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Abstract

We consider a mathematical model describing skyrmion dynamics in ferro-
magnets. The model consists of a modified form of the Landau-Lifshitz-Gilbert
equation for the evolution of the magnetization vector in a rigid ferromagnet. We
perform classical dimensional reductions by using the so-called energy method.
We identify the limit problem both for flat and slender media.

1 Introduction

Magnetic skyrmions are particle-like nanometer-sized spin textures of topological ori-
gin found in several magnetic materials, and are characterized by a long lifetime.
Skyrmions have been observed both by means of neutron scattering in momentum
space and microscopy techniques in real space, and their properties include novel Hall
effects, current-driven motion with ultra-low current density and multiferroic behav-
iour. These properties can be understood from a unified viewpoint, namely the emer-
gent electromagnetism associated with the non-coplanar spin structure of skyrmions.
From this description, potential applications of skyrmions as information carriers in
magnetic information storage and processing devices are described in [15].

In this paper we are interested in a mathematical model describing magnetic skyrmion
dynamics by spin-polarized current in ferromagnets. To write the model equations we
consider © a bounded and regular open set of R3. The generic point of R? is denoted by
x. We assume that a ferromagnetic material occupies the domain 2. With a prescribed
current density J(t,x), the time evolution of the magnetization vector m(t, z) may be
described by the Landau-Lifshitz-Gilbert (LLG) equation [14, 20]

Ohm —am x Oym = —ym x (Heg(m) + B(J - V)m) in (0,T) x ©, (1)

where T' > 0 is fixed and “x” denotes the cross product in R3. The term parameterized
by a factor « describes Gilbert damping torque. The first term on the right-hand side
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344 Reduced Models for Ferromagnetic Materials

accounts for torque by the effective field Heg(m) which is given by [14, 20]
Heg(m) = Am + a curl m + Vo, (2)

where curl denotes the rotational operator and ¢ satisfies in (0,7") x R? the stray field
equation

div(Ve + ) = 0, (3)

with
m=m, in (0,T) x Q,
m =0, in (0,7) x (R3\Q).

Let E denote the closure of the space of gradients of smooth functions in the L2
topology. E is a closed subset of L?(R3). The term V¢ characterizing the stray field
may be more conveniently written by using the orthogonal projector onto E denoted
by P. Then

Vo = —P(m). (4)

The term parameterized by the positive constant § expresses current-induced torque
on m. This torque is most commonly non-adiabatic termed and [ characterizes its
strength. The parameter v > 0 is a gyroscopic ratio, and a denotes Dzyaloshinskii-
Moriya exchange coeflicient. For more detail see [14, 20]. The initial data satisfied by
the magnetization is

m(0,2) = m(x), |mo|=1 a.e. in Q. (5)

Equation (1) should be solved together with appropriate boundary conditions for the
magnetization. We consider homogeneous Neumann boundary condition

,m=0 on (0,T)x 99, (6)

where 0, m denotes the outward normal derivative of m on the boundary of €.
Throughout, we make use of the following notations. L?(Q) = (L*(Q2))? and H*(Q) =
(H'(Q))? are the usual Hilbert spaces. (L>(£))? is denoted by L>°(£2) equipped with
the norm | . |oo. We set @ = (0,7) x €.

In this paper, we will be interested in the problem (1)-(6) in the case where 8 = 0.
We note that these simplifications do not limit the proposed analysis (see [22]). We
consider the following problem

Om —am x Oym = —ym X Heg(m) in Q,
Her(m) = Am +acurl m+ Ve in Q,
div(Veo+m) =0 in (0,T) x R3, (7)

m(0,2) = m(x), |mo|=1a.e. in Q,

d,m=0 on (0,7)x 90.
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LEMMA 1. If (m, ¢) is a weak solution of (7) with m € H*(Q) N L>(0, T, H(£2))
and Vi € L>(0,T,L?(R?)), then we have the following energy estimate

£(m(1)) + ;fy/of/g Oym? duds < €(m0)<1 229 (21“27:)), (8)

(%

where ) )
E(m(t)) = f/ |Vm|* dz + f/ |Ve|? dr, (9)
2 Q 2 R3

for all t € (0,T).

PROOF. Taking the cross product of (1) by m and using both the identity uw x
(vx w)=(u-w)v— (u-v)w and the saturation constraint |m| = 1, we obtain

m X Oym + adym = YHeg(m) — (Heg(m) . m)m.
Taking now the scalar product of the above equation with 9;m, we get
aldym|? = yHeg(m) - Oym, (10)

which leads after integration by using the boundary condition (6), and the fact that
[curl m|lrz2(0) < v2|[Vml2(q) (Which we can easily check by a simple calculation) to
the estimate

t 2., rt
E(m(t)) + g/ / |0;m|? dzds < E(mg) + ﬂ/ / |[Vm/|? dzds.  (11)
2y Jo Ja a Jo Ja
By Gronwall’s Lemma in its integral form ([10], Appendix B, page 625), we get (8).

REMARK 1. Estimate (8) leads to a bound for the energy of the local magnetization
m on the interval (0,7 for T fixed and finite.

REMARK 2. The operator P is Lipschitz continuous from L?(2) into L?(R?) since
it is bounded and linear.

We can prove the global existence of weak solutions to problem (7) using Faedo-
Galerkin combined with Penalty method. We proceed as in [1, 4, 5, 8, 24]. We have
the folowing result

THEOREM 1. Let T > 0 be fixed and mq € H*(Q2) be such that |mg(z)| = 1
a.e, there exists a global weak solution m of the problem (7) such that m € H(Q),
|m(t,x)| = 1 a.e and satisfying the energy estimate (8).

In the context of dimensional reduction, asymptotics of the LLG equation has been
studied by several authors, see for example [3, 12, 13, 16, 17, 18]. In [11, 23], the
classical dimensional reductions in magnetoelastic interactions 3D-2D and 2D-1D are
studied. They adopt a model described by the Landau-Lifshitz-Gilbert equation for
the magnetization field coupled with an evolution equation for the displacement. The
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limit problem both for flat and slender media by using the so-called energy method was
identified. In [21], the passage from 3D to 2D of a phase transition model in ferromag-
netism coupling thermodynamic and electromagnetic properties of the ferromagnetic
material is considered and the limit problem is also obtained by energy method. We
finally mention that an important progress was done to design schemes constructing
the weak solutions to the general LLG equation. Several schemes were proposed and
their convergence to weak solutions was proved. A significant step forward in the con-
vergence theory of numerical schemes has been done recently, see [2, 6, 7]. This will be
helpful to give a strategy for efficient computer implementation which may reflect the
true nature of the augmentation of the LLG model considered in this paper.

The next section is devoted to the dimensional reduction 3D-2D and 3D-1D. In the
last section concluding remarks and suggestions for future work are given.

2 Dimensional Reductions

2.1 Flat Domains

Let € be a real parameter taking values in a sequence of positive numbers converging
to zero. We consider flat domains represented by the cylinder Q. = B x (0,¢) of R3
where B C R? is a bounded and regular open set representing the cross section of Q..
The generic point of R? is denoted by x = (#,z3) with & = (z1,72) € R%. We assume
that a ferromagnetic material occupies the domain €2.. We set Ri = R? x RT and
Q: = (0,T) x Q. for T > 0. We shall describe the behavior of solutions when ¢ — 0.

Let (m, ) be the solution of the problem posed in .. We introduce the change of
variables

(21,20, 23) = (z,y,62) with X = (X ,2) € Q=Bx(0,1), X =(z,9). (12

Let (m*®, ¢°) be the fields associated with (m, ¢). Then m* satisfies in Q. the following
equations

. 1 _
O;m® —am® x 9ym® = —yredm® x (AmE +—50.m" +a curlm®es
€
— 1
+a L(m®) + gradp® + €8zgpeeg>, (13)

where (e1, ez, e3) represents the canonical basis of R3, curlm® = 0 5 — Oym§.

The operators dlv grad A represent divergence, gradient and Laplacian operators,
respectively, with respect to the variable & and m = (mq,ms,0) with (mq,ms) are the
first two components of m. The vector g?z;iap may also be considered as a 2D vector
or a 3D vector where the third component is 0.

The operator L is defined by

L(m®) = (0ym§ — éazmg, é@zmi — 0,m3, 0). (14)
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The magnetic potentiel ¢ satisfies the equations
div (gr’ah o + X(Q)ms) +0. (0.0 + 1x(Q)me -es) =0 in (0,T) x R?,
(@ o 20.7) 4 x(@m ) -m =0 o (0.7) x 20,
(15)
where n is the outer unit normal at the boundary 0f)..

The existence of solutions (m?, ¢°) of the new system is guaranteed by Theorem 1.
The energy estimate satisfied by (m®, ¢%) is

t ) 2 9 2
€2 (m= (1)) +9/ 19, m¢|? dXds ggf(mg)(u 7 texp( e t)) (16)
Y Jo Ja e} «

where

1 — 1 —
E(m(t) = = / lgrad m¢|? dX + —2/ |0, m*|? dX +/ lgrad ¢|* dX
2\ Ja e Ja R

1
— [ 10,¢°? aX |,
+€2/Q| ©°| )

and £%(m§) is given by

1 — 1 —
E8(mf) = 5 (/Q lgrad m§|* dX + = /Q |0,m§|* dX + /R3 lgrad ¢§|? dX

3
1
+6—2/Q|82908|2 dX).

To get uniform bounds for the solutions we discuss the admissibility criterion for the
initial data.

DEFINITION 1. An initial datum (mg, ¢§) is said to be admissible if we have

Ef(mg) < +o0.
The admissibility criterion means
— 1 — 1
/ lgrad m§|? dX + —2/ |0, m§|? dX+/ lgrad §|* dX + —2/ 10.05|> dX < +o0.
Q € Ja RZ £ Ja

Thus, since |m§|? = 1 a.e., to satisfy the criterion, we assume that there exists C' > 0
independent of € such that

lgrad mg|? dX < C, 0.m5|? dX < Ce?,  |mi(z, )P =1 ae, (17)
Q Q

/R3 lgrad 5> dX < C, /Q\azgagﬁ dX < Ce2. (18)
+
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Conditions (17) and (18) mean that the couple (m§, ©§) is essentially independent of
the variable z and its strong limit (mo, ¢,) is independent of z.

Let (m®, %) be a solution of the problem associated with an admissible initial
datum (m§, ¢5). We have

m§ — mg weakly in H*(Q),

g/rgl vy — gr/ai ¢y weakly in L*(R3).

Moreover mo(X) = mo(X') is independent of z. For subsequences, the solutions verify
the convergences
m® — m weakly-x in L™ (O,T, H! (Q)),

dym® — 9ym weakly in L*(0,T,L*(Q)),
d,m° — 0 strongly in L™ (O,T, LQ(Q)),
curl m® — curl m weakly in L™ (07 T, ]LQ(Q)),
m® — m strongly in L? (O,T, ]LQ(Q)), (19)
grad ¢° — grad ¢ weakly in L (0,T,L*(R%)),
0,¢° — 0 strongly in L (O, T, LQ(Ri)).

The strong convergence of (19) is a consequence of the classical use of Aubin’s com-
pactness Lemma (See [19]).

We multiply the first equation of (15) by a test functions k € D((0,T) x RY), we
get

/ div <g’r§i<p€ + X(Q)ﬁf) -k dXat
(O,T)xRi
1, 1 .
JF/ 0. <25z<,0 + —x(2)m ~e3) -k dXdt=0. (20)
(0,T)xR3 € €

Arguing that in the limit, ¢ is independent of the variable z we choose test functions
k which are independent of z hence (20) becomes

_/ gawe.gakdm_/ (@) - grad k dXar =0, (21)
(0,T)xR3. (0,T)xR3.
Let us pass to the limit into (21), we get

0,T)xR% 0,T)xR2.

Thus .
Ap +x(Q)divm =0 in (0,7) x R3.
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Let g°(t, 2, z) be a regular test functions depending on . Multiplying equation (13)
by g° and integrating by parts, we get the weak formulation

l/ om’ - ¢° dth—g/ m® x gym® - g°dXdt

/m xgradm gradngdH——/m x 0,m° - 0,¢° dXdt

—a/m x L(m?®) - g° dth—/Qm“f><g1rad<,0‘5-g8 dXadt

—g/ m® X 0,¢0%ez - g° dth—a/ m® X curl mfeg - ¢° dXdt.
Q

In order to pass to the limit as ¢ — 0, we use the fact that in the limit, m is independent
of the variable z. We use test functions of the type

ge(t,X,,z) = go(t,X/) + sg(t,X/,ez).

Note that
9.9° = €%(0.9)(ez) and Oy g° = Dy g + 0y g(c2).

The weak convergence of 9;m¢ to d;m in L? (0, T,1.2 (Q)) and the strong convergence
of m® to m in L?(0,T,L2(Q2)) allow to get

/ oym’ - g° dXdt — / om - g, dX/dt7
Q Q'

/'m‘sxa,g'm‘g-g8 dth—>/ mx oym - g, dx’ dt.

Q Q

Next, we have
/msxg/r;ima-g?a\dgsd)(dt%/ mxg/ra\clm@;azigodX,dt,
Q Q

and )
—2/ m° x d,m"-9,9° dXdt — 0,
Q

/ m*® Xg?z;igpa-ga dth—>/ mxg?a\dgo-go dX/dt,
Q Q'
/ m5><(;1?lm5e3-gE dth—>/ mxc/u\rlme?,-go dX/dt,
Q/
where Q' = (0,T) x B. Recall that
g g 1 € 1 € g
L(m®) = (0,m§ — —=0.m53, —9.m] — 0,m5, 0).
€ €

To pass to the limit in term involving L(m*®), we have the following convergence result.



350 Reduced Models for Ferromagnetic Materials

LEMMA 2. Define ¥, = %(st. Then
T, = ¥ weakly-+ L>(0,7,L%(Q)),

where W is given by
¥ =F xm+agm, (22)

and F is a function of the variable X  and ag € R.

PROOF. We multiply equation (13) by ¢ and choose g = g € D(Q) independent
of e. We get

1
s(/@tm5~ngdt—a/ mgxatmg-ngdt>
7JQ 7JQ

= 5(/ mExg/r;imE-g?z;ingdt—a/ m*® x L(m®) - g dXdt
Q Q
— 1

f/ msxgrad<p5~ngdt77/ m® x 0,¢0%ez - g dXdt

Q €Ja
1

—a/ msxcurlmse3-ngdt>+/ m® x 9,m" - 9,9 dXdt.

Q £ Ja

Hence, passing to the limit in the above equation, by using previous convergences, we
deduce that the weak-x limit ¥ of the sequence W, satisfies 0, (m X \Il) = 0. Recall
that if w, v and X are three-dimensional vectors such that u # 0, then

ux X =v means J\ER, X:—m—l—)\u.

|ul

This allows to get (22). By lemma 2, we have
/ m® x L(m®) - ¢° dXdt — / m x L(m) - g, dx dt,
Q Q'

where L(m) is given by
L(m) = (aymg — \IJQ s \Dl — 81m3 5 O),

and ¥;, i = 1,2, 3 are the components of the vector ¥. To pass to the limit in the term
1 fQ me x 0,¢p%es - g° dXdt, we need the following Lemma.

LEMMA 3. Define ©, = éachs, then
0. — 0 weakly-x in L™ (O, T,1.2 (Ri)),
where O is given by

O=-—x(Q)m-es+G in (0,T) x R3.
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PROOF. We multiply equation (20) by e, and we choose a test function k €
D((0,T) x RY) independent of e. Passing to the limit in the resulting equation, we get
9.(0+ x()m - e3) = 0. Therfore © = —x()m -e3+ G in (0,T) x RS where G is
a function depending only on X'

REMARK 3. In the sequel and without loss of generality we will assume that
G =0.

By Lemma 3, we obtain

1 /
f/ m® x 0,0%e3 - g° dXdt — —/ m x (m-ez)es - g, dX dt.
€Jq Q

Finally we obtain

oym —am X Om = —ym X (ﬁm—l—a(;l?lm es +a L(m)
sy - (m-ea)ea ).
in (0,T) x B. Gathering all convergence results, we get

THEOREM 2. Let (m€, ¢) be a global weak solution of problem (13)-(15) associ-
ated with the admissible initial datum (m§, ¢f§). Let (m, ) be the weak-x limit of a
subsequence of (m¢, ¢°). Then (m, ¢) is independent of the variable z and satisfies in
(0,T) x B, |m(t,X)| =1 and the equation

dym —am x Oym = —ym x H(m),
R _ _ (23)
HI(m) = Am + a curl m e3 + a L(m) + grady — (m - e3)es,
and in (0,T) x R% the equation
Ap + x(Q)&i\vm =0, (24)
where
L(m) = (0yms — Uy, ¥y — yms, 0),
(25)
W =F xm+aym

and F is a function of the variable X and o € R. The associated initial and boundary
conditions are given by

m(0,X) =mg, |mo|=1 in B, (26)

0,m =0 on 0B. (27)
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REMARK 4. Let T > 0 and assume that F € L?(0,7,1L>°(B)). Then any regular
solution of (23)-(27) satisfies the following energy estimate

ww@?ﬁLwWFthme%%ﬂF@+A%@w} (28)

for all t € (0,T) where

1 — , 1 — /
E(t) = 7/ lgradm|? dX —|—f/ lgrade|? dX,
2 B 2 ]R2
and n is given by
2
n(t) = il [4a2(|F\go + oz(z)) + 1] meas(B).
«
The energy estimate (28) allows to prove global existence of weak solutions for the

reduced model (23).

2.2 Slender Domains

Note that we can proceed as above to get result for the 3D-1D dimensional reduction.
In fact, we have the following theorem which we state without proof.

THEOREM 3. Let (m®, ¢°) be a weak solution of the problem associated with
the admissible initial datum (m§, pf). Then, one has (m®,¢°) — (m,p) weakly-*
in L*>(0,T,H(©2)) and m® — m strongly in L?(0,7,L3(Q2)). The couple (m,¢) is
independent of the variable X and satisfies in (0,T) x (0,1), |m(t, 2)|*> = 1 and the
following one-dimensional coupled system

{ oym — am x Oym = —ym x Hik(m),
0.0+ x(2)0.m =0,

where -
Hek(m) = 0..m + a carlm + a L(m) + 0. es,

L(m) = (dy, —d3, di —d,).

The operator curlm is defined by

*azmQ
curlm = | d,m; |,
0

and d;,d},i = 1,2,3 are the components of the vectors

d=m x F(z) 4+ cim, d =m x g(2) +cam, (c1,c0) € R?
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where F' and g are arbitrary functions depending only on z. The associated initial and
boundary conditions are given by

m((),z) = My, |m0| =11in (071)7

9.m(t,j) =0 for j=0,1.

REMARK 5. Note that one can derive an energy estimate for the above limit
problem allowing to prove global existence of weak solutions.

3 Concluding Remarks

In this paper, we have considered a mathematical model describing current-induced
skyrmion dynamics in ferromagnets. We derived thin layer models both for flat and
slender domains. The dimensional reductions are performed by using a scaling tech-
nique combined with the method of oscillating test functions. The obtained limit
problems may be used in numerical simulations and thus avoiding high cost of direct
numerical simulations.

A direction for future research concerns magnetic domain walls (DWs) which are
boundaries in magnetic materials that divide regions with distinct magnetization direc-
tions. The manipulation and control of DWs in ferromagnetic nanowires (essentially
one dimensional models) has recently become a subject of intense experimental and
theoretical research, see, for example, Carbou and Labbé [9]. The rapidly growing
interest in the physics of the DW motion can be mainly explained by a promising
possibility of using DWs as the basis for next-generation memory and logic devices.
However, in order to realize such devices in practice it is essential to be able to po-
sition individual DWs precisely along magnetic nanowires. It would be interesting to
address within the context of the present paper the stability of the propagation of such
processing DWs with respect to perturbations of the initial magnetization profile, some
anisotropy properties of the nanowire, and applied magnetic field.

Finally, a valuable direction for future research is the effect of very small domain
irregularities on the limiting problems. More precisely, the roughness may be defined
by means of a periodical function h® with period for example of order €2 (¢ > 0). So
that the three-dimensional domain may be represented by Q° = {(z,2) € R* x R :
T € w,0 < 2 < h*(z)} where w is a domain of R?. Various limit models may be
obtained depending on the ratio between the size of rugosities and the mean height of
the domain.

Acknowledgment. The authors would like to thank the referee for their helpful
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