($p, p ; r$)-Convexity Preserving Infinite Matrices*

Chikkanna Ramalingam Selvaraj ${ }^{\dagger}$, Suguna Selvaraj ${ }^{\ddagger}$

Received 17 April 2018

Abstract

This paper deals with $(p, p ; r)$-convexity of sequences. First, we give the necessary and sufficient conditions for a non-negative infinite matrix to preserve $(1,1 ; 2)$-convexity of sequences. Using this result, it is shown that the Borel matrix and the Ces̀aro matrix do not preserve $(1,1 ; 2)$-convexity of sequences, thus proving that the theorem pertaining to Ces̀aro matrix given in [10] is incorrect. Furthermore, we prove that for any $p \neq 1$, the Ces̀aro matrix does not preserve ($p, p ; 1$)-convexity of sequences.

1 Introduction

If $p>0, q>0$, then the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ of real numbers is said to be (p, q)-convex if

$$
L_{p, q}\left(x_{n}\right)=x_{n}-(p+q) x_{n-1}+p q x_{n-2} \geq 0
$$

for $n \geq 2$. This operator $L_{p, q}$ generates the second order difference Δ^{2} when $p=q=1$. Several authors $[1,2,4,5,6,8]$ have proved various results on the (p, q) - convex sequences. In $[3,7,9]$, the authors discuss the matrix transformations of (p, q)-convex sequences in the case of lower triangular matrices. In [11], the authors give the necessary and sufficient condtions for a non-negative infinite matrix to transform a (p, q)-convex sequence into a (p, q)-convex sequence.

In [10], the author introduces the difference operator on a sequence $\left\{x_{n}\right\}$ as $L_{p ; r}\left(x_{n}\right)=$ $x_{n}-p^{r} x_{n+r}$ for a natural number r. We define alternate form of the operator as $L_{p ; r}\left(x_{n}\right)=x_{n}-p^{r} x_{n-r}$ and $L_{p, q ; r}\left(x_{n}\right)=L_{p ; r}\left(x_{n}\right)-q^{r} L_{p ; r}\left(x_{n-r}\right)$. Thus

$$
L_{p, q ; r}\left(x_{n}\right)=x_{n}-\left(p^{r}+q^{r}\right) x_{n-r}+p^{r} q^{r} x_{n-2 r} \text { for } n \geq 2 r .
$$

Also, in [10], the author defines a sequence $\left\{x_{n}\right\}$ to be a $(p, q ; r)$-convex sequence if $L_{p, q ; r}\left(x_{n}\right) \geq 0$ for $n \geq 2 r$. When $r=1$, this operator generates (p, q)-convex sequences. Clearly $L_{p, q ; r}$ is a linear operator. The main aim of the paper is to discuss the $(1,1 ; 2)$ convex sequences. A sequence $\left\{x_{n}\right\}$ is $(1,1 ; 2)$-convex if

$$
L_{1,1 ; 2}\left(x_{n}\right)=x_{n}-2 x_{n-2}+x_{n-4} \geq 0 \text { for } n \geq 4
$$

[^0]In this paper we give the necessary and sufficient conditions for a non-negative infinite matrix to preserve $(1,1 ; 2)$-convexity of sequences. In Section 4 we give an example of such an infinite matrix. Also, we show that the Borel matrix and the Ces̀aro matrix do not transform every $(1,1 ; 2)$-convex sequence into a $(1,1 ; 2)$-convex sequence. In addition, we show that the Cessaro matrix fails to satisfy one of the conditions given in [11] to preserve $(p, p ; 1)$-convexity of sequences for $p \neq 1$.

2 Preliminaries

For any given sequence $\left\{x_{n}\right\}$, we can find a corresponding sequence $\left\{c_{k}\right\}_{k=0}^{\infty}$ such that

$$
c_{0}=x_{0}, \quad c_{1}=x_{1}
$$

and for $k \geq 2, c_{k}$'s are given by

$$
c_{k}= \begin{cases}x_{2 j}-\sum_{i=0}^{j-1}(j-i+1) c_{2 i}, & \text { if } k=2 j \tag{1}\\ x_{2 j+1}-\sum_{i=0}^{j-1}(j-i+1) c_{2 i+1}, & \text { if } k=2 j+1\end{cases}
$$

which implies that $\left\{x_{n}\right\}$ can be represented by

$$
x_{n}= \begin{cases}\sum_{i=0}^{k}(k-i+1) c_{2 i}, & \text { if } n=2 k \tag{2}\\ \sum_{i=0}^{k}(k-i+1) c_{2 i+1}, & \text { if } n=2 k+1\end{cases}
$$

for $n \geq 0$. As a consequence we get the following lemma.
LEMMA 2.1. If the sequence $\left\{x_{n}\right\}$ is given by the representation (2), then $L_{1,1 ; 2}\left(x_{n}\right)=$ c_{n}. Thus, the sequence $\left\{x_{n}\right\}$ is $(1,1 ; 2)$-convex if and only if $c_{n} \geq 0$ for $n \geq 4$.

PROOF. Since $L_{1,1 ; 2}\left(x_{n}\right)=x_{n}-2 x_{n-2}+x_{n-4}$, it suffices to show that

$$
x_{n}-2 x_{n-2}+x_{n-4}=c_{n} \text { for } n \geq 4 .
$$

Using (2), we can write for $n=4,5,6, \cdots$,

$$
\begin{aligned}
& x_{n}-2 x_{n-2}+x_{n-4} \\
= & \begin{cases}\sum_{i=0}^{k}(k-i+1) c_{2 i}-2 \sum_{i=0}^{k-1}(k-i) c_{2 i}+\sum_{i=0}^{k-2}(k-i-1) c_{2 i}, & \text { if } n=2 k, \\
\sum_{i=0}^{k}(k-i+1) c_{2 i+1}-2 \sum_{i=0}^{k-1}(k-i) c_{2 i+1}+\sum_{i=0}^{k-2}(k-i-1) c_{2 i+1}, & \text { if } n=2 k+1,\end{cases} \\
= & \begin{cases}c_{2 k}+\sum_{i=0}^{k-2}(k-i+1-2(k-i)+k-i-1) c_{2 i}, & \text { if } n=2 k, \\
c_{2 k+1}+\sum_{i=0}^{k-2}(k-i+1-2(k-i)+k-i-1) c_{2 i+1}, & \text { if } n=2 k+1,\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}c_{2 k}, & \text { if } n=2 k, \\
c_{2 k+1}, & \text { if } n=2 k+1,\end{cases} \\
& =c_{n}
\end{aligned}
$$

Thus, for any sequence $\left\{x_{n}\right\}$,

$$
L_{1,1, ; 2}\left(x_{n}\right)=c_{n}, \quad \text { for } n \geq 4
$$

Hence the lemma holds.
Now, we give below some definitions.
Let $A=\left[a_{n, k}\right]$ be a non-negative infinite matrix defining a sequence to sequence transformation by

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n, k} x_{k}
$$

Then, we define the matrices $\left[\alpha_{n, m}\right]$ and $\left[\beta_{n, i}\right]$ as

$$
\begin{aligned}
& \alpha_{n, m}= \begin{cases}\sum_{j=l}^{\infty} a_{n, 2 j}=a_{n, 2 l}+a_{n, 2 l+2}+a_{n, 2 l+4}+\cdots, & \text { if } m=2 l, \\
\sum_{j=l}^{\infty} a_{n, 2 j+1}=a_{n, 2 l+1}+a_{n, 2 l+3}+a_{n, 2 l+5}+\cdots, & \text { if } m=2 l+1,\end{cases} \\
& \beta_{n, i}= \begin{cases}\sum_{l=k}^{\infty} \alpha_{n, 2 l}=\alpha_{n, 2 k}+\alpha_{n, 2 k+2}+\alpha_{n, 2 k+4}+\cdots, & \text { if } i=2 k, \\
\sum_{l=k}^{\infty} \alpha_{n, 2 l+1}=\alpha_{n, 2 k+1}+\alpha_{n, 2 k+3}+\alpha_{n, 2 k+5}+\cdots, & \text { if } i=2 k+1 .\end{cases}
\end{aligned}
$$

Thus,

$$
\beta_{n, i}=\left\{\begin{array}{l}
\sum_{l=k}^{\infty}\left(\sum_{j=l}^{\infty} a_{n, 2 j}\right) \text { if } i=2 k \\
\sum_{l=k}^{\infty}\left(\sum_{j=l}^{\infty} a_{n, 2 j+1}\right) \text { if } i=2 k+1
\end{array}\right.
$$

Interchanging the order of summation, we get

$$
\beta_{n, i}=\left\{\begin{array}{l}
\sum_{j=k}^{\infty} \sum_{l=k}^{j} a_{n, 2 j}, \text { if } i=2 k, \\
\sum_{j=k}^{\infty} \sum_{l=k}^{j} a_{n, 2 j+1}, \text { if } i=2 k+1
\end{array}\right.
$$

Therefore, we can write

$$
\beta_{n, i}= \begin{cases}\sum_{j=k}^{\infty}(j-k+1) a_{n, 2 j}, & \text { if } i=2 k \tag{3}\\ \sum_{j=k}^{\infty}(j-k+1) a_{n, 2 j+1}, & \text { if } i=2 k+1\end{cases}
$$

Furthermore, for $n \geq 4$ and for each $i=0,1,2, \ldots$ we obtain, by the linearity of the operator $L_{1,1 ; 2}$,

$$
L_{1,1 ; 2}\left(\beta_{n, i}\right)= \begin{cases}\sum_{j=k}^{\infty}(j-k+1) L_{1,1 ; 2}\left(a_{n, 2 j}\right), & \text { if } i=2 k \tag{4}\\ \sum_{j=k}^{\infty}(j-k+1) L_{1,1 ; 2}\left(a_{n, 2 j+1}\right), & \text { if } i=2 k+1\end{cases}
$$

Also, we need the matrix $\left[a_{n, k}\right]$ to satisfy the condition

$$
\begin{equation*}
\sum_{k=1}^{\infty} k a_{n, k}<\infty \tag{5}
\end{equation*}
$$

so that from (3) for $k=0,1,2, \cdots$

$$
\beta_{n, i}= \begin{cases}\sum_{j=k}^{\infty}(j-k) a_{n, 2 j}+\sum_{j=k}^{\infty} a_{n, 2 j,} & \text { if } i=2 k \\ \sum_{j=k}^{\infty}(j-k) a_{n, 2 j+1}+\sum_{j=k}^{\infty} a_{n, 2 j+1,} & \text { if } i=2 k+1\end{cases}
$$

Thus, $\beta_{n, i}$ is well-defined.

3 Main Results

In this section we prove the necessary and sufficient conditions for a non-negative infinite matrix A to transform a $(1,1 ; 2)$-convex sequence into a $(1,1 ; 2)$-convex sequence showing that each column of the corresponding matrix $\left[\beta_{n, i}\right]$ is a $(1,1 ; 2)$-convex sequence.

THEOREM 3.1. A non-negative infinite matrix $A=\left[a_{n, k}\right]$ satisfying

$$
\sum_{k=1}^{\infty} k a_{n, k}<\infty
$$

preserves $(1,1 ; 2)$-convexity of sequences if and only if for $n=4,5,6 \ldots$,
(i) $L_{1,1 ; 2}\left(\beta_{n, 0}\right)=L_{1,1 ; 2}\left(\beta_{n, 1}\right)=L_{1,1 ; 2}\left(\beta_{n, 2}\right)=L_{1,1 ; 2}\left(\beta_{n, 3}\right)=0$.
(ii) $\left.L_{1,1 ; 2}\left(\beta_{n, i}\right)\right) \geq 0$ for $i \geq 4$, where the matrix $\left[\beta_{n, i}\right]$ is defined by

$$
\beta_{n, i}= \begin{cases}\sum_{j=k}^{\infty}(j-k+1) a_{n, 2 j}, & \text { if } i=2 k \\ \sum_{j=k}^{\infty}(j-k+1) a_{n, 2 j+1}, & \text { if } i=2 k+1\end{cases}
$$

First, we prove the following lemma.
LEMMA 3.1. If $\left\{x_{n}\right\}$ is any sequence, then the transformed sequence $\left\{(A x)_{n}\right\}$ satisfies that for $n \geq 4$,

$$
(A x)_{n}=\sum_{i=0}^{\infty} c_{i} \beta_{n, i}
$$

where c_{i} 's are given by (1).
PROOF. From (2), we have

$$
x_{2 k}=\sum_{i=0}^{k}(k-i+1) c_{2 i} \quad \text { and } \quad x_{2 k+1}=\sum_{i=0}^{k}(k-i+1) c_{2 i+1} .
$$

Then the nth term of the transformed sequence is

$$
\begin{aligned}
(A x)_{n} & =\sum_{k=0}^{\infty} a_{n, k} x_{k} \\
& =\sum_{k=0}^{\infty} a_{n, 2 k} x_{2 k}+\sum_{k=0}^{\infty} a_{n, 2 k+1} x_{2 k+1} \\
& =\sum_{k=0}^{\infty} a_{n, 2 k}\left(\sum_{i=0}^{k}(k-i+1) c_{2 i}\right)+\sum_{k=0}^{\infty} a_{n, 2 k+1}\left(\sum_{i=0}^{k}(k-i+1) c_{2 i+1}\right) .
\end{aligned}
$$

Interchanging the order of summation,

$$
(A x)_{n}=\sum_{i=0}^{\infty} c_{2 i}\left(\sum_{k=i}^{\infty}(k-i+1) a_{n, 2 k}\right)+\sum_{i=0}^{\infty} c_{2 i+1}\left(\sum_{k=i}^{\infty}(k-i+1) a_{n, 2 k+1}\right)
$$

Using (3), we can write

$$
(A x)_{n}=\sum_{i=0}^{\infty} c_{2 i} \beta_{n, 2 i}+\sum_{i=0}^{\infty} c_{2 i+1} \beta_{n, 2 i+1}=\sum_{i=0}^{\infty} c_{i} \beta_{n, i}
$$

Hence the lemma holds.
PROOF OF THEOREM 3.1. To prove the sufficiency of the conditions given in the theorem, assume that conditions (i) and (ii) are true. For any (1,$1 ; 2$)-convex sequence $\left\{x_{n}\right\}$, by Lemma 2.1, $c_{i} \geq 0$ for $i \geq 4$. Using Lemma 3.1 and the linearity of the operator $L_{1,1 ; 2}$, we can write for $n \geq 4$,

$$
\begin{equation*}
L_{1,1 ; 2}(A x)_{n}=\sum_{i=0}^{\infty} c_{i} L_{1,1 ; 2}\left(\beta_{n, i}\right) \geq 0 \tag{6}
\end{equation*}
$$

Thus, the sequence $\left\{(A x)_{n}\right\}$ is also $(1,1 ; 2)$-convex. Conversely, assume that the matrix A preserves $(1,1 ; 2)$-convexity of sequences. Suppose that condition (i) fails to hold. Then for some $i=0,1,2,3$,

$$
L_{1,1 ; 2}\left(\beta_{n, i}\right) \neq 0 \quad \text { for some } \quad n \geq 4
$$

In particular, if

$$
L_{1,1 ; 2}\left(\beta_{n, 0}\right) \neq 0, \text { for some } n \geq 4
$$

then there exists an $N \geq 4$ such that

$$
L_{1.1 ; 2}\left(\beta_{N, 0}\right)=L \neq 0
$$

Consider the sequence $\left\{u_{n}\right\}$ given by

$$
u=\left\{\begin{array}{ccccccccc}
u_{0} & u_{1} & u_{2} & u_{3} & u_{4} & \ldots, & u_{2 k} & u_{2 k+1} & \cdots \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & & \downarrow & \downarrow . \\
& -L, & \downarrow, & -2 L, & \downarrow, & -3 L, & & -(k+1) L, & 0,
\end{array}\right.
$$

Then, $\left\{u_{n}\right\}$ is a $(1,1 ; 2)$-convex sequence because using equation (1) and Lemma 2.1 we see that $c_{0}=u_{0}=-L, c_{1}=u_{1}=0, c_{2}=u_{2}-2 c_{0}=0, c_{3}=u_{3}-2 c_{1}=0$ and for $k \geq 2$,

$$
\begin{aligned}
c_{2 k} & =u_{2 k}-2 u_{2 k-2}+u_{2 k-4} \\
& =-(k+1) L-2(-k L)+(-(k-1) L)=0, \\
c_{2 k+1} & =u_{2 k+1}-2 u_{2 k-1}+u_{2 k-3}=0 .
\end{aligned}
$$

Then for the transformed sequence $\left\{(A u)_{n}\right\}$, we have from (6)

$$
\begin{aligned}
L_{1,1 ; 2}(A u)_{N} & =c_{0} L_{1,1 ; 2}\left(\beta_{N, 0}\right)+\sum_{i=1}^{\infty} c_{2 i} L_{1,1 ; 2}\left(\beta_{N, 2 i}\right)+\sum_{i=0}^{\infty} c_{2 i+1} L_{1,1 ; 2}\left(\beta_{N, 2 i+1}\right) \\
& =c_{0} L_{1,1 ; 2}\left(\beta_{N, 0}\right) \\
& =-L^{2}<0
\end{aligned}
$$

which contradicts that the transformed sequence $\left\{(A u)_{n}\right\}$ must be $(1,1 ; 2)$-convex. Similarly, if $L_{1,1 ; 2}\left(\beta_{N, 1}\right)$ or $L_{1,1 ; 2}\left(\beta_{N, 2}\right)$ or $L_{1,1 ; 2}\left(\beta_{N, 3}\right)=L \neq 0$ for some $N \geq 4$, then consider the sequences

$$
\begin{aligned}
& v=\left\{\begin{array}{ccccccc}
v_{0} & v_{1} & v_{2} & v_{3} & v_{4} & \ldots, & v_{2 k+1} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
v_{2 k} & \downarrow \\
0, & -L, & \downarrow, & \downarrow & \downarrow & \downarrow, & \\
& -(k+1) L, & 0,
\end{array}\right. \\
& \left.w=\left\{\begin{array}{cccccccc}
w_{0} & w_{1} & w_{2} & w_{3} & w_{4} & \ldots, & w_{2 k} & w_{2 k+1}
\end{array}\right]\right\}
\end{aligned}
$$

and

$$
t=\left\{\begin{array}{cccccc}
t_{0} t_{1} t_{2} & t_{3} & t_{4} & t_{5} & \ldots t_{2 k} t_{2 k+1} & \cdots \\
\downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
0,0,0,-L, 0, & \downarrow 2 L, & 0,-k L,
\end{array}\right.
$$

respectively. It is obvious that $\left\{v_{n}\right\},\left\{w_{n}\right\}$ and $\left\{t_{n}\right\}$ are $(1,1 ; 2)$-convex sequences with the corresponding

$$
\begin{gathered}
c_{1}=-L \text { and } c_{i}=0 \text { for } i \neq 1 \text { for the sequence }\left\{v_{n}\right\}, \\
c_{2}=-L \text { and } c_{i}=0 \text { for } i \neq 2 \text { for the sequence }\left\{w_{n}\right\},
\end{gathered}
$$

and

$$
c_{3}=-L \text { and } c_{i}=0 \text { for } i \neq 3 \text { for the sequence }\left\{t_{n}\right\} .
$$

By the similar argument as in the case of the sequence $\left\{u_{n}\right\}$, we see that the transformed sequences $\left\{(A v)_{n}\right\},\left\{(A w)_{n}\right\}$, and $\left\{(A t)_{n}\right\}$, are not $(1,1 ; 2)$-convex sequences, which is a contradiction.

Next, suppose that condition (ii) is not true. First, assume that $L_{1,1 ; 2}\left(\beta_{n, 2 i}\right)$ for $i \geq 2$, fails to satisfy the condition. Then there exists an integer $j=2 k \geq 4$ such that the j-th column-sequence $\left\{\beta_{n, 2 k}\right\}_{n=0}^{\infty}$ of the matrix $\left[\beta_{n, i}\right]$ is not $(1,1 ; 2)$-convex. i.e., for some $N \geq 4, L_{1,1, ; 2}\left(\beta_{N, 2 k}\right)=L<0$. Consider the sequence

$$
\left.\begin{array}{cccccccc}
x=\left\{\begin{array}{ccccccc}
x_{0} & \ldots, & x_{2 k-1} & x_{2 k} & x_{2 k+1} & x_{2 k+2} & x_{2 k+3}
\end{array} x_{2 k+4}\right. & x_{2 k+5} & \cdots
\end{array}\right\} .
$$

Then $\left\{x_{n}\right\}$ is a $(1,1 ; 2)$-convex sequence because using equation (1) and Lemma 2.1 we see that

$$
\begin{gathered}
c_{i}=0, \quad 0<i<2 k \\
c_{2 k}=1 \\
c_{i}=0 \text { for } i \geq 2 k+1 .
\end{gathered}
$$

Thus, the sequence $\left\{x_{n}\right\}$ is $(1,1 ; 2)$-convex. But from (6),

$$
\begin{aligned}
L_{1,1 ; 2}(A x)_{N} & =\sum_{i=0}^{\infty} c_{2 i} L_{1,1 ; 2}\left(\beta_{N, 2 i}\right)+\sum_{i=0}^{\infty} c_{2 i+1} L_{1,1 ; 2}\left(\beta_{N, 2 i+1}\right) \\
& =c_{2 k} L_{1,1 ; 2}\left(\beta_{N, 2 k}\right)=L<0
\end{aligned}
$$

which contradicts that the sequence $\left\{(A x)_{n}\right\}$ is a $(1,1 ; 2)$-convex sequence. Next, assume that $L_{1,1: 2}\left(\beta_{n, 2 i+1}\right)$ for $i \geq 2$, fails to satisfy condition (ii).

Then there exists and integer $l=2 k+1 \geq 5$ such that the l-th column-sequence $\left\{\beta_{n, 2 k+1}\right\}_{n=0}^{\infty}$ of the matrix $\left[\beta_{n, i}\right]$ is not $(1,1 ; 2)$-convex. That is, for some $N \geq 4$, $L_{1,1 ; 2}\left(\beta_{N, 2 k+1}\right)=L<0$. This case can be settled by a similar argument by considering the sequence

$$
y=\left\{\begin{array}{cccccccc}
& & & & & & & \\
y_{0} & \ldots & y_{2 k} & y_{2 k+1} & y_{2 k+2} & y_{2 k+3} & y_{2 k+4} & y_{2 k+5} \\
\downarrow & \downarrow & \cdots
\end{array}\right\},
$$

which implies that $c_{2 k+1}=1$ and all other c_{i} 's are zero. This yields that

$$
L_{1,1 ; 2}(A y)_{N}=c_{2 k+1} L_{1,1 ; 2}\left(\beta_{N, 2 k+1}\right)=L<0
$$

a contradiction. This completes the proof.

4 Examples

We give below an example of $(1,1 ; 2)$-convexity preserving matrix. Let the matrix $A=\left[a_{n, k}\right]$ be defined by

$$
a_{n, k}=\frac{n+1}{(k+1)^{3}} .
$$

Then for each n,

$$
\sum_{k=1}^{\infty} k \frac{(n+1)}{(k+1)^{3}}=(n+1) \sum_{k=1}^{\infty}\left[\frac{1}{(k+1)^{2}}-\frac{1}{(k+1)^{3}}\right]<\infty .
$$

Thus, by (5), $\beta_{n, i}$ is well-defined for each $n=0,1,2, \cdots$ and $i=0,1,2, \cdots$. The matrix A satisfies all three conditions of Theorem 3.1, because for $n \geq 4$, using (4),

$$
\begin{aligned}
L_{1,1 ; 2}\left(\beta_{n, i}\right) & = \begin{cases}\sum_{j=k}^{\infty}(j-k+1)\left[a_{n, 2 j}-2 a_{n-2,2 j}+a_{n-4,2 j}\right], & \text { if } i=2 k, \\
\sum_{j=k}^{\infty}(j-k+1)\left[a_{n, 2 j+1}-2 a_{n-2,2 j+1}+a_{n-4,2 j+1}\right], & \text { if } i=2 k+1,\end{cases} \\
& = \begin{cases}\sum_{j=k}^{\infty} \frac{(j-k+1)}{(2 j+1)^{3}}[(n+1)-2(n-1)+(n-3)], & \text { if } i=2 k, \\
\sum_{j=k}^{\infty} \frac{(j-k+1)}{(2 j+2)^{3}}[(n+1)-2(n-1)+(n-3)], & \text { if } i=2 k+1,\end{cases} \\
& =0 .
\end{aligned}
$$

Now, we show that the classical matrices Borel matrix and Ces̀aro matrix do not preserve (1,$1 ; 2$)-convexity of sequences. The Borel matrix $B=\left[b_{n, k}\right]$ is given by

$$
b_{n, k}=\frac{n^{k}}{e^{n} k!} .
$$

We will show that the matrix B does not preserve (1,$1 ; 2$)-convexity of sequences by proving that $L_{1,1 ; 2}\left(\beta_{n, 1}\right) \neq 0$, which violates one of the conditions given in Theorem 3.1. For $n \geq 4$, using (4) with $k=0$,

$$
\begin{align*}
L_{1,1 ; 2}\left(\beta_{n, 1}\right) & =\sum_{j=0}^{\infty}(j+1) L_{1,1 ; 2}\left(b_{n, 2 j+1}\right) \\
& =\sum_{j=0}^{\infty} \frac{(j+1)}{(2 j+1)!}\left[\frac{n^{2 j+1}}{e^{n}}-\frac{2(n-2)^{2 j+1}}{e^{n-2}}+\frac{(n-4)^{2 j+1}}{e^{n-4}}\right] \\
& =\frac{1}{e^{n}} \sum_{j=0}^{\infty} \frac{(j+1)}{(2 j+1)!}\left[n^{2 j+1}-2 e^{2}(n-2)^{2 j+1}+e^{4}(n-4)^{2 j+1}\right] . \tag{7}
\end{align*}
$$

Since

$$
\sum_{j=0}^{\infty} \frac{(j+1)}{(2 j+1)!} x^{2 j+1}=\frac{1}{2}\left(x e^{x}+e^{x}-1\right),
$$

(7) reduces to

$$
\begin{aligned}
L_{1,1 ; 2}\left(\beta_{n, 1}\right) & =\frac{1}{2 e^{n}}\left[n e^{n}+e^{n}-1-2 e^{2}\left((n-2) e^{n-2}+e^{n-2}-1\right)+e^{4}\left((n-4) e^{n-4}+e^{n-4}-1\right)\right] \\
& =-\frac{\left(e^{2}-1\right)^{2}}{e^{n}}<0
\end{aligned}
$$

Thus, the Borel matrix does not preserve $(1,1 ; 2)$-convexity.
Next, we will consider the Ces̀aro matrix which is given by

$$
a_{n, k}= \begin{cases}\frac{1}{n+1}, & \text { if } k \leq n \\ 0, & \text { if } k>n\end{cases}
$$

and prove below that it does not preserve $(1,1 ; 2)$-convexity of sequences by showing that the condition (i) of Theorem 3.1 does not hold.
Consider the corresponding matrix $\left[\beta_{n, i}\right]$ which is also lower triangular. When n is an even integer, assuming $n=2 m$ where $m \geq 2$, we get from (3)

$$
\begin{gathered}
\beta_{2 m, 0}=\sum_{j=0}^{m}(j+1) a_{2 m, 2 j}=\frac{1}{2 m+1} \sum_{j=0}^{m}(j+1), \\
\beta_{2 m-2,0}=\sum_{j=0}^{m-1}(j+1) a_{2 m-2,2 j}=\frac{1}{2 m-1} \sum_{j=0}^{m-1}(j+1),
\end{gathered}
$$

and

$$
\beta_{2 m-4,0}=\sum_{j=0}^{m-2}(j+1) a_{2 m-4,2 j}=\frac{1}{2 m-3} \sum_{j=0}^{m-2}(j+1)
$$

Therefore,

$$
\begin{aligned}
L_{1,1 ; 2}\left(\beta_{2 m, 0}\right) & =\beta_{2 m, 0}-2 \beta_{2 m-2,0}+\beta_{2 m-4,0} \\
& =\frac{(m+1)(m+2)}{2(2 m+1)}-\frac{m(m+1)}{2 m-1}+\frac{m(m-1)}{2(2 m-3)} \\
& =\frac{3}{(2 m+1)(2 m-1)(2 m-3)}>0
\end{aligned}
$$

Thus, condition (i) of Theorem 3.1 fails showing that the Ces̀aro matrix does not preserve $(1,1 ; 2)$-convexity of sequences, which asserts that the theorem given in $[10$, p.40] is incorrect.

In fact, we give below a simple example of a $(1,1 ; 2)$-convex sequence which is not transformed into a $(1,1 ; 2)$-convex sequence by the Ces̀aro matrix.

$$
x=\left\{\begin{array}{ccccccc}
x_{0} & x_{1} & x_{2} & x_{3} & \ldots, & x_{2 k} & x_{2 k+1} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
-1, & 0, & -2, & 0, & -(k+1), & 0,
\end{array}\right.
$$

Obviously $\left\{x_{n}\right\}$ is $(1,1 ; 2)$-convex sequence. But for the transformed sequence

$$
(A x)_{n}=\sum_{k=0}^{n} \frac{1}{n+1} x_{k}
$$

we see that for $k \geq 2$,

$$
\begin{aligned}
L_{1,1 ; 2}(A x)_{2 k} & =(A x)_{2 k}-2(A x)_{2 k-2}+(A x)_{2 k-4} \\
& =-\left(\frac{1+2+\cdots+(k+1)}{2 k+1}\right)+2\left(\frac{1+2+\cdots k}{2 k-1}\right)-\left(\frac{1+2+\cdots+(k-1)}{2 k-3}\right)
\end{aligned}
$$

which simplifies to $-\frac{3}{\left(4 k^{2}-1\right)(2 k-3)}<0$.
We conclude this paper by showing that the Ces̀aro matrix does not preserve $(p, p ; 1)$-convexity when $p \neq 1$. In [11], the authors proved the following theorem giving the necessary and sufficient conditions for any matrix to preserve ($p, p, 1$)-convexity of sequences.

THEOREM. A non-negative matrix A satisfying $\sum_{k=1}^{\infty} k p^{k} a_{n, k}<\infty$ for $p \neq 1$ preserves $(p, p ; 1)$-convexity of sequences if and only if, for $n=2,3, \cdots$,

$$
\begin{aligned}
& \text { (i) } \Delta_{p, p}\left(\beta_{n, 0}\right)=\Delta_{p, p}\left(\beta_{n, 1}\right)=0 \\
& \text { (ii) } \Delta_{p, p}\left(\beta_{n, i}\right) \geq 0 \quad \text { for } i=2,3 \cdots,
\end{aligned}
$$

where $\beta_{n, i}=\sum_{j=i}^{\infty}(j-i+1) p^{j-i} a_{n, k}$ and $\Delta_{p, p}\left(\beta_{n, i}\right)=\beta_{n, i}-2 p \beta_{n-1, i}+p^{2} \beta_{n-2, i}$.
We will now show that the Ces̀aro matrix $\left[a_{n, k}\right]$ does not satisfy one of the conditions given in the above theorem.

$$
\begin{aligned}
\Delta_{p, p}\left(\beta_{n, 0}\right) & =\beta_{n, 0}-2 p \beta_{n-1,0}+p^{2} \beta_{n-2,0} \\
& =\frac{1}{n+1} \sum_{j=0}^{n}(j+1) p^{j}-\frac{2 p}{n} \sum_{j=0}^{n-1}(j+1) p^{j}+\frac{p^{2}}{n-1} \sum_{j=0}^{n-2}(j+1) p^{j}
\end{aligned}
$$

Combining the terms containing similar powers of p, we get

$$
\begin{aligned}
\Delta_{p, p}\left(\beta_{n, 0}\right) & =\sum_{j=2}^{n+1} p^{j-1}\left(\frac{j}{n+1}-\frac{2(j-1)}{n}+\frac{j-2}{n-1}\right)+\frac{1}{n+1} \\
& =\frac{-2}{n(n+1)(n-1)}\left(p^{n-1}+2 p^{n-2}+3 p^{n-3}+\cdots+(n-1) p-\frac{n(n-1)}{2}\right) \\
& =\frac{-2}{n(n+1)(n-1)}\left[\left(p^{n-1}-1\right)+2\left(p^{n-2}-1\right)+3\left(p^{n-3}-1\right)+\cdots+(n-1)(p-1)\right] \\
& \neq 0, \text { when } p \neq 1
\end{aligned}
$$

Hence, the Ces̀aro matrix fails to preserve $(p, p ; 1)$-convexity of sequences, when $p \neq 1$.

References

[1] I. B. Lacković and M. R. Jovanović, On a class of real sequences which satisfy a difference inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 678-715(1980), 99-104.
[2] I. B. Lacković and Lj. M. Kocić, Invariant transformations of some sequence classes, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 678-715(1980), 117-126.
[3] Lj. M. Kocić, On generalized convexity preserving matrix transformation, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 735-762(1982), 3-10.
[4] I. Ž. Milovanović, J. E. Pečarić and Gh. Toader, On p, q-convex sequences in Itinerant Seminar on Functional Equations, Approximation and Convexity, pp. 127-130, 1985.
[5] Lj. M. Kocić and I. Ž. Milovanović, A property of (p, q)-convex sequences, Period. Math. Hungar., 17(1986), 25-26.
[6] I. Ž. Milovanović, J. E. Pečarić and Gh. Toader, On an inequality of Nanson, Anal. Numér. Théor. Approx., 15(1986), 149-151.
[7] Gh. Toader, Invariant transformations of p, q-convex sequences in Seminar on Mathematical Analysis, pp. 61-64, 1991.
[8] C. R. Selvaraj and S. Selvaraj, Convexity preserving matrices that are stronger than the identity mapping, Houston J. Math., 18(1992), 329-338.
[9] I. Tincu, Some summability methods, Acta Univ. Apulensis Math. Inform., 7(2004), 203-208.
[10] Xh. Z. Krasniqi, Some properties of $(p, q ; r)$-convex sequences, Appl. Math. ENotes, 15(2015), 38-45.
[11] C. R. Selvaraj and S. Selvaraj, Nonnegative infinite matrices that preserve (p, q) convexity of sequences, Abstr. Appl. Anal. 2017, Art. ID 9167069, 9 pp.

[^0]: *Mathematics Subject Classifications: 40C05, 40D05.
 ${ }^{\dagger}$ Penn State University - Shenango, 147, Shenango Avenue, Sharon, PA 16146
 ${ }^{\ddagger}$ Penn State University - Shenango, 147, Shenango Avenue, Sharon, PA 16146

