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Abstract

In this paper we generalize some important results associated with nonlinear
contractive mappings. Our principle results discuss the existence of fixed points
for the operator A.(B1+B2) where A, B1 and B2 are operators that satisfy some
properties. An application is considered in the last section of this paper.

1 Introduction

Fixed point theory play an important role in many fields of sciences. For example,
in economics [6, 7], physics [8], biology [1, 2], technology and more. In mathematics
the most well known result in the theory of fixed points is the Banach contraction
mapping principle, see [10], and the more general fixed point theorem is due to Boyd
and Wong, see [3]; for more fixed point theorems see [4, 10] and the references therein.
Mathematicians can solve a large number of problems by the fixed point theory and
these problems can be described by some differential or integral or integro-differential
equations.
In the present paper we consider the following nonlinear integral equation in the

Banach algebra C([0, 1] ,R),

x(t) = f(t, x(t))
(∫ 1

0

k1(t, s)g1(x(s))ds+

∫ 1

0

k2(t, s)g2(x(s))ds
)
, (1.1)

where f : [0, 1] × R → R, g1, g2 : R → R+ and k1, k2 : [0, 1] × [0, 1] → R+ are
continuous functions (here R denotes the set of all real numbers and R+ denotes the
set of all nonnegative real numbers). We discuss the existence of solutions for (1.1) in
the third section. In the second section we prove some auxiliary fixed point theorems
concerned with the nonlinear contractions as a first step, then we prove the existence
of solutions for the equation B1x + B2x = x where B1 is a nonlinear contraction and
B2 is a completely continuous map. This result is a generalization of the Krasnoselskii
nonlinear alternative type for the sum of a contraction and a completely continuous
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map [9]. Finally, as a final step of the second section, we present a result which ensure
the existence of solutions for the abstract equation (A(B1 + B2))x = x in a Banach
algebra space equipped with a cone K. In the following, we introduce some useful
definitions and theorems.
Let X be a Banach space with a norm ‖.‖X , in short ‖.‖. A Banach algebra space

is a complex Banach space together with an associative and distributive multiplication
such that:

λ(x.y) = (λx).y = x.(λy), ‖x.y‖ ≤ ‖x‖ ‖y‖ ∀ (x, y) ∈ X2,∀λ ∈ C.

A nonempty and closed subsetK ofX is called a cone ifK+K ⊂ K, λK ⊂ K for λ ≥ 0
and K ∩ {−K} = {0}. Each cone K induces a partial order ≤ on X by x ≤ y ⇔
y − x ∈ K, x < y will stand for x ≤ y and x 6= y. The pair (X,≤) or (X,K) is a
partially ordered Banach space.
A mapping A : X → X is called α-contraction if there exists a positive real number

0 ≤ α < 1 such that ‖Ax−Ay‖ ≤ α‖x− y‖ for all x, y in X, and it is called nonlinear
contraction if there exists a nondecreasing function φ : R+ → R+ such that for every
pair of points x, y in X we have ‖Ax − Ay‖ ≤ φ(‖x − y‖) with φ(t) < t for all t >
0 and φ(0) = 0. An operator A : X → X is called compact if A(X) is a compact subset
of X. Similarly, A : X → X is called totally bounded if A maps the bounded subsets
of X into relatively compact subsets of X. Finally, A : X → X is called completely
continuous operator if it is continuous and totally bounded.

LEMMA 1 ([4]). Let B(y0, r) be a sphere in the complete metric space (X, d).
Let also T : B(y0, r) −→ X be a contraction mapping which satisfies the Lipschitz
condition

d(T (x1), T (x2)) ≤ γd (x1, x2)

for every pair points x1, x2 in B(y0, r), γ being a constant such that 0 ≤ γ < 1. Then if
d(y0, T (y0)) ≤ r(1−γ), there exists a unique point x0 ∈ B (y0, r) such that T (x0) = x0.

LEMMA 2 ([3]). (Boyd and Wong) Let X be a Banach space and let T : X −→ X
be a nonlinear contraction. Then T has a unique fixed point in X.

LEMMA 3 ([4]). (Nonlinear alternative) Let K be a convex subset of a normed
linear space E, U an open subset of K, N : U −→ K a compact map and 0 ∈ U . Then
either

i. N has a fixed point in U or,

ii. there is a point u ∈ ∂U and λ ∈ (0, 1) such that u = λNu.

THEOREM 1 ([9]). Let (X, ‖.‖) be a Banach space, B1, B2 be two operators from
X into X such that B1 is γ-contraction and B2 is completely continuous. Assume also
that
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(H) there exists a sphere B(0, r) in X with center 0 and radius r such that for every
y ∈ B(0, r):

r(1− γ) ≥ ‖B10 +B2y‖.

Then either,

(a) the operator equations x = (B1 +B2)x has a solution with ‖x‖ ≤ r, or

(b) there exists a point x0 ∈ ∂B(0, r) and λ ∈ (0, 1) such that x0 = λB1(
x0
λ ) +

λB2(x0).

THEOREM 2 ([5]). Let (X,≤) be a partially ordered Banach space. Assume that
X satisfies the following condition: if (xn) is a nondecreasing sequence in X such that
xn → x then xn ≤ x for all n ∈ N. Let F : X −→ X be a nondecreasing mapping such
that

‖Fx− Fy‖ ≤ ‖x− y‖ − ψ(‖x− y‖) for x ≥ y,
where ψ : R+ −→ R+ is a continuous and nondecreasing function such that ψ is positive
in (0,+∞), ψ(0) = 0 and lim

ξ→+∞
ψ(ξ) = +∞. If there exists x0 ∈ X with x0 ≤ Fx0,

then F has a fixed point.

If we consider the following condition

(∗) for any x and y in X there exists ξ ∈ X which is comparable to x and y.

Then we have the following result.

THEOREM 3 ([5]). Adding condition (∗) to the hypotheses of Theorem 2, we
obtain the uniqueness of the fixed point.

2 Main Results

LetX be an ordered Banach Algebra equipped with the natural coneK = {u ∈ X,u ≥ 0}.
Assume that X satisfies condition (∗) and the following: if (xn) is a nondecreasing se-
quence in X such that xn → x, then xn ≤ x for all n ∈ N. Also consider three operators
A,B1, B2 : X → X, such that A(K) ⊆ K, Bi(X) ⊆ K for i = 1, 2, and assume that
A0 = 0, B10 = 0. The next main result is more general than Lemma 1.

PROPOSITION 1. Let B(y0, r) be a sphere in the complete metric space (X, d).
Let also T : B(y0, r) −→ X be a nonlinear contraction mapping which satisfies the
condition:

d(T (x1), T (x2)) ≤ φ(d(x1, x2))
for every pair of points x1, x2 in B(y0, r), where φ is an increasing function which
satisfies the following conditions

φ(t) < t,∀t > 0, and φ(t)

t
≤ φ(t′)

t′
;∀t ≥ t′ > 0.
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Then if d(y0, T (y0)) ≤ r(1− φ(r)
r ), there exists a unique point x0 ∈ B(y0, r) such that

T (x0) = x0.

PROOF. Choose m < r such that d(y0, T (y0)) ≤ m(1 − φ(m)
m ) < r(1 − φ(r)

r ). Let
M = {y ∈ X, d(y, y0) ≤ m} where T :M → X and we show that T (M) ⊆M :

d(T (y), y0) ≤ d(T (y), T (y0)) + d(T (y0), y0)

≤ φ(d(y, y0)) +m(1−
φ(m)

m
)

= m.

Since M is complete, by Boyd and Wong fixed point theorem; there exits a unique x0
such that x0 = T (x0).

The next result is more general than Theorem 1.

THEOREM 4. Let X be a Banach space, A,B be operators from X to X such
that A is a nonlinear contraction with an increasing function φ which satisfies: ∀λ ∈
(0, 1), ∀t ∈ R+ : λφ( tλ ) ≤ φ(t) and φ(t)

t be a nonincreasing function on R+ and B be
completely continuous. Assume also that

(H) there exists a sphere B(0, r) in X such that for every y ∈ B(0, r) :

r(1− φ(r)

r
) ≥ ‖A0 +By‖.

Then either,

i) x = Ax+Bx has a solution x, with ‖x‖ ≤ r, or

ii) there is a point u ∈ X, with ‖u‖ = r and λ ∈ (0, 1) such that u = λA(uλ ) + λBu.

Before the proof of this theorem we need the next auxiliary result.

LEMMA 4. Let A be a nonlinear contraction from a Banach space X into itself
with an increasing function φ : R+ −→ R+ such that φ(t) < t for all t > 0 and φ(0) = 0,
then (I −A)−1 exists and is continuous.

PROOF. For every y in X, define the function g on X by g(x) = Ax+ y. Since A
is a nonlinear contraction, then g is a nonlinear contraction with the same function φ,

‖g(x)− g(x′)‖ = ‖Ax+ y −Ax′ − y‖ ≤ φ(‖x− x′‖),

then by Boyd and Wong fixed point theorem there exists a unique solution of the
equation g(x) = x or equivalently,

there exists a unique x ∈ X : Ax+ y = x
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and so

for all y ∈ X, there exists a unique x ∈ X such that (I −A)x = y,

i.e., (I −A) is bijective.
Now we show that (I −A)−1 is continuous. Let y, y′ ∈ X, then there exist x, x′ ∈

X such that
y = (I −A)x and y′ = (I −A)x′,

and we have

‖y − y′‖ = ‖(I −A)x− (I −A)x′‖ ≥ ‖x− x′‖ − φ(‖x− x′‖)

where

‖x− x′‖ = ‖(I −A)−1(I −A)x− (I −A)−1(I −A)x′‖
= ‖(I −A)−1y − (I −A)−1y′‖.

Since φ is increasing, ‖x− x′‖ > φ(‖x−x′‖) and φ(0) = 0, then we have lim
y→y′

‖x−x′‖ =

0, this yields that (I −A)−1 is continuous on X.

In the following, we prove Theorem 4.

PROOF. The operator λA
(
1
λ ·
)
: B(0, r) → X is a nonlinear contraction with

the same function φ. Also, for every y ∈ B(0, r) the mapping x 7−→ λA(xλ ) + λBy
is a nonlinear contraction with the same function φ. Now by assumption (H) and
Proposition 1, we have that there exists a unique solution x of the equation λA(xλ ) +
λBy = x in B(0, r). This yields that

x

λ
= A(

x

λ
) +By

or
(I −A)x

λ
= By

and
x = λ(I −A)−1By.

From Lemma 4, the existence and the continuity of (I −A)−1 are obtained. Moreover,
since B is completely continuous, B is compact on B(0, r). Thus so is (I − A)−1B.
Therefore by the Nonlinear Alternative with (K = X and U = B(0, r)) either x =
λ(I − A)−1Bx has a solution in B(0, r) for λ = 1, or there exists u ∈ ∂B(0, r) and
λ ∈ (0, 1) such that u = λA(uλ ) + λBu, and this complete the proof.

Now we present the principal theorem of this paper.

THEOREM 5. Let X be an ordered Banach Algebra equipped with the natural
cone K, and let the operators A, B1, B2 : X −→ X defined as above. Assume that
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(i) For all x ≥ x′ we have Ax ≥ Ax′ and

‖Ax−Ax′‖ ≤ 1

M

(
‖x− x′‖ − ψ(‖x− x′‖)

)
,

where ψ : R+ → R+ be a continuous and an increasing function such that ψ is
positive in (0,∞), ψ(0) = 0, lim

ξ→∞
ψ(ξ) = +∞, ψ−1 verify conditions of Theorem

4 and there exists θ > 0 with αθ < 1 such that

ξ − θ ≤ ψ (ξ) < ξ and ψ (ξ) > αθξ; ∀ξ > 0,

(ii) B1 is α-contraction,

(iii) B2 is a completely continuous operator,

(vi) there exists r > 0 such that:

∀y ∈ B(0, r) : B2y ∈ B
(
0,
M

θ
(r − ψ−1(θαr))

)
,

(v) ∀x ∈ ∂B(0, r), ∀λ ∈ (0, 1) : x 6= λA(xλ )B1
(
x
λ

)
+ λAxB2x.

Then the operator equation AxB1x+AxB2x = x has a solution in B(0, r). Here,

M = ‖B1(B(0, r))‖+ ‖B2(B(0, r))‖.

PROOF. Let y ∈ X and define a mapping Ay,1 : X → X by Ay,1(x) = AxB1y, x ∈
X. Notice that, for all x ≤ x′ then Ax ≤ Ax′, we have; AxB1y ≤ Ax′B1y, and notice
that for any x and x′ in X; Ay,1 satisfies the following property

‖Ay,1x−Ay,1x′‖ = ‖AxB1y −Ax′B1y‖
≤ ‖Ax−Ax′‖.‖B1y‖

≤ 1

M
(‖x− x′‖ − ψ(‖x− x′‖)).M

≤ ‖x− x′‖ − ψ(‖x− x′‖),

and so we have an element x0 = 0 such that 0 ≤ Ay,1(0) = A0B1y ∈ X i.e., x0 ≤
Ay,1x0, ∀y ∈ X. Now an application of the fixed point Theorem 3, yields that there is
a unique fixed point

x∗ = Ay,1(x
∗),

or equivalently x∗ = Ax∗B1y, x∗ ∈ X. Define a mapping N1 : X → X by

N1y = z,
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where z ∈ X is the unique solution of the equation z = AzB1y, y ∈ X. Now, we show
that N1 is a nonlinear contraction; we have by definition:

‖N1y −N1y′‖ = ‖z − z′‖ = ‖AzB1y −AzB1y′‖
= ‖AN1yB1y −AN1y′B1y′‖
= ‖AN1yB1y −AN1y′B1y +AN1y′B1y −AN1y′B1y′‖
≤ ‖AN1yB1y −AN1y′B1y‖+ ‖AN1y′B1y −AN1y′B1y′‖
≤ ‖AN1y −AN1y′‖‖B1y‖+ ‖AN1y′‖‖B1y −B1y′‖
≤ ‖N1y −N1y′‖ − ψ(‖N1y −N1y′‖)

+‖AN1y′‖‖B1y −B1y′‖,

and this implies that

ψ(‖N1y −N1y′‖) ≤ ‖AN1y′‖‖B1y −B1y′‖.

Since ξ − θ ≤ ψ(ξ), we have

ψ(‖N1y −N1y′‖) ≤ θ‖B1y −B1y′‖,

and so
‖N1y −N1y′‖ ≤ ψ−1(θα‖y − y′‖).

Then, for every t ≥ 0 we put φ(t) = ψ−1(θαt), and note that the function φ is increasing
on R+. By this, we conclude that N1 is a nonlinear contraction map with a function
φ. Now, let y ∈ X and define another mapping Ay,2 : X −→ X by

Ay,2(x) = AxB2y, x ∈ X.

Notice that, for all x ≤ x′ then Ax ≤ Ax′, since B2(X) ⊂ K we have AxB2y ≤ Ax′B2y,
and for any x and x′ in X, Ay,2 satisfies the following property

‖Ay,2x−Ay,2x′‖ = ‖AxB2y −Ax′B2y‖

≤ 1

M
(‖x− x′‖ − ψ(‖x− x′‖)).M

≤ ‖x− x′‖ − ψ(‖x− x′‖),

and so we have an element x0 = 0 such that 0 ≤ Ay,2(0) = A0B2y ∈ X i.e. x0 ≤
Ay,2x0, ∀y ∈ X. Similarly as above, an application of the fixed point Theorem 3 yields
that there is a unique fixed point

x∗ = Ay,2(x
∗),

or equivalently x∗ = Ax∗B2y, we have that x∗ ∈ X.
Next, define a mapping N2 : X → X by N2y = z, where z ∈ X is the unique

solution of the equation z = AzB2y, y ∈ X. Then, we show that N2 is continuous and
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compact. Let {yn}n be a convergent sequence in X to a point y ∈ X, then we have

‖N2yn −N2y‖ = ‖zn − z‖ = ‖AznB2y −AzB2y‖
= ‖AN2ynB2yn −AN2yB2y‖
≤ ‖AN2ynB2yn −AN2yB2yn‖+ ‖AN2yB2yn −AN2yB2y‖
≤ ‖AN2yn −AN2y‖.‖B2yn‖+ ‖AN2y‖.‖B2yn −B2y‖

≤ 1

M
(‖N2yn −N2y‖ − ψ(‖N2yn −AN2‖))M

+‖AN2y‖.‖B2yn −B2y‖.

Then
ψ(‖N2yn −N2y‖) ≤ ‖AN2y‖.‖B2yn −B2y‖,

and hence

lim
n
sup ‖ψ(‖N2yn −N2y‖)‖ ≤ lim

n
sup ‖AN2y‖.‖B2yn −B2y‖.

Since ψ (0) = 0, ψ positive and continuous we conclude that

ψ(lim
n
‖N2yn −N2y‖) ≤ 0.

This implies that
lim
n
‖N2yn −N2y‖ = 0.

Consequently, N2 is a continuous map on X. In the following, we prove that N2 is a
compact operator on B(0, r). Then for any z ∈ B(0, r) we can write

‖Az‖ ≤ ‖Aa‖+ ‖Az −Aa‖

≤ ‖Aa‖+ 1

M
(‖z − a‖ − ψ(‖z − a‖))

≤ ‖Aa‖+ r

M
= c for some fixed a ∈ X.

Let ε > 0 be given; since B2 is completely continuous, B2(B(0, r)) is totally bounded.
Then, there is a set Y = {y1, y2, ..., yn} in B(0, r) such that B2(B(0, r)) ⊆ ∪ni=1Bδ(ωi)
such that ωi = B2(yi), and δ = 1

cψ(ε) > 0. Therefore, for any y ∈ B(0, r) we have an
yk ∈ Y such that ‖B2y −B2yk‖ < 1

cψ(ε). Also we have

‖N2yk −N2y‖ = ‖AzkB2yk −AzB2y‖
≤ ‖AzkB2yk −AzkB2y‖+ ‖AzkB2y −AzB2y‖
≤ ‖Azk −Az‖.‖B2y‖+ ‖Azk‖.‖B2yk −B2y‖

≤ M
1

M
(‖z − zk‖ − ψ(‖z − zk‖)) + ‖Azk‖.‖B2yk −B2y‖.

Then
ψ(‖z − zk‖) ≤ ‖Azk‖‖B2yk −B2y‖,
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i.e.,
ψ(‖z − zk‖) ≤ c‖B2yk −B2y‖.

Then since ψ is bijective, we write

‖z − zk‖ = ‖N2yk −N2y‖ ≤ ψ−1(c
1

c
ψ(ε)) = ε.

This is true for every y ∈ B(0, r) and hence: N2(B(0, r)) ⊆ ∪ni=1Bε(zi) such that
zi = N2(yi). As a result N2(B(0, r)) is totally bounded. Since N2 is continuous, it is
a compact operator on B(0, r). Since hypothesis (vi) holds, we have

‖N10 +N2y‖ ≤
Mr

θ
(1− φ(r)

r
), ∀y ∈ B(0, r).

By
x 6= λA(

x

λ
)B1(

x

λ
) + λAxB2x for all x ∈ ∂B(0, r), λ ∈ (0, 1),

we can apply Theorem 4 to yield that the operator equation Ax(B1 +B2)x = x has a
solution in B(0, r)

3 Application

Consider the nonlinear integral equation (1.1) in the Banach algebra C([0, 1] ,R) equipped
with the supremum norm and the natural cone K = {u ∈ X : u ≥ 0}, where f, gi, ki
are continuous functions. Assume the following assertions:

(1) There exists a positive function h : [0, 1] −→ R+ such that

0 ≤ f(t, u)− f(t, v) ≤ h(t)( u− v
H∗ + u− v ) for u ≥ v,

where H∗ = supt∈[0,1] h(t) and f(t, 0) = 0,∀ t ∈ [0, 1].
The mapping f has the following property

f(t, u) ≤ f(t, v);∀t ∈ [0, 1] , ∀u, v ∈ R, u ≤ v,

(2) there exists β1 ∈ [0, 1[ such that

|g1(u)− g1(v)| ≤ β1|u− v|; ∀u, v ∈ R, ∀t ∈ [0, 1] ,

with g1(0) = 0, where min (β1k
∗
1 , H

∗β1k
∗
1) < 1 and H

∗ > 1 + β1k
∗
1(H

∗)2,

(3) there exists r0 > 0 such that

sup
t∈[0,1], u,v∈B(0,r)

∣∣∣ ∫ 1

0

ki(t, s)gi(u(s))ds−
∫ 1

0

ki(t, s)gi(v(s))ds
∣∣∣ = 2k∗i g∗i ,

k∗2g
∗
2H
∗

2(k∗1g
∗
1 + k

∗
2g
∗
2)
≤ r0 − ψ−1(H∗β1k∗1r0),
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and

H∗k∗2ψ
−1(H∗β1k

∗
1r0) + (1−H∗β1k∗1 +H∗k∗2)r0 > (H∗)2β1(k∗1)2 −H∗,

where k∗i = supt∈[0,1] |
∫ t
0
ki(t, s)ds| < ∞ and g∗i = sup|y|≤r0 |gi(y)| < ∞ for

i = 1, 2, and ψ−1 is the inverse of the increasing function t 7→ ψ (t) = t− t

H∗ + t
,

(4) 2H∗(k∗1g
∗
1 + k

∗
2g
∗
2) ≤ 1.

Then we obtain the following result.

THEOREM 6. Assume that the assertions (1)—(4) hold true, then the integral
equation (1.1) has a solution in X = C([0, 1] ,R).

PROOF. Define the operators A,B1 and B2 as follows:

Au(t) = f(t, u(t)), Biu(t) =

∫ t

0

ki(t, s)gi(x(s))ds, i = 1, 2; ∀u ∈ X

We are going to verify that the operators A,B1 and B2 satisfy all conditions of Theorem
5, and we confirm this in the next claims.
Claim 1: A satisfies condition (i). For any u, v ∈ X and 0 ≤ t ≤ 1 we have

u ≤ v =⇒ Au(t) = f(t, u(t)) ≤ f(t, v(t)) = Av(t)

and

|Au(t)−Av(t)| = f(t, u(t))− f(t, v(t))

≤ h(t).
( u(t)− v(t)
H∗ + u(t)− v(t)

)
≤ H∗

( ‖u− v‖
H∗ + ‖u− v‖

)
= H∗

(
‖u− v‖ − ‖u− v‖+ ‖u− v‖

H∗ + ‖u− v‖

)
≤ H∗

(
‖u− v‖ −

(
‖u− v‖ − ‖u− v‖

H∗ + ‖u− v‖

))
≤ H∗

(
‖u− v‖ − ψ(‖u− v‖)

)
≤ 1

2(k∗1g
∗
1 + k

∗
2g
∗
2)

(
‖u− v‖ − ψ(‖u− v‖)

)
=

1

M

(
‖u− v‖ − ψ(‖u− v‖)

)
where

M = ‖B1(B(0, r0))‖+ ‖B2(B(0, r0))‖ = 2(k∗1g∗1 + k∗2g∗2),



F. Chouia and T. Moussaoui 443

ψ is a positive increasing function, lim
ξ→∞

ψ(ξ) = +∞, ψ(0) = 0, and for all ξ > 0; we

have
ξ −H∗ ≤ ψ(ξ) < ξ and ψ(ξ) > k∗1β1H

∗ξ.

Claim 2: The operator B1 is a contraction. Let u, v ∈ X, t ∈ [0, 1]. Then

|B1u(t)−B1v(t)| ≤
∫ t

0

|k1(t, s)|.|g1(u(s))− g1(v(s))|ds

≤ β1‖u− v‖
∫ t

0

|k1(t, s)|ds

≤ k∗1β1‖u− v‖,

i.e B1 is a k∗1β1-contraction.

Claim 3: The operator B2 is completely continuous. Since k2 is continuous on
[0, 1]

2and g2 is continuous on X, then B2 is completely continuous.

Claim 4: Condition (iv) holds. Let y ∈ [−r0, r0], from hypothesis (3) we get

|B2y(t)| = |
∫ t

0

k2(t, s)g2(y(s))ds|

≤ g∗2k
∗
2

≤ 2(k∗1g
∗
1 + k

∗
2g
∗
2)

H∗

(
r0 − ψ−1(H∗β1k∗1r0)

)
,

i.e.,

‖B2y‖ ≤
2(k∗1g

∗
1 + k

∗
2g
∗
2)

H∗

(
r0 − ψ−1(H∗β1k∗1r0)

)
=

M

H∗

(
r0 − ψ−1(H∗β1k∗1r0)

)
,

for all y ∈ [−r0, r0].

Claim 5: Condition (v) holds. By contradiction, assume that there exists u ∈ X
such that ‖u‖ = r0, λ ∈ (0, 1) and

u(t) = λA
(u
λ

)
(t)B1

(u
λ

)
(t) + λAu(t)B2u(t).

Then, we have

|u(t)| ≤ λH∗‖u‖
λH∗ + ‖u‖

β1k
∗
1‖u‖
λ

+
λH∗‖u‖
H∗ + ‖u‖k

∗
2

2(k∗1g
∗
1 + k

∗
2g
∗
2)

H∗
(r0 − ψ−1(H∗β1k∗1r0))
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since ‖u‖ < λH∗ + ‖u‖, ∀λ ∈ (0, 1); we have

|u(t)| < H∗β1k
∗
1‖u‖+

H∗‖u‖
H∗ + ‖u‖k

∗
2

2(k∗1g
∗
1 + k

∗
2g
∗
2)

H∗
(r0 − ψ−1(H∗β1k∗1r0)).

Hence

r0 = ‖u‖ ≤ H∗β1k∗1r0 +
H∗k∗2r0
H∗ + r0

2(k∗1g
∗
1 + k

∗
2g
∗
2)

H∗
(r0 − ψ−1(H∗β1k∗1r0))

and by a simple computation we have a contradiction with assumption (3). This yields
that all the assertions of Theorem 5 are verified. We then conclude that the equation
(1.1) has a solution x ∈ C([0, 1] ,R), with ‖x‖ ≤ r0.
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