem 2.1 and Theorem 2.2, we state the following corollary (an extension of Wardowski result [20]).

COROLLARY 2.3. Let $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ be two functions. Let $\left(X, B_{b}\right)$ be an $(\alpha, \eta)$-complete Branciari $b$-metric space. Consider $S, T: X \longrightarrow X$ two self-mappings satisfying the following conditions:
(i) the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible;
(ii) for all $x, y \in X$ with $\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1$ and $B_{b}(S x, T y)>0$, we have

$$
\tau+F\left(s^{2} B_{b}(S x, T y)\right) \leq F\left(B_{b}(x, y)\right)
$$

where $\tau>0$ and $F \in \Delta_{F}$;
(iii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, S x_{0}\right) \geq 1$ or $\eta\left(x_{0}, S x_{0}\right) \leq 1$;
(iv) either $S$ and $T$ are $(\alpha, \eta)$-continuous, or $\left(X, B_{b}\right)$ is an $(\alpha, \eta)$-regular Branciari $b$-metric space.

Then $S$ and $T$ have a common fixed point.

Taking $S=T$ in Corollary 2.3, we have
COROLLARY 2.4. Let $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ be two functions, $\left(X, B_{b}\right)$ be an $(\alpha, \eta)$-complete Branciari $b$-metric space and let $S: X \longrightarrow X$ be a self-mapping satisfying the following conditions:
(i) $S$ is a triangular $(\alpha, \eta)$-admissible mapping;
(ii) for all $x, y \in X$ with $\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1$ and $B_{b}(S x, S y)>0$, we have

$$
\tau+F\left(s^{2} B_{b}(S x, S y)\right) \leq F\left(B_{b}(x, y)\right)
$$

where $\tau>0$ and $F \in \Delta_{F}$;
(iii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, S x_{0}\right) \geq 1$ or $\eta\left(x_{0}, S x_{0}\right) \leq 1$;
(iv) either $S$ is $(\alpha, \eta)$-continuous, or $\left(X, B_{b}\right)$ is an $(\alpha, \eta)$-regular Branciari $b$-metric space.

Then $S$ has a fixed point.
EXAMPLE 2.2. Let $X=\{0,1,2,3\}$. Define $B_{b}: X \times X \longrightarrow[0, \infty)$ by

$$
\begin{aligned}
B_{b}(0,3) & =B_{b}(2,3)=B_{b}(0,2)=1 \\
B_{b}(1,3) & =3, \quad B_{b}(0,1)=6, \quad B_{b}(1,2)=5, \\
B_{b}(x, x)=0 & \text { and } \quad B_{b}(x, y)=B_{b}(y, x), \quad \text { for all } x, y \in X
\end{aligned}
$$

Obviously, $\left(X, B_{b}\right)$ is a Branciari $b$-metric space with $s=\frac{6}{5}$, but $\left(X, B_{b}\right)$ is not a $b$ metric space with the same coefficient $s$ because the triangle inequality does not hold for all $x, y, z \in X$. Indeed,

$$
6=B_{b}(0,1)>\frac{6}{5}\left[B_{b}(0,3)+B_{b}(3,1)\right]=\frac{6}{5}[1+3]=\frac{24}{5}
$$

Note that $\left(X, B_{b}\right)$ is not a Branciari metric space because the rectangular inequality does not hold for all all $x, y, u, v \in X$. Indeed,

$$
6=B_{b}(0,1)>B_{b}(0,2)+B_{b}(2,3)+B_{b}(3,1)=1+1+3=5
$$

Let $S, T: X \longrightarrow X$ be defined as

$$
S(x)=\left\{\begin{array}{ll}
0, & x \in\{0,1,2\}, \\
2, & x=3,
\end{array} \quad \text { and } T(x)= \begin{cases}0, & x=0 \\
2, & x \in\{1,2\} \\
1, & x=3\end{cases}\right.
$$

Define $F:(0, \infty) \longrightarrow(-\infty, \infty)$ by $F(t)=\ln t$, for all $t>0$. Also, we define $\alpha, \eta:$ $X \times X \longrightarrow[0, \infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{ll}
2, & x \in(x, y) \in\{0,1,2\}, \\
\frac{1}{5}, & \text { otherwise },
\end{array} \quad \text { and } \eta(x, y)= \begin{cases}1, & x \in\{0,1,2\} \\
\frac{1}{3}, & \text { otherwise }\end{cases}\right.
$$

For $(x, y) \in\{(0,1),(1,2)\}$ such that $\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1$ and $B_{b}(S x, T y)>0$, we have

$$
\tau+F\left(s^{2} B_{b}(S x, T y)\right) \leq F\left(B_{b}(x, y)\right)
$$

Thus all the conditions of Corollary 2.3 are satisfied with $\tau \in(0,1]$. Thus $S$ and $T$ has a common fixed point, which is, $x=0$.

Now, taking $F(t)=\ln t$ in Theorem 2.1 and Theorem 2.2, we state the following result.

COROLLARY 2.5. Let $\alpha, \eta: X \times X \longrightarrow[0, \infty)$ be two functions. Let $\left(X, B_{b}\right)$ be an $(\alpha, \eta)$-complete Branciari $b$-metric space. Consider $S, T: X \longrightarrow X$ two self-mappings satisfying the following conditions:
(i) the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible;
(ii) for all $x, y \in X$ with $\alpha(x, y) \geq 1$ or $\eta(x, y) \leq 1$ and $B_{b}(S x, T y)>0$, we have

$$
s^{2} B_{b}(S x, T y) \leq e^{-\beta\left(B_{b}(x, y)\right)} W_{b}(x, y)
$$

where $\beta \in \Delta_{\beta}, F \in \Delta_{F}$ and $W_{b}(x, y)$ is defined by (2)
(iii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, S x_{0}\right) \geq 1$ or $\eta\left(x_{0}, S x_{0}\right) \leq 1$;
(iv) either $S$ and $T$ are ( $\alpha, \eta$ )-continuous, or $\left(X, B_{b}\right)$ is an $(\alpha, \eta)$-regular Branciari $b$-metric space.

Then $S$ and $T$ have a common fixed point.

## 3 G- $\beta$ - $b$-Branciari $F$-Rational Contractions

Consistent with Jachymski [31], let $\left(X, B_{b}\right)$ be a Branciari $b$-metric space and let $\Delta$ denote the diagonal of the Cartesian product $X \times X$. Consider a directed graph $G$ such that the set $V(G)$ of its vertices coincides with $X$, and the set $E(G)$ of its edges contains all loops, that is, $E(G) \supseteq \Delta$. We assume that $G$ has no parallel edges, so we can identify $G$ with the pair $(V(G), E(G))$.

DEFINITION 3.1 ([29]). Let $\left(X, B_{b}\right)$ be a Branciari $b$-metric space endowed with a graph and let $S: X \longrightarrow X$ be a given mapping.
(i) $\left(X, B_{b}\right)$ is said to be $G$-complete if every Cauchy sequence $\left\{x_{n}\right\}$ in $X$ satisfying $\left(x_{n}, x_{n+1}\right) \in E(G)$ or $\left(x_{n+1}, x_{n}\right) \in E(G)$ for all $n \in \mathbb{N}$, is convergent in $X$.
(ii) $\left(X, B_{b}\right)$ is said to be $G$-regular if for each sequence $\left\{x_{n}\right\}$ in $X$ satisfying $x_{n} \longrightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ (resp. $\left.\left(x_{n+1}, x_{n}\right) \in E(G)\right)$, we have $\left(x_{n}, x\right) \in E(G)$ (resp. $\left.\left(x, x_{n}\right) \in E(G)\right)$ for all $n \in \mathbb{N}$, we have

$$
x_{n} \longrightarrow x \Longrightarrow S x_{n} \longrightarrow S x
$$

The main result of this section is
THEOREM 3.1. Let $\left(X, B_{b}\right)$ be a $G$-complete Branciari $b$-metric space such that for all $(x, y) \in E(G)$ and $(y, z) \in E(G)$, we have $(x, z) \in E(G)$. Let $S, T: X \longrightarrow X$ be self-mappings satisfying the following assertions:
(i) for all $x, y \in X$ with $(x, y) \in E(G)$, we have $(S x, T y) \in E(G)$;
(ii) $S$ and $T$ are monotone and the following inequality holds

$$
\beta\left(B_{b}(x, y)\right)+F\left(s^{2} B_{b}(S x, T y)\right) \leq F\left(W_{b}(x, y)\right),
$$

for all $x, y \in X$ with $((x, y) \in E(G)$ or $(y, x) \in E(G))$ and $B_{b}(S x, T y)>0$, where $\beta \in \Delta_{\beta}, F \in \Delta_{F}$ and $W_{b}(x, y)$ is defined by (2);
(iii) there exists $x_{0} \in X$ such that $\left(x_{0}, S x_{0}\right) \in E(G)$ or $\left(S x_{0}, x_{0}\right) \in E(G)$;
(iv) either $S$ and $T$ are $G$-continuous, or $\left(X, B_{b}\right)$ is a $G$-regular Branciari $b$-metric space.

Then $S$ and $T$ have a common fixed point. Moreover, $S$ and $T$ have a unique common fixed point when $(x, y) \in E(G)$ or $(y, x) \in E(G)$ for all $x, y \in C F i x(S, T)$.

PROOF. This result is obtained as a consequence of Theorem 2.1 and Theorem 2.2 by taking

$$
\alpha(x, y)=\left\{\begin{array}{ll}
1, & (x, y) \in E(G), \\
0, & \text { otherwise },
\end{array} \quad \text { and } \eta(x, y)= \begin{cases}1, & (y, x) \in E(G) \\
2, & \text { otherwise }\end{cases}\right.
$$

As a consequence of Theorem 3.1, we have
COROLLARY 3.1. Let $\left(X, B_{b}\right)$ be a $G$-complete Branciari $b$-metric space such that for all $(x, y) \in E(G)$ and $(y, z) \in E(G)$, we have $(x, z) \in E(G)$. Let $S, T: X \longrightarrow X$ be self-mappings satisfying the following assertions:
(i) for all $x, y \in X$ with $(x, y) \in E(G)$, we have $(S x, T y) \in E(G)$;
(ii) $S$ and $T$ are monotone and the following inequality holds for all $x, y \in X$ with $((x, y) \in E(G)$ or $(y, x) \in E(G))$ such that $B_{b}(S x, T y)>0$ and

$$
s^{2} B_{b}(S x, T y) \leq e^{-\beta\left(B_{b}(x, y)\right)} W_{b}(x, y)
$$

where $\beta \in \Delta_{\beta}, F \in \Delta_{F}$ and $W_{b}(x, y)$ is defined by (2);
(iii) there exists $x_{0} \in X$ such that $\left(x_{0}, S x_{0}\right) \in E(G)$ or $\left(S x_{0}, x_{0}\right) \in E(G)$;
(iv) either $S$ and $T$ are $G$-continuous, or $\left(X, B_{b}\right)$ is a $G$-regular Branciari $b$-metric space.

Then $S$ and $T$ have a common fixed point.

## 4 Ordered $\beta$ - $b$-Branciari $F$-Rational Contractions

Fixed point theorems for monotone operators in ordered metric spaces have been widely investigated and have had various applications in differential and integral equations and other branches, (see $[23,24,25,26]$ and the references therein).

Let $\preceq$ be a partial order on $X$. Recall that $T: X \longrightarrow X$ is nondecreasing if for all $x, y \in X$,

$$
x \preceq y \Longrightarrow T x \preceq T y
$$

DEFINITION $4.1([29])$. Let $\left(X, B_{b}, \preceq\right)$ be an ordered Branciari $b$-metric space and $S: X \longrightarrow X$ be a given mapping.
(i) $\left(X, B_{b}\right)$ is said to be $\preceq$-complete if every Cauchy sequence $\left\{x_{n}\right\}$ in $X$ satisfying $x_{n} \preceq x_{n+1}$ or $x_{n+1} \preceq x_{n}$ for all $n \in \mathbb{N}$, is convergent in $X$.
(ii) $\left(X, B_{b}\right)$ is said to be $\preceq$-regular if for each sequence $\left\{x_{n}\right\}$ in $X$ satisfying $x_{n} \longrightarrow x$ and $x_{n} \preceq x_{n+1}\left(\right.$ resp. $\left.x_{n+1} \preceq x_{n}\right)$, we have $x_{n} \preceq x\left(\right.$ resp. $\left.x \preceq x_{n}\right)$ for all $n \in \mathbb{N}$, we have

$$
x_{n} \longrightarrow x \Longrightarrow S x_{n} \longrightarrow S x
$$

Our result is
THEOREM 4.1. Let $\left(X, B_{b}, \preceq\right)$ be an $\preceq$-complete partially ordered Branciari $b$ metric space. Let $S, T: X \longrightarrow X$ be two self-mappings satisfying the following assertions:
(i) the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible;
(ii) $S$ and $T$ are monotone and the following inequality holds

$$
\beta\left(B_{b}(x, y)\right)+F\left(s^{2} B_{b}(S x, T y)\right) \leq F\left(W_{b}(x, y)\right)
$$

for all $x, y \in X$ with $(x \preceq y$ or $y \preceq x)$ and $B_{b}(S x, T y)>0$, where $\beta \in \Delta_{\beta}$, $F \in \Delta_{F}$ and $W_{b}(x, y)$ is defined by (2);
(iii) there exists $x_{0} \in X$ such that $x_{0} \preceq S x_{0}$ or $S x_{0} \preceq x_{0}$;
(iv) either $S$ and $T$ are $\preceq$-continuous, or $\left(X, B_{b}\right)$ is $\preceq$-regular.

Then $S$ and $T$ have a common fixed point.
PROOF. It suffices to take in Theorems 2.1 and 2.2,

$$
\alpha(x, y)=\left\{\begin{array}{ll}
1, & x \preceq y, \\
0, & \text { otherwise },
\end{array} \quad \text { and } \eta(x, y)= \begin{cases}1, & y \preceq x \\
2, & \text { otherwise }\end{cases}\right.
$$

Taking $F(t)=\ln t$ in Theorem 4.1, we state the following corollary.
COROLLARY 4.1. Let $\left(X, B_{b}, \preceq\right)$ be an $\preceq$-complete partially ordered Branciari $b$ metric space. Let $S, T: X \longrightarrow X$ be self-mappings satisfying the following assertions:
(i) the pair $(S, T)$ is triangular $(\alpha, \eta)$-admissible;
(ii) $S$ and $T$ are monotone and the following inequality holds

$$
s^{2} B_{b}(S x, T y) \leq e^{-\beta\left(B_{b}(x, y)\right)} W_{b}(x, y)
$$

for all $x, y \in X$ with $(x \preceq y$ or $y \preceq x)$ and $B_{b}(S x, T y)>0$, where $\beta \in \Delta_{\beta}$, $F \in \Delta_{F}$ and $W_{b}(x, y)$ is defined by (2);
(iii) there exists $x_{0} \in X$ such that $x_{0} \preceq S x_{0}$ or $S x_{0} \preceq x_{0}$;
(iv) either $S$ and $T$ are $\preceq$-continuous, or $\left(X, B_{b}\right)$ is $\preceq$-regular.

Then $S$ and $T$ have a common fixed point.

## References

[1] H. Afshari, H. Aydi and E. Karapinar, Existence of fixed points of set-valued mappings in b-metric spaces, East J. Math., 32(2016), 319-332.
[2] H. Afshari, S. Kalantari and H. Aydi, Fixed point results for generalized $\alpha-$ $\psi$-Suzuki-contractions in quasi- $b$-metric-like spaces, Asian-European Journal of Mathematics, 11(2018), 1850012 (12 pages).
[3] A. Al-Rawashdeh, H. Aydi, A. Felhi, S. Sahmim and W. Shatanawi, On common fixed points for $\alpha-F$-contractions and applications, J. Nonlinear Sci. Appl., 9(2016), 3445-3458.
[4] H. Aydi, $\alpha$-implicit contractive pair of mappings on quasi $b$-metric spaces and an application to integral equations, J. Nonlinear Convex Anal., 17(2016), 2417-2433.
[5] H. Aydi, M.F. Bota, E. Karapinar and S. Moradi, A common fixed point for weak $\phi$-contractions on $b$-metric spaces, Fixed Point Theory, 13(2012), 337-346.
[6] H. Aydi, A. Felhi and S. Sahmim, Common fixed points via implicit contractions on b-metric-like spaces, J. Nonlinear Sci. Appl., 10(2017), 1524-1537.
[7] H. Aydi, A. Felhi and S. Sahmim, On common fixed points for $(\alpha, \psi)$-contractions and generalized cyclic contractions in $b$-metric-like spaces and consequences, J. Nonlinear Sci. Appl., 9(2016), 2492-2510.
[8] H. Aydi, E. Karapinar, M. F. Bota and S. Mitrović, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory Appl., 2012, 2012:88, 8 pp.
[9] H. Aydi, E. Karapinar and H. Yazidi, Modified $F$-contractions via $\alpha$-admissible mappings and application to integral equations, Filomat, 31(2017), 1141-1148.
[10] I. A. Bakhtin, The contraction mapping principle in almost metric space, (Russian) Functional analysis, Ulyanovsk. Gos. Ped. Inst. Ulyanovsk, (1989), 26-37.
[11] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
[12] S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46(1998), 263-276.
[13] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debr., 57(2000), 31-37.
[14] M. Cosentino, M. Jleli, B. Samet and C. Vetro, Solvability of integrodifferential problems via fixed point theory in b-metric spaces, Fixed Point Theory Appl., 2015, 2015:15.
[15] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math., 3(1922), 133-181.
[16] E. Karapınar, S. Czerwik and H. Aydi, $(\alpha, \psi)$-Meir-Keeler contraction mappings in generalized b-metric spaces, Journal of Function spaces, 2018(2018), Article ID 3264620, 4 pages.
[17] H. Piri and P. Kumam, Some fixed point theorems concerning $F$-contraction in complete metric spaces, Fixed Point Theory Appl., 2014(2014), 11 pages.
[18] T. Van An, N. Van Dung, Z. Kadelburg and S. Radenović, Various generalizations of metric spaces and fixed point theorems, Rev. R. Acad. Cienc. Exactasıs. Nat. Ser. A Math., 109(2015), 175-198.
[19] H. Piri and S. Rahrovi, Generalized multivalued $F$-weak contractions on complete metric spaces, Sahand Communications in Mathematical Analysis, 2(2015), 1-11.
[20] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012, 2012:215, 7 pp.
[21] V. La Rosa and P. Vetro, Common fixed points for $\alpha-\psi$ - $\phi$-contractions in generalized metric spaces, Nonlinear Anal. Model. Control, 19(2014), 43-54.
[22] D. Wardowski and N. Van Dung, Fixed points of $F$-weak contractions on complete metric space, Demonstr. Math., 1(2014), 146-155.
[23] N. Hussain, M. A. Kutbi and P. Salimi, Fixed point theory in $\alpha$-complete metric space with applications, Abstr. Appl. Anal., 2014(2014), 11 pages.
[24] M. A. Kutbi, A. Alam and M. Imdad, Sharpening some core theorems of Nieto and Rodrguez-LÓpez with application to boundary value problem, Fixed Point Theory Appl., 2015, 2015: 15.
[25] J. J. Nieto and R. Rodriguez Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(2005), 223-229.
[26] B. Samet, E. Karapinar, H. Aydi and V. C. Rajić, Discussion on some coupled fixed point theorems, Fixed Point Theory Appl., 2013, 2013:50.
[27] J. R. Roshan, V. Parvaneh, Z. Kadelburg and N. Hussain, New fixed point results in $b$-rectangular metric spaces, Nonlinear Analysis: Control and Modelling, 21(2016), 614-634.
[28] E. Ameer and M. Arshad, Two new fixed point results for generalized Wardowski type contractions, J. Ana. Num. Theor., 5(2017), 63-71.
[29] N. Hussain, V. Parvaneh, B. A. S. Alamria and Z. Kadelburg, F-HR-type contractions on $(\alpha, \eta)$-complete rectangular b-metric spaces, J. Nonlinear Sci. Appl., 10(2017), 1030-1043.
[30] M. Berzig and E. Karapinar, Note on "Modified $\alpha-\psi$-contractive mappings with applications", Thai J. Math., 13(2015), 147-152.
[31] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136(2008), 1359-1373.


[^0]:    *Mathematics Subject Classifications: 47H10, 54H25
    ${ }^{\dagger}$ Department of Mathematics, Taiz University, Taiz, Yemen. Department of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan
    ${ }^{\ddagger}$ International Islamic University, H-10, Islamabad - 44000, Pakistan
    ${ }^{\S}$ Department of Mathematics, College of Education of Jubail, Imam Abdulrahman Bin Faisal University, P.O. 12020, Industrial Jubail 31961, Saudi Arabia

