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Abstract

We extend the applicability of a method for approximating a locally unique
solution of a nonlinear equation. The convergence analysis in earlier work was
based on Taylor expansions and hypotheses reaching up to the second derivative of
the function involved, although only the first derivative appears in the method. In
this study, we use only hypotheses on the first derivative of the involved function.
Numerical examples are also presented in this study.

1 Introduction

Ujevic in [7], considered an iterative method for approximating a solution of the non-
linear equation

F (x) = 0,

where F : D ⊆ S → S is a differentiable nonlinear function, S is R or C and D is a
subset of S. In this paper we study the method in [7] using only hypotheses on the first
derivative of the function. Precisely, we present the local convergence analysis of the
following method defined for each n = 0, 1, 2, · · · , by

yn = xn − αF ′(xn)−1F (xn),

xn+1 = xn − 4αF ′(xn)−1F (xn)(3F (xn)− 2F (yn))−1F (xn), (1)

where, x0 ∈ D is an initial point and α ∈ S is a parameter. The method (1) was
studied in [7] for S = R and α ∈ (0, 1). The convergence of the method was shown
using Taylor expansions and hypotheses reaching up to the second derivative of the
function F. Moreover, method (1) was compared favorably to existing methods. How-
ever, the hypotheses on the second derivative limit the applicability of method (1). As
a motivational example, let us define function F on D = [− 12 ,

5
2 ] by

F (x) =

{
x3 lnx2 + x5 − x4, x 6= 0,
0, x = 0.
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Choose x∗ = 1. We have that

F ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

and
F ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

The results in [7] cannot be used to show the convergence of method (1) on the above
example, since the first and second derivatives of function F have zeros on D. But, our
results can apply (see Example 3.2). Hence, we extend the applicability of method (1).
We also find the computational order of convergence (COC) or the approximate compu-
tational order of convergence that do not require the usage of higher order derivatives
(see Remark 2.2 part 4) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
The rest of the paper is organized as follows. In Section 2 we present the local con-

vergence analysis. We also provide a radius of convergence, computable error bounds
based on Lipschitz constants and a uniqueness result not given in [7]. Special cases
and numerical examples are presented in the concluding Section 3.

2 Local Convergence

Let L0 > 0, L > 0, M ≥ 1 and α ∈ S. Define functions g1, p and hp on the interval
[0, 1

L0
) by

g1(t) =
1

2(1− L0t)
(Lt+ 2M |1− α|),

p(t) =
1

3
(
3L0

2
t+ 2Mg1(t)),

hp(t) = p(t)− 1

and parameters r1 and rA by

r1 =
2(1−M |1− α|)

2L0 + L
and rA =

2

2L0 + L
.

Suppose that
M |1− α| < 1. (2)

By definition of the functions and (2) we have that 0 < r1 < rA, g1(r1) = 1 and for
each t ∈ [0, r1), 0 ≤ g1(r1) < 1. Moreover, suppose that

2

3
M2|1− α| < 1. (3)

Then, we get by (3) that hp(0) = 2
3M

2|1 − α| − 1 < 0 and hp(t) → +∞ as t → 1
L0

−
.

It follows by the intermediate value theorem that function hp has zeros in the interval
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(0, 1
L0

). Denote by rp the smallest such zeros. Define functions g2 and h2 on the interval
(0, rp) by

g2(t) =
1

2(1− L0t)
(Lt+

2M2(|3− 4α|+ 2g1(t))

3(1− p(t)) )

and
h2(t) = g2(t)− 1.

Further, suppose that
M2(|3− 4α|+ 2M |1− α|)

3(1− 2
3M

2|1− α|)
< 1. (4)

In view of (4), we have that h2(0) < 0 and h2(t) → +∞ as t → r−p . Denote by r2 the
smallest zero of function h2 on the interval (0, rp). Set

r = min{r1, r2}. (5)

Then, we have

0 < r < rA <
1

L0
(6)

and for each t ∈ [0, r)
0 ≤ g1(t) < 1, (7)

0 ≤ p(t) < 1 (8)

and
0 ≤ g2(t) < 1. (9)

Let U(v, ρ), Ū(v, ρ) stand, respectively for the open and closed balls in S with center
v ∈ S and of radius ρ > 0. Next, we present the local convergence analysis of method
(1) using the preceding notation.

THEOREM 2.1. Let F : D ⊂ S → S be a differentiable function. Suppose that
there exist x∗ ∈ D and L0 > 0 such that

F (x∗) = 0, F ′(x∗) 6= 0 (10)

and the center Lipschitz condition holds

|F ′(x∗)−1(F ′(x)− F ′(x∗)))| ≤ L0|x− x∗|. (11)

Further, suppose that there exist L > 0 and M ≥ 1 and α ∈ S satisfying (2)—(4) and
for each x, y ∈ D0 = D ∩ U(x∗, 1

L0
)

|F ′(x∗)−1(F ′(x)− F ′(y))| ≤ L|x− y|, (12)

|F ′(x∗)−1F ′(x)| ≤M (13)

and
Ū(x∗, r) ⊆ D
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where the radius of convergence r is given by (5). Then, the sequence {xn} generated
for x0 ∈ U(x∗, r) − {x∗} by method (1) is well defined, remains in U(x∗, r) for each
n = 0, 1, 2, · · · and converges to x∗. Moreover, the following estimates hold

|yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| < |xn − x∗| < r, (14)

and

|xn+1 − x∗| ≤ g2(|xn − x∗|)|xn − x∗| < |xn − x∗|, (15)

where the ′′g′′ functions are defined previously. Furthermore, for T ∈ [r, 2
L0

) the limit
point x∗ is the only solution of equation F (x) = 0 in D1 = Ū(x∗, T ) ∩D.

PROOF. We shall show estimates (14) and (15) using mathematical induction. By
hypothesis x0 ∈ U(x∗, r)− {x∗}, (6) and (11), we get that

|F ′(x∗)−1(F ′(x0)− F ′(x∗))| ≤ L0|x0 − x∗| < L0r < 1. (16)

It follows from (16) and the Banach Lemma on invertible functions [2, 3], F ′(x0) 6= 0
and

|F ′(x0)−1F ′(x∗))| ≤
1

1− L0|x0 − x∗|
. (17)

We also have that y0 is well-defined by the second sub-step of method (1) for n = 0.
We can write by (10) that

F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′∗ + θ(x0 − x∗))(x0 − x∗)dθ. (18)

Notice that |x∗+θ(x0−x∗)−x∗| = θ|x0−x∗| < r, so x∗+θ(x0−x∗) ∈ U(x∗, r). Then,
by (13) and (18), we have that

|F ′(x∗)−1F (x0)| ≤M |x0 − x∗|. (19)

Using the first substep of method (1) for n = 0, (6), (7), (12), (17) and (19) we obtain
that

|y0 − x∗|
= |(x0 − x∗ − F ′(x0)−1F (x0)) + (1− α)F ′(x0)

−1F (x0)|

≤ |F ′(x0)−1F ′(x∗))||
∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ|

+|1− α||F ′(x0)−1F ′(x∗)||F ′(x∗)−1F (x0)|

≤ L|x0 − x∗|2
2(1− L0|x0 − x∗|)

+
M |1− α||x0 − x∗|

1− L0|x0 − x∗|
= g1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r, (20)
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which shows (14) for n = 0 and y0 ∈ U(x∗, r). Next, we must show that 3F (x0) −
2F (y0) 6= 0 for x0 6= x∗. Using (20), we obtain in turn that

|(3F ′(x∗)(x0 − x∗))−1[3(F (x0)− F (x∗)− F ′(x∗)(x0 − x∗))− 2F (y0)]|

≤ |x0 − x∗|−1
3

[
3L0

2
|x0 − x∗|2 + 2M |y0 − x∗|]

≤ |x0 − x∗|−1
3

[
3L0

2
|x0 − x∗|+ 2Mg1(|x0 − x∗|)]|x0 − x∗|

= p(|x0 − x∗|) < p(r) < 1. (21)

By (21), 3F (x0)− 2F (y0) 6= 0 and

|(3F (x0)− 2F (y0))
−1F ′(x∗)| ≤ 1

3|x0 − x∗|(1− p(|x0 − x∗|))
. (22)

We also have that x1 is well defined by the second substep of method (1) and (22).
Then, using (6), (9), (17), (19) (for y0 = x0), (20), (22) and the approximation

x1 − x∗

= x0 − x∗ − F ′(x0)−1F (x0)

+F ′(x0)
−1F (x0)[1− 4α(3F (x0)− 2F (y0))

−1F (x0)]

= x0 − x∗ − F ′(x0)−1F (x0)

+F ′(x0)
−1F (x0)(3F (x0)− 2F (y0))

−1[(3− 4α)F (x0)− 2F (y0)],

we get in turn that

|x1 − x∗| ≤
L|x0 − x∗|2

2(1− L0|x0 − x∗|)
+

M2|x0 − x∗|(|3− 4α||x0 − x∗|+ 2|y0 − x∗|)
3(1− L0|x0 − x∗|)|x0 − x∗|(1− p(|x0 − x∗|))

≤ L|x0 − x∗|2
2(1− L0|x0 − x∗|)

+
M2|x0 − x∗|(|3− 4α|+ 2g1(|x0 − x∗|))

3(1− L0|x0 − x∗|)(1− p(|x0 − x∗|))
= g2(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,

which shows (15) for n = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, x1 by
xk, yk, xk+1 in the preceding estimates we arrive at estimates (14) and (15). Then,
it follows from the estimate |xk+1 − x∗| ≤ c|xk − x∗| < r, c = g2(|x0 − x∗|) ∈ [0, 1),
we deduce that limk→∞ xk = x∗ and xk+1 ∈ U(x∗, r). The uniqueness part has been
shown in [5].

REMARK 2.2.

(i) In view of (10) and the estimate

|F ′(x∗)−1F ′(x)| = |F ′(x∗)−1(F ′(x)− F ′(x∗)) + I|
≤ 1 + |F ′(x∗)−1(F ′(x)− F ′(x∗))| ≤ 1 + L0|x− x∗|

condition (13) can be dropped and M can be replaced by

M(t) = 1 + L0t
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or
M(t) = M = 2,

since t ∈ [0, 1
L0

).

(ii) The results obtained here can be used for operators F satisfying autonomous
differential equations [2] of the form

F ′(x) = P (F (x))

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0), we
can apply the results without actually knowing x∗. For example, let F (x) = ex−1.
Then, we can choose: P (x) = x+ 1.

(iii) In [2, 3] we showed that rA = 2
2L0+L

is the convergence radius of Newton’s
method:

xn+1 = xn − F ′(xn)−1F (xn) foreach n = 0, 1, 2, · · · (23)

under the conditions (11) and (12). It follows from the definition of r in (5) that
the convergence radius r of the method (1) cannot be larger than the convergence
radius rA of the second order Newton’s method (23). As already noted in [2, 3]
rA is at least as large as the convergence radius given by Rheinboldt [15]

rR =
2

3L
.

The same value for rR was given by Traub [17]. In particular, for L0 < L we
have that

rR < rA

and
rR
rA
→ 1

3
as

L0
L
→ 0.

That is the radius of convergence rA is at most three times larger than Rhein-
boldt’s.

(iv) It is worth noticing that method (1) is not changing when we use the conditions
of Theorem 2.1 instead of the stronger conditions used in [7]. Moreover, we can
compute the computational order of convergence (COC) defined by

ξ = ln

(
|xn+1 − x∗|
|xn − x∗|

)
/ ln

(
|xn − x∗|
|xn−1 − x∗|

)
or the approximate computational order of convergence

ξ1 = ln

(
|xn+1 − xn|
|xn − xn−1|

)
/ ln

(
|xn − xn−1|
|xn−1 − xn−2|

)
.

This way we obtain in practice the order of convergence in a way that avoids the
bounds involving estimates using estimates higher than the first Fréchet derivative
of operator F. Note also that the computation of ξ1 does not require the usage
of the solution x∗.
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3 Numerical Examples

We present numerical examples in this section.

EXAMPLE 3.1. Let D = (−∞,+∞). Define function F of D by

F (x) = sin(x).

Then we have for x∗ = 0 that L0 = L = 1, M = 1. Then, the parameters are:

α = 0.6256, r1 = 0.41666666666666666666666666666667,

rA = 0.66666666666666666666666666666667, rp = 0.53137303340311403676565760179074,

r2 = 0.26492754861221623485789677943103 = r.

EXAMPLE 3.2. Returning back to the motivational example at the introduction
of this study, we have L0 = L = 96.662907, M = 1.0631. Then, the parameters are:

α = 0.6417, r1 = 0.004269590241366208460682685199572,

rA = 0.0068968199628702108600064590859802, rp = 0.0052580209390285324172475966975071,

r2 = 0.0022430651885094708697376830741632 = r.
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