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Abstract

In this paper, we obtain some new Hermite-Hadamard type integral inequali-
ties for coordinated convex functions. Several integral inequalities can be obtained
by taking n to be an even number in our main results. These results can be viewed
as a significant refinement of the previous work. The ideas and techniques of this
paper may stimulate further research in this dynamic field.

1 Introduction and Preliminaries

Convexity through its numerous applications in different fields of pure and applied
sciences has attracted many researchers. These facts have motivated to extend and
generalize the classical convex functions in different directions using novel and inno-
vative techniques, see [2, 3, 9, 23]. We now recall the concepts of convex sets and
functions.

DEFINITION 1. A set I ⊂ R is said to be a convex set if

(1− t)x+ ty ∈ I, ∀x, y ∈ I, t ∈ [0, 1].

DEFINITION 2. A function f : I → R is said to be a convex function if

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1].

If t = 1
2 , then the convex function f satisfies the inequality

f

(
x+ y

2

)
≤ f(x) + f(y)

2
, ∀x, y ∈ I, t ∈ [0, 1].
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190 Coordinated Convex Functions

and is called the Jensen convex function.
It is well known that u ∈ I is a minimum of the differentiable convex function, if

and only if, u ∈ I satisfies the inequality
〈f ′(u), v − u〉 ≥ 0, ∀v ∈ I,

which is called the variational inequality, introduced and studied by Stampacchia [25] in
1964. For the formulation, applications, numerical solution, stability and other aspects
of variational inequalities, see [11, 12, 13, 14, 25] and the references therein.
An other interesting and fascinating aspect of theory of convexity is its close rela-

tionship with theory of integral inequalities. Many famous inequalities known in the
literature are direct consequences of the applications of classical convex functions. In
this regard Hermite-Hadamard’s integral inequality is one of the most intensively stud-
ied inequality. This inequality was obtained by Hermite and Hadamard independently.
It provides us an equivalent condition for convexity. Also it give the upper and lower
bounds for the integrals. This famous result of Hermite and Hadamard reads as follows:
Let f : I = [a, b] ⊂ R ⊂ R→ R be an integrable convex function, then

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
.

This integral inequality has remained an area of great interest due to its great utility
in different fields of pure and applied sciences particulary in statistics and numerical
analysis. In recent years many, new generalizations of Hermite-Hadamard’s inequality
have been established. Dragomir [7] extended the class of convexity on coordinates.
The class of coordinated convex functions is defined as:
Let us consider a bidimensional interval ∆ = [a, b] × [c, d] ⊂ R2 with a < b and

c < d. A function f : ∆→ R is said to be convex function on coordinated ∆, if

f(tx+ (1− t)z, ty+ (1− t)w) ≤ tf(x, y) + (1− t)f(z, w), ∀(x, y), (z, w) ∈ ∆, t ∈ [0, 1].

A function f : ∆ → R is said to be convex on coordinates ∆, if fy : [a, b] → R,
fy(u) = f(u, y) and fx : [c, d]→ R, fx(v) = f(x, v) are convex ∀x ∈ [a, b] and ∀y ∈ [c, d].

This opened a new venue of research for the researchers working in this field.
Dragomir [7] obtained Hermite-Hadamard’s integral inequality for the coordinated con-
vex functions.

THEOREM 1. Let f : ∆ = [a, b] × [c, d] ⊂ R2 −→ R be a co-ordinated convex
function on the rectangle ∆. Then

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]
≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dydx

≤ 1

4

[
1

b− a

∫ b

a

[f(x, c) + f(x, d)]dx+
1

d− c

∫ d

c

[f(a, y) + f(b, y)]dy

]
≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
.



Noor et al. 191

For recent developments and other aspects of integral inequalities for coordinated
convex functions, see [1, 4, 5, 6, 8, 10, 15, 16, 17, 18, 19, 20, 21, 22, 24] and the references
therein.
In this paper, we prove an auxiliary result, which can be viewed as a significant

refinement of composite Simpson’s rule. Using this auxiliary result, we derive some
new Hermite-Hadamard type integral inequalities via coordinated convex functions.
Special cases are also discussed. This is the main motivation of this paper. The
ideas and techniques of this paper may be a starting point for further research in this
fascinating and dynamic field.

2 Main Results

In this section, we discuss our main results. First of all, we recall the following auxiliary
results[13], which plays a crucial part in obtaining our main results.

LEMMA 1. Let f : I = [a, b] ⊂ R→ R be a convex function on I. Then

h

n∑
k=1

f

(
xk−1 + xk

2

)
≤
∫ b

a

f(t)dt ≤ h

3

[
f(a) + 4

n
2∑

k=1

f(x2k−1) + 2

n−2
2∑

k=1

f(x2k) + f(b)

]
holds, where n is even, h = b−a

n , and xk = a+ kh, for each k = 0, 1, ..., n.

LEMMA 2. Let f : I = [a, b] ⊂ R→ R+ be a convex function on I. Then∫ b

a

f(x)dx− (b− a)f(t) ≤ h

3

[
f(a) + 4

n
2∑

k=1

f(x2k−1) + 2

n−2
2∑

k=1

f(x2k) + f(b)

]
,

holds for all t ∈ [a, b], where n is even, h = b−a
n , and xk = a+kh, for each k = 0, 1, ..., n.

THEOREM 2. Let f : ∆ = [a, b] × [c, d] → R be a coordinated convex function.
Then

d− c
2n

n∑
k=1

∫ b

a

f

(
x,
yk−1 + yk

2

)
dx+

b− a
2n

n∑
k=1

∫ d

c

f

(
xk−1 + xk

2
, y

)
dy

≤
∫ b

a

∫ d

c

f(x, y)dydx

≤ d− c
6n

∫ b

a

[f(x, c) + f(x, d)]dx+
b− a
6n

∫ d

c

[f(a, y) + f(b, y)]dy

+
2(d− c)

3n

n
2∑

k=1

∫ b

a

f(x, y2k−1)dx+
2(b− a)

3n

n
2∑

k=1

∫ d

c

f(x2k−1, y)dy

+
d− c
3n

n−2
2∑

k=1

∫ b

a

f(x, y2k)dx+
b− a
3n

n−2
2∑

k=1

∫ d

c

f(x2k, y)dy,
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where n is even, h = b−a
n , and xk = a+ kh, for each k = 0, 1, ..., n.

PROOF. From the assumption, we have that fx : [c, d] → R defined by fx(y) =
f(x, y) is a convex function on [c, d],∀x ∈ [a, b]. Applying Lemma 2 to the function fx,
we have

d− c
n

n∑
k=1

fx

(
yk−1 + yk

2

)
≤

∫ d

c

fx(y)dy

≤ d− c
3n

[
fx(c) + 4

n
2∑

k=1

fx(y2k−1) + 2

n−2
2∑

k=1

fx(y2k) + fx(d)

]
.

This implies that

d− c
n

n∑
k=1

f

(
x,
yk−1 + yk

2

)

≤
∫ d

c

f(x, y)dy

≤ d− c
3n

[
f(x, c) + 4

n
2∑

k=1

f(x, y2k−1) + 2

n−2
2∑

k=1

f(x, y2k) + f(x, d)

]
. (2.1)

Integrating the above inequality over the interval [a, b], we have

d− c
n

n∑
k=1

∫ b

a

f

(
x,
yk−1 + yk

2

)
dx

≤
∫ b

a

∫ d

c

f(x, y)dydx

≤ d− c
3n

[ ∫ b

a

f(x, c)dx+ 4

n
2∑

k=1

∫ b

a

f(x, y2k−1)dx

+2

n−2
2∑

k=1

∫ b

a

f(x, y2k)dx+

∫ b

a

f(x, d)dx

]
. (2.2)

Similarly, for the mapping fy : [a, b] → R, defined by fy(x) = (x, y) for all y ∈ [c, d],
we have

b− a
n

n∑
k=1

f

(
xk−1 + xk

2
, y

)

≤
∫ b

a

f(x, y)dx

≤ b− a
3n

[
f(a, y) + 4

n
2∑

k=1

f(x2k−1, y) + 2

n−2
2∑

k=1

f(x2k, y) + f(b, y)

]
. (2.3)
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Integrating the above inequality over the interval [c, d], we have

b− a
n

n∑
k=1

∫ d

c

f

(
xk−1 + xk

2
, y

)
dy ≤

∫ b

a

∫ d

c

f(x, y)dydx

≤ b− a
3n

[ ∫ d

c

f(a, y)dy + 4

n
2∑

k=1

∫ d

c

f(x2k−1, y)dy

+2

n−2
2∑

k=1

∫ d

c

f(x2k, y)dy +

∫ d

c

f(b, y)dy

]
. (2.4)

Adding (2.2) and (2.4), we obtain

d− c
2n

n∑
k=1

∫ b

a

f

(
x,
yk−1 + yk

2

)
dx+

b− a
2n

n∑
k=1

∫ d

c

f

(
xk−1 + xk

2
, y

)
dy

≤
∫ b

a

∫ d

c

f(x, y)dydx

≤ d− c
6n

∫ b

a

[f(x, c) + f(x, d)]dx+
b− a
6n

∫ d

c

[f(a, y) + f(b, y)]dy

+
2(d− c)

3n

n
2∑

k=1

∫ b

a

f(x, y2k−1)dx+
2(b− a)

3n

n
2∑

k=1

∫ d

c

f(x2k−1, y)dy

+
d− c
3n

n−2
2∑

k=1

∫ b

a

f(x, y2k)dx+
b− a
3n

n−2
2∑

k=1

∫ d

c

f(x2k, y)dy.

This completes the proof.

COROLLARY 1. Let f : ∆ = [0, 1]× [0, 1]→ R be a coordinated convex function.
Then

1

4

∫ 1

0

[
f

(
x,

1

4

)
+ f

(
x,

3

4

)]
dx+

1

4

∫ 1

0

[
f

(
1

4
, y

)
+ f

(
3

4
, y

)]
dx

≤
∫ 1

0

∫ 1

0

f(x, y)dydx

≤ 1

12

∫ 1

0

[
f(x, 0) + f(x, 1)

]
dx+

1

12

∫ 1

0

[
f(0, y) + f(1, y)

]
dy

+
1

3

∫ 1

0

f

(
x,

1

2

)
dx+

1

3

∫ 1

0

f

(
1

2
, y

)
dy.

PROOF. The desired inequalities are obtained by taking n = 2 in Theorem 2 and
observing that x0 = y0 = 0, x1 = y1 = 1

2 and x2 = y2 = 1.
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THEOREM 3. Under the assumptions of Theorem 2, we obtain

3n

2(b− a)

∫ b

a

[f(x, c) + f(x, d)]dx+
3n

2(d− c)

∫ d

c

[f(a, y) + f(b, y)]dy

≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

+2

n
2∑

k=1

[f(x2k−1, c) + f(x2k−1, d) + f(a, y2k−1) + f(b, y2k−1)]

+

n−2
2∑

k=1

[f(x2k, c) + f(x2k, d) + f(a, y2k) + f(b, y2k)

]
,

where n is even, h = b−a
n and xk = a+ kh, for each k = 0, 1, ..., n.

PROOF. Now using the second part of (2.2) and (2.4), we have

∫ b

a

f(x, c)dx ≤ b− a
3n

[
f(a, c) + 4

n
2∑

k=1

f(x2k−1, c) + 2

n−2
2∑

k=1

f(x2k, c) + f(b, c)

]
,

∫ b

a

f(x, d)dx ≤ b− a
3n

[
f(a, d) + 4

n
2∑

k=1

f(x2k−1, d) + 2

n−2
2∑

k=1

f(x2k, d) + f(b, d)

]
,

∫ d

c

f(a, y)dy ≤ d− c
3n

[
f(a, c) + 4

n
2∑

k=1

f(a, y2k−1) + 2

n−2
2∑

k=1

f(a, y2k) + f(a, d)

]
,

and ∫ d

c

f(b, y)dy ≤ d− c
3n

[
f(b, c) + 4

n
2∑

k=1

f(b, y2k−1) + 2

n−2
2∑

k=1

f(b, y2k) + f(b, d).

By adding the above inequalities, we obtain the required result.

THEOREM 4. Let f : ∆ = [a, b] × [c, d] → R be a coordinated convex function.
Then∫ b

a

∫ d

c

f(x, y)dydx ≤ b− a
12n

[
(2 + 3n)

∫ d

c

f(a, y)dy + (2 + 3n)

∫ d

c

f(b, y)dy

+8

n
2∑

k=1

∫ d

c

f(x2k−1, y)dy + 4

n−2
2∑

k=1

∫ d

c

f(x2k, y)

]
dy

+
d− c
12n

[
(2 + 3n)

∫ b

a

f(x, c)dx+ (2 + 3n)

∫ b

a

f(x, d)dx

+8

n
2∑

k=1

∫ b

a

f(x, y2k−1)dx+ 4

n−2
2∑

k=1

∫ b

a

f(x, y2k)dx

]
,
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where n is even, h = b−a
n and xk = a+ kh, for each k = 0, 1, ..., n.

PROOF. Applying the inequality of Lemma 2 to the function fy : [a, b]→ R defined
as fy(x) = f(x, y) at t = b,∫ b

a

fy(x)dx− (b− a)fy(b) ≤ h

3

[
fy(a) + 4

n
2∑

k=1

fy(x2k−1) + 2

n−2
2∑

k=1

fy(x2k) + fy(b)

]
.

This implies ∫ b

a

f(x, y)dx− (b− a)f(b, y)

≤ b− a
3n

[
f(a, y) + 4

n
2∑

k=1

f(x2k−1, y) + 2

n−2
2∑

k=1

f(x2k, y) + f(b, y)

]
.

Integrating the above inequality over [c, d], we have∫ b

a

∫ d

c

f(x, y)dydx ≤ b− a
3n

[ ∫ d

c

f(a, y)dy + (1 + 3n)

∫ d

c

f(b, y)dy

+4

n
2∑

k=1

∫ d

c

f(x2k−1, y)dy + 2

n−2
2∑

k=1

∫ d

c

f(x2k, y)dy

]
.

Applying again Lemma 2 to the mapping fy at t = a and integrating over [c, d], we
have ∫ b

a

∫ d

c

f(x, y)dydx ≤ b− a
3n

[
(1 + 3n)

∫ d

c

f(a, y)dy +

∫ d

c

f(b, y)dy

+4

n
2∑

k=1

∫ d

c

f(x2k−1, y)dy + 2

n−2
2∑

k=1

∫ d

c

f(x2k, y)dy

]
.

Adding the above inequalities, we have∫ b

a

∫ d

c

f(x, y)dydx ≤ b− a
6n

[
(2 + 3n)

∫ d

c

f(a, y)dy + (2 + 3n)

∫ d

c

f(b, y)dy

+8

n
2∑

k=1

∫ d

c

f(x2k−1, y)dy + 4

n−2
2∑

k=1

∫ d

c

f(x2k, y)dy

]
. (2.5)

Similarly, for the mapping fx : [c, d]→ R, defined as fx(y) = f(x, y) at t = c and t = d
and then integrating over [a, b], we have∫ b

a

∫ d

c

f(x, y)dydx ≤ d− c
6n

[
(2 + 3n)

∫ b

a

f(x, c)dx+ (2 + 3n)

∫ b

a

f(x, d)dx

+8

n
2∑

k=1

∫ b

a

f(x, y2k−1)dx+ 4

n−2
2∑

k=1

∫ b

a

f(x, y2k)dx

]
. (2.6)
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By adding (2.6) and (2.5), we obtain the required result.

For n = 2 in Theorem 2, we have

COROLLARY 2. Let f : ∆ = [a, b]× [c, d]→ R be a coordinated convex function.
Then∫ b

a

∫ d

c

f(x, y)dydx ≤ b− a
3

[ ∫ d

c

f(a, y)dy +

∫ d

c

f(b, y)dy +

∫ d

c

f

(
a+ b

2
, y

)
dy

]
+
d− c

3

[ ∫ b

a

f(x, c)dx+

∫ b

a

f(x, d)dx+

∫ b

a

f

(
x,
c+ d

2
dx

)]
.
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