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Abstract

This paper deals with (p, p; r)-convexity of sequences. First, we give the nec-
essary and suffi cient conditions for a non-negative infinite matrix to preserve
(1, 1; 2)-convexity of sequences. Using this result, it is shown that the Borel ma-
trix and the Ces̀aro matrix do not preserve (1, 1; 2)-convexity of sequences, thus
proving that the theorem pertaining to Ces̀aro matrix given in [10] is incorrect.
Furthermore, we prove that for any p 6= 1, the Ces̀aro matrix does not preserve
(p, p; 1)-convexity of sequences.

1 Introduction

If p > 0, q > 0, then the sequence {xn}∞n=0 of real numbers is said to be (p, q)-convex
if

Lp,q(xn) = xn − (p+ q)xn−1 + pqxn−2 ≥ 0

for n ≥ 2. This operator Lp,q generates the second order difference ∆2 when p = q = 1.
Several authors [1, 2, 4, 5, 6, 8] have proved various results on the (p, q)- convex
sequences. In [3, 7, 9], the authors discuss the matrix transformations of (p, q)-convex
sequences in the case of lower triangular matrices. In [11], the authors give the necessary
and suffi cient condtions for a non-negative infinite matrix to transform a (p, q)-convex
sequence into a (p, q)-convex sequence.
In [10], the author introduces the difference operator on a sequence {xn} as Lp;r(xn) =

xn − prxn+r for a natural number r. We define alternate form of the operator as
Lp;r(xn) = xn − prxn−r and Lp,q;r(xn) = Lp;r(xn)− qrLp;r(xn−r). Thus

Lp,q;r(xn) = xn − (pr + qr)xn−r + prqrxn−2r for n ≥ 2r.

Also, in [10], the author defines a sequence {xn} to be a (p, q; r)-convex sequence if
Lp,q;r(xn) ≥ 0 for n ≥ 2r.When r = 1, this operator generates (p, q)-convex sequences.
Clearly Lp,q;r is a linear operator. The main aim of the paper is to discuss the (1, 1; 2)-
convex sequences. A sequence {xn} is (1, 1; 2)-convex if

L1,1;2(xn) = xn − 2xn−2 + xn−4 ≥ 0 for n ≥ 4.

∗Mathematics Subject Classifications: 40C05, 40D05.
†Penn State University - Shenango, 147, Shenango Avenue, Sharon, PA 16146
‡Penn State University - Shenango, 147, Shenango Avenue, Sharon, PA 16146

445



446 (p, p; r)-Convexity Preserving Infinite Matrices

In this paper we give the necessary and suffi cient conditions for a non-negative infinite
matrix to preserve (1, 1; 2)-convexity of sequences. In Section 4 we give an example of
such an infinite matrix. Also, we show that the Borel matrix and the Ces̀aro matrix
do not transform every (1, 1; 2)-convex sequence into a (1, 1; 2)-convex sequence. In
addition, we show that the Ces̀aro matrix fails to satisfy one of the conditions given in
[11] to preserve (p, p; 1)-convexity of sequences for p 6= 1.

2 Preliminaries

For any given sequence {xn}, we can find a corresponding sequence {ck}∞k=0 such that

c0 = x0, c1 = x1,

and for k ≥ 2, ck’s are given by

ck =


x2j −

j−1∑
i=0

(j − i+ 1)c2i, if k = 2j,

x2j+1 −
j−1∑
i=0

(j − i+ 1)c2i+1, if k = 2j + 1,

(1)

which implies that {xn} can be represented by

xn =


k∑
i=0

(k − i+ 1)c2i, if n = 2k,

k∑
i=0

(k − i+ 1)c2i+1, if n = 2k + 1,

(2)

for n ≥ 0. As a consequence we get the following lemma.

LEMMA 2.1. If the sequence {xn} is given by the representation (2), then L1,1;2(xn) =
cn. Thus, the sequence {xn} is (1, 1; 2)-convex if and only if cn ≥ 0 for n ≥ 4.

PROOF. Since L1,1;2(xn) = xn − 2xn−2 + xn−4, it suffi ces to show that

xn − 2xn−2 + xn−4 = cn for n ≥ 4.

Using (2), we can write for n = 4, 5, 6, · · · ,

xn − 2xn−2 + xn−4

=


k∑
i=0

(k − i+ 1)c2i − 2
k−1∑
i=0

(k − i)c2i +
k−2∑
i=0

(k − i− 1)c2i, if n = 2k,

k∑
i=0

(k − i+ 1)c2i+1 − 2
k−1∑
i=0

(k − i)c2i+1 +
k−2∑
i=0

(k − i− 1)c2i+1, if n = 2k + 1,

=


c2k +

k−2∑
i=0

(k − i+ 1− 2(k − i) + k − i− 1)c2i, if n = 2k,

c2k+1 +
k−2∑
i=0

(k − i+ 1− 2(k − i) + k − i− 1)c2i+1, if n = 2k + 1,
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=

{
c2k, if n = 2k,

c2k+1, if n = 2k + 1,

= cn.

Thus, for any sequence {xn},

L1,1,;2(xn) = cn, for n ≥ 4.

Hence the lemma holds.

Now, we give below some definitions.

Let A = [an,k] be a non-negative infinite matrix defining a sequence to sequence
transformation by

(Ax)n =

∞∑
k=0

an,kxk.

Then, we define the matrices [αn,m] and [βn,i] as

αn,m =

{∑∞
j=l an,2j = an,2l + an,2l+2 + an,2l+4 + · · · , if m = 2l,∑∞
j=l an,2j+1 = an,2l+1 + an,2l+3 + an,2l+5 + · · · , if m = 2l + 1,

βn,i =

{∑∞
l=k αn,2l = αn,2k + αn,2k+2 + αn,2k+4 + · · · , if i = 2k,∑∞
l=k αn,2l+1 = αn,2k+1 + αn,2k+3 + αn,2k+5 + · · · , if i = 2k + 1.

Thus,

βn,i =


∑∞

l=k

(∑∞
j=lan,2j

)
if i = 2k,∑∞

l=k

(∑∞
j=lan,2j+1

)
if i = 2k + 1.

Interchanging the order of summation, we get

βn,i =

{∑∞
j=k

∑j
l=kan,2j , if i = 2k,∑∞

j=k

∑j
l=kan,2j+1, if i = 2k + 1.

Therefore, we can write

βn,i =


∞∑
j=k

(j − k + 1)an,2j , if i = 2k

∞∑
j=k

(j − k + 1)an,2j+1, if i = 2k + 1.
(3)

Furthermore, for n ≥ 4 and for each i = 0, 1, 2, . . . we obtain, by the linearity of the
operator L1,1;2,

L1,1;2(βn,i) =


∞∑
j=k

(
j − k + 1)L1,1;2(an,2j), if i = 2k,

∞∑
j=k

(
j − k + 1)L1,1;2(an,2j+1), if i = 2k + 1.

(4)
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Also, we need the matrix [an,k] to satisfy the condition

∞∑
k=1

kan,k <∞. (5)

so that from (3) for k = 0, 1, 2, · · ·

βn,i =


∞∑
j=k

(j − k)an,2j +
∞∑
j=k

an,2j, if i = 2k,

∞∑
j=k

(j − k)an,2j+1 +
∞∑
j=k

an,2j+1, if i = 2k + 1,

<∞.

Thus, βn,i is well-defined.

3 Main Results

In this section we prove the necessary and suffi cient conditions for a non-negative infi-
nite matrix A to transform a (1, 1; 2)-convex sequence into a (1, 1; 2)-convex sequence
showing that each column of the corresponding matrix [βn,i] is a (1, 1; 2)-convex se-
quence.

THEOREM 3.1. A non-negative infinite matrix A = [an,k] satisfying

∞∑
k=1

kan,k <∞,

preserves (1, 1; 2)-convexity of sequences if and only if for n = 4, 5, 6 . . . ,

(i) L1,1;2
(
βn,0

)
= L1,1;2

(
βn,1

)
= L1,1;2

(
βn,2

)
= L1,1;2

(
βn,3

)
= 0.

(ii) L1,1;2
(
βn,i)

)
≥ 0 for i ≥ 4, where the matrix [βn,i] is defined by

βn,i =


∞∑
j=k

(j − k + 1)an,2j , if i = 2k,

∞∑
j=k

(j − k + 1)an,2j+1, if i = 2k + 1.

First, we prove the following lemma.

LEMMA 3.1. If {xn} is any sequence, then the transformed sequence {(Ax)n}
satisfies that for n ≥ 4,

(Ax)n =

∞∑
i=0

ciβn,i
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where ci’s are given by (1).

PROOF. From (2), we have

x2k =

k∑
i=0

(k − i+ 1)c2i and x2k+1 =

k∑
i=0

(k − i+ 1)c2i+1.

Then the nth term of the transformed sequence is

(Ax)n =

∞∑
k=0

an,kxk

=

∞∑
k=0

a
n,2k

x
2k

+

∞∑
k=0

a
n,2k+1

x
2k+1

=

∞∑
k=0

an,2k

( k∑
i=0

(k − i+ 1)c2i

)
+

∞∑
k=0

an,2k+1

( k∑
i=0

(k − i+ 1)c2i+1

)
.

Interchanging the order of summation,

(Ax)n =

∞∑
i=0

c2i

( ∞∑
k=i

(k − i+ 1)an,2k

)
+

∞∑
i=0

c2i+1

( ∞∑
k=i

(k − i+ 1)an,2k+1

)
.

Using (3), we can write

(Ax)n =

∞∑
i=0

c2iβn,2i +

∞∑
i=0

c2i+1βn,2i+1 =

∞∑
i=0

ciβn,i.

Hence the lemma holds.

PROOF OF THEOREM 3.1. To prove the suffi ciency of the conditions given in the
theorem, assume that conditions (i) and (ii) are true. For any (1, 1; 2)-convex sequence
{xn}, by Lemma 2.1, ci ≥ 0 for i ≥ 4. Using Lemma 3.1 and the linearity of the
operator L1,1;2, we can write for n ≥ 4,

L1,1;2(Ax)n =

∞∑
i=0

ciL1,1;2(βn,i) ≥ 0. (6)

Thus, the sequence {(Ax)n} is also (1, 1; 2)-convex. Conversely, assume that the matrix
A preserves (1, 1; 2)-convexity of sequences. Suppose that condition (i) fails to hold.
Then for some i = 0, 1, 2, 3,

L1,1;2(βn,i) 6= 0 for some n ≥ 4.

In particular, if
L1,1;2(βn,0) 6= 0, for some n ≥ 4,
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then there exists an N ≥ 4 such that

L1.1;2(βN,0) = L 6= 0.

Consider the sequence {un} given by

u =
{
u0
↓
−L,

u1
↓
0,

u2
↓
−2L,

u3
↓
0,

u4
↓
−3L,

. . . , u2k
↓

−(k+1)L,

u2k+1
↓
0,

. . .
}
.

Then, {un} is a (1, 1; 2)-convex sequence because using equation (1) and Lemma 2.1
we see that c0 = u0 = −L, c1 = u1 = 0, c2 = u2 − 2c0 = 0, c3 = u3 − 2c1 = 0 and for
k ≥ 2,

c2k = u2k − 2u2k−2 + u2k−4

= −(k + 1)L− 2(−kL) + (−(k − 1)L) = 0,

c2k+1 = u2k+1 − 2u2k−1 + u2k−3 = 0.

Then for the transformed sequence {(Au)n}, we have from (6)

L1,1;2(Au)N = c0L1,1;2(βN,0) +

∞∑
i=1

c2iL1,1;2(βN,2i) +

∞∑
i=0

c2i+1L1,1;2(βN,2i+1)

= c0L1,1;2(βN,0)

= −L2 < 0,

which contradicts that the transformed sequence {(Au)n} must be (1, 1; 2)-convex.
Similarly, if L1,1;2(βN,1) or L1,1;2(βN,2) or L1,1;2(βN,3) = L 6= 0 for some N ≥ 4, then
consider the sequences

v =
{
v0
↓
0,

v1
↓
−L,

v2
↓
0,

v3
↓
−2L,

v4
↓
0,

. . . , v2k+1
↓

−(k+1)L,

v2k
↓
0,

. . .
}

w =
{
w0
↓
0,

w1
↓
0,

w2
↓
−L,

w3
↓
0,

w4
↓
−2L,

. . . , w2k
↓
−kL,

w2k+1
↓
0,

. . .
}

and
t =

{
t0
↓
0,

t1
↓
0,

t2
↓
0,

t3
↓
−L,

t4
↓
0,

t5
↓
−2L,

. . . t2k
↓
0,

t2k+1
↓
−kL,

. . .
}

respectively. It is obvious that {vn}, {wn} and {tn} are (1, 1; 2)-convex sequences with
the corresponding

c1 = −L and ci = 0 for i 6= 1 for the sequence{vn},

c2 = −L and ci = 0 for i 6= 2 for the sequence {wn},
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and

c3 = −L and ci = 0 for i 6= 3 for the sequence{tn}.

By the similar argument as in the case of the sequence {un}, we see that the transformed
sequences {(Av)n}, {(Aw)n}, and {(At)n}, are not (1, 1; 2)-convex sequences, which is
a contradiction.
Next, suppose that condition (ii) is not true. First, assume that L1,1;2(βn,2i) for

i ≥ 2, fails to satisfy the condition. Then there exists an integer j = 2k ≥ 4 such that
the j-th column-sequence {βn,2k}∞n=0 of the matrix [βn,i] is not (1, 1; 2)-convex. i.e.,
for some N ≥ 4, L1,1,;2(βN,2k) = L < 0. Consider the sequence

x =
{
x0
↓
0,

. . . , x2k−1
↓
0,

x2k
↓
1,

x2k+1
↓
0,

x2k+2
↓
2,

x2k+3
↓
0,

x2k+4
↓
3,

x2k+5
↓
0,

. . .
}
.

Then {xn} is a (1, 1; 2)-convex sequence because using equation (1) and Lemma 2.1 we
see that

ci = 0, 0 < i < 2k,

c2k = 1,

ci = 0 for i ≥ 2k + 1.

Thus, the sequence {xn} is (1, 1; 2)-convex. But from (6),

L1,1;2(Ax)N =

∞∑
i=0

c2iL1,1;2(βN,2i) +

∞∑
i=0

c2i+1L1,1;2(βN,2i+1)

= c2kL1,1;2(βN,2k) = L < 0,

which contradicts that the sequence {(Ax)n} is a (1, 1; 2)-convex sequence.
Next, assume that L1,1:2(βn,2i+1) for i ≥ 2, fails to satisfy condition (ii).
Then there exists and integer l = 2k + 1 ≥ 5 such that the l-th column-sequence

{βn,2k+1}∞n=0 of the matrix [βn,i] is not (1, 1; 2)-convex. That is, for some N ≥ 4,
L1,1;2(βN,2k+1) = L < 0. This case can be settled by a similar argument by considering
the sequence

y =
{
y0
↓
0,

. . . , y2k
↓
0,

y2k+1
↓
1,

y2k+2
↓
0,

y2k+3
↓
2,

y2k+4
↓
0,

y2k+5
↓
3,

. . .
}
,

which implies that c2k+1 = 1 and all other ci’s are zero. This yields that

L1,1;2(Ay)N = c2k+1L1,1;2(βN,2k+1) = L < 0,

a contradiction. This completes the proof.
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4 Examples

We give below an example of (1, 1; 2)-convexity preserving matrix. Let the matrix
A = [an,k] be defined by

an,k =
n+ 1

(k + 1)3
.

Then for each n,

∞∑
k=1

k
(n+ 1)

(k + 1)3
= (n+ 1)

∞∑
k=1

[ 1

(k + 1)2
− 1

(k + 1)3

]
<∞.

Thus, by (5), βn,i is well-defined for each n = 0, 1, 2, · · · and i = 0, 1, 2, · · · . The matrix
A satisfies all three conditions of Theorem 3.1, because for n ≥ 4, using (4),

L1,1;2(βn,i) =


∞∑
j=k

(j − k + 1)[an,2j − 2an−2,2j + an−4,2j ], if i = 2k,

∞∑
j=k

(j − k + 1)[an,2j+1 − 2an−2,2j+1 + an−4,2j+1], if i = 2k + 1,

=


∞∑
j=k

(j−k+1)
(2j+1)3 [(n+ 1)− 2(n− 1) + (n− 3)], if i = 2k,

∞∑
j=k

(j−k+1)
(2j+2)3 [(n+ 1)− 2(n− 1) + (n− 3)], if i = 2k + 1,

= 0.

Now, we show that the classical matrices Borel matrix and Ces̀aro matrix do not
preserve (1, 1; 2)-convexity of sequences. The Borel matrix B = [bn,k] is given by

bn,k =
nk

enk!
.

We will show that the matrix B does not preserve (1, 1; 2)-convexity of sequences by
proving that L1,1;2(βn,1) 6= 0, which violates one of the conditions given in Theorem
3.1. For n ≥ 4, using (4) with k = 0,

L1,1;2(βn,1) =

∞∑
j=0

(j + 1)L1,1;2(bn,2j+1)

=

∞∑
j=0

(j + 1)

(2j + 1)!

[n2j+1
en

− 2(n− 2)2j+1

en−2
+

(n− 4)2j+1

en−4

]
=

1

en

∞∑
j=0

(j + 1)

(2j + 1)!

[
n2j+1 − 2e2(n− 2)2j+1 + e4(n− 4)2j+1

]
. (7)

Since
∞∑
j=0

(j + 1)

(2j + 1)!
x2j+1 =

1

2
(xex + ex − 1),



C. R. Selvaraj and S. Selvaraj 453

(7) reduces to

L1,1;2(βn,1) =
1

2en

[
nen + en − 1− 2e2

(
(n− 2)en−2 + en−2 − 1

)
+ e4

(
(n− 4)en−4 + en−4 − 1

)]
= − (e2 − 1)2

en
< 0.

Thus, the Borel matrix does not preserve (1, 1; 2)-convexity.

Next, we will consider the Ces̀aro matrix which is given by

an,k =

{
1

n+1 , if k ≤ n,
0, if k > n,

and prove below that it does not preserve (1, 1; 2)-convexity of sequences by showing
that the condition (i) of Theorem 3.1 does not hold.
Consider the corresponding matrix [βn,i] which is also lower triangular. When n is an
even integer, assuming n = 2m where m ≥ 2, we get from (3)

β2m,0 =

m∑
j=0

(j + 1)a2m,2j =
1

2m+ 1

m∑
j=0

(j + 1),

β2m−2,0 =

m−1∑
j=0

(j + 1)a2m−2,2j =
1

2m− 1

m−1∑
j=0

(j + 1),

and

β2m−4,0 =

m−2∑
j=0

(j + 1)a2m−4,2j =
1

2m− 3

m−2∑
j=0

(j + 1).

Therefore,

L1,1;2(β2m,0) = β2m,0 − 2β2m−2,0 + β2m−4,0

=
(m+ 1)(m+ 2)

2(2m+ 1)
− m(m+ 1)

2m− 1
+
m(m− 1)

2(2m− 3)

=
3

(2m+ 1)(2m− 1)(2m− 3)
> 0.

Thus, condition (i) of Theorem 3.1 fails showing that the Ces̀aro matrix does not
preserve (1, 1; 2)-convexity of sequences, which asserts that the theorem given in [10,
p.40] is incorrect.

In fact, we give below a simple example of a (1, 1; 2)-convex sequence which is not
transformed into a (1, 1; 2)-convex sequence by the Ces̀aro matrix.

x =
{
x0
↓
−1,

x1
↓
0,

x2
↓
−2,

x3
↓
0,

. . . , x2k
↓

−(k+1),

x2k+1
↓
0,

. . .
}
.
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Obviously {xn} is (1, 1; 2)-convex sequence. But for the transformed sequence

(Ax)n =

n∑
k=0

1

n+ 1
xk,

we see that for k ≥ 2,

L1,1;2(Ax)2k = (Ax)2k − 2(Ax)2k−2 + (Ax)2k−4

= −
(

1 + 2 + · · ·+ (k + 1)

2k + 1

)
+ 2

(
1 + 2 + · · · k

2k − 1

)
−
(

1 + 2 + · · ·+ (k − 1)

2k − 3

)
,

which simplifies to − 3
(4k2−1)(2k−3) < 0.

We conclude this paper by showing that the Ces̀aro matrix does not preserve
(p, p; 1)-convexity when p 6= 1. In [11], the authors proved the following theorem giving
the necessary and suffi cient conditions for any matrix to preserve (p, p, 1)-convexity of
sequences.

THEOREM. A non-negative matrix A satisfying
∞∑
k=1

kpkan,k < ∞ for p 6= 1 pre-

serves (p, p; 1)-convexity of sequences if and only if, for n = 2, 3, · · · ,

(i) ∆p,p(βn,0) = ∆p,p(βn,1) = 0

(ii) ∆p,p(βn,i) ≥ 0 for i = 2, 3 · · · ,

where βn,i =
∞∑
j=i

(j − i+ 1)pj−ian,k and ∆p,p(βn,i) = βn,i − 2pβn−1,i + p2βn−2,i.

We will now show that the Ces̀aro matrix [an,k] does not satisfy one of the conditions
given in the above theorem.

∆p,p(βn,0) = βn,0 − 2pβn−1,0 + p2βn−2,0

=
1

n+ 1

n∑
j=0

(j + 1)pj − 2p

n

n−1∑
j=0

(j + 1)pj +
p2

n− 1

n−2∑
j=0

(j + 1)pj .

Combining the terms containing similar powers of p, we get

∆p,p(βn,0) =

n+1∑
j=2

pj−1
( j

n+ 1
− 2(j − 1)

n
+
j − 2

n− 1

)
+

1

n+ 1

=
−2

n(n+ 1)(n− 1)

(
pn−1 + 2pn−2 + 3pn−3 + · · ·+ (n− 1)p− n(n− 1)

2

)
=

−2

n(n+ 1)(n− 1)

[
(pn−1 − 1) + 2(pn−2 − 1) + 3(pn−3 − 1) + · · ·+ (n− 1)(p− 1)

]
6= 0, when p 6= 1.

Hence, the Ces̀aro matrix fails to preserve (p, p; 1)-convexity of sequences, when
p 6= 1.
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