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Abstract

The concept of generalized order statistics was introduced by Kamps [21]. Gen-
eralized order statistics is a unified approach of other ordered random schemes,
like order statistics, record values, sequential order statistics, progressively type
II censored order statistics and Pfeifers records. Therefore, the study of moments
and recurrence relations between moments of generalized order statistics are of
special interest. In this paper, an attempt has been made to derive some recur-
rence relations for single and product moments of generalized order statistics from
Weibull-geometric distribution, which was proposed by Barreto-Souza et al. [15].
Further, order statistics and record values are studied as special cases. At the
end, some characterization results are also presented.

1 Introduction

The Weibull-geometric distribution was introduced by Barreto-Souza et al. [15] as a
generalization of some of the commonly used distributions for modeling life time data,
such as the extended exponential-geometric distribution, the exponential-geometric
distribution and the Weibull distribution.
A random variable X is said to have the Weibull-geometric distribution if its prob-

ability density function (pdf) is of the form

f(x) = αβα(1− p)xα−1e−(βx)
α

[1− pe−(βx)
α

]−2, x > 0, α > 0, β > 0, p ∈ (0, 1) (1)

and the corresponding survival function is

F̄ (x) =
(1− p)e−(βx)α

1− pe−(βx)α , x > 0, α > 0, β > 0, p ∈ (0, 1), (2)

where, F̄ (x) = 1− F (x).
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200 Moment Properties of Generalized Order Statistics

Now, in view of (1) and (2), we have

F̄ (x) =
[1− pe−(βx)α ]

αβαxα−1
f(x). (3)

Let n ≥ 2 be a given integer and m̃ = (m1,m2, . . . ,mn−1) ∈ Rn−1, k ≥ 1 be the
parameters, such that

γi = k + n− i+

n−1∑
j=i

mj ≥ 0, for 1 ≤ i ≤ n− 1.

The random variables X(1, n, m̃, k), X(2, n, m̃, k), ..., X(n, n, m̃, k) are said to be gen-
eralized order statistics (gos) from an absolutely continuous distribution function F ()
with the probability density function (pdf) f(), if their joint pdf is of the form

k
( n−1∏
j=1

γj

)( n−1∏
i=1

[
1− F (xi)

]mi
f(xi)

)[
1− F (xn)

]k−1
f(xn) (4)

on the cone F−1(0) < x1 ≤ x2 ≤ . . . ≤ xn < F−1(1).
If mi = m = 0; i = 1 . . . n− 1, k = 1, we obtain the joint pdf of the order statistics

and for m→ −1, k ∈ N , we get joint pdf of kth record values.
Recurrence relations for the moments of gos for some specific as well as for general

class of distribution are investigated by several authors in literature. For example see
Kamps and Gather [23], Keseling [25], Cramer and Kamps [16], Ahsanullah [3], Kamps
and Cramer [24], Pawlas and Szynal [32], Ahmad and Fawzy [2], Athar and Islam [8],
Al-Hussaini et al. [5], Anwar et al. [6], Faizan and Athar [17], Ahmad [1], Khan et al.
[26], Athar et al. [11, 12, 13, 14], Khwaja et al. [29], Athar and Nayabuddin [9, 10],
Nayabuddin and Athar [31] and references therein.
The problem of characterization of distributions is another area that has attracted

the interest of numerous researchers. Different approaches of characterization are avail-
able in the literature. Kamps [22] investigated the importance of recurrence relations
between moments of order statistics in characterization. For more detailed survey one
may refer to Khan and Zia [28], Athar and Nayabuddin [10], Khan and Khan [27]
among others. Ahsanullah et al. [4] characterized certain continuous distributions by
truncated moments. More information on characterization through truncated moments
can be found in the works of Galambos and Kotz [18], Kotz and Shanbhag [30], Glänzel
[19] and the references cited there.

2 Single Moments

Here we may consider two cases:

CASE I. γi 6= γj , i, j = 1, 2, ..., n− 1, i 6= j.
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In view of (4), the pdf of rth gos X(r, n, m̃, k) is given as (Kamps and Cramer [24])

fX(r,n,m̃,k)(x) = Cr−1f(x)

r∑
i=1

[F̄ (x)]γi−1, (5)

where

Cr−1 =

r∏
i=1

γi , γi = k + n− i+

n−1∑
j=1

mj > 0,

and

ai(r) =

r∏
j=1
j 6=i

1

(γj − γi)
, 1 ≤ i ≤ r ≤ n.

CASE II. mi = m, i = 1, 2, ...n− 1.

The pdf of rth gos X(r, n,m, k) is given as (Kamps [21])

fX(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F̄ (x)]γr−1 f(x) gr−1m (F (x)), (6)

where

Cr−1 =

r∏
i=1

γi, γi = k + (n− i)(m+ 1),

hm(x) =


− 1

m+ 1
(1− x)m+1, m 6= −1

log
( 1

1− x

)
, m = −1

and

gm(x) = hm(x)− hm(0) =

∫ x

0

(1− t)mdt, x ∈ [0, 1).

THEOREM 2.1. Let Case I be satisfied. For the Weibull-geometric distribution as
given in (1) and n ∈ N, m̃ ∈ R, k > 0, 1 ≤ r ≤ n, j = 1, 2, . . . ,

E[Xj(r, n, m̃, k)]

= E[Xj(r − 1, n, m̃, k)]

+
j

γrαβ
α

[
E[Xj−α(r, n, m̃, k)]− p

∞∑
u=0

(−1)u
βuα

u!
E[Xj−α(1−u)(r, n, m̃, k)]

]
.(7)

PROOF. We have by Athar and Islam [8],

E[ξ {X(r, n, m̃, k)}]− E[ξ {X(r − 1, n, m̃, k)}] = Cr−2

∫ ∞
−∞

ξ′(x)

r∑
i=1

ai(r)[F̄ (x)]γidx.
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Let ξ(x) = xj . Then

E[Xj(r, n, m̃, k)]− E[Xj(r − 1, n, m̃, k)] = jCr−2

∫ ∞
−∞

xj−1
r∑
i=1

ai(r)[F̄ (x)]γidx.

Now in view of (3) , we have

E[Xj(r, n, m̃, k)]− E[Xj(r − 1, n, m̃, k)]

=
jCr−1
γrαβ

α

∫ ∞
0

[1− pe−(βx)α ]

xα−1
xj−1

r∑
i=1

ai(r)[F̄ (x)]γi−1 f(x)dx,

which after simplification yields (7).
Similarly, result for case II can be proved on the lines of Theorem 2.1 or by replacing

m̃ by m.

REMARK 2.1. Let mi = m = 0, i = 1, 2, ..., n− 1 and k = 1. Then the recurrence
relation for single moments of order statistics is given as

E(Xj
r:n) = E(Xj

r−1:n)+
j

(n− r + 1)αβα

[
E(Xj−α

r:n )− p
∞∑
u=0

(−1)u
βuα

u!
E(Xr:n)j−α(1−u)

]
.

REMARK 2.2. For mi = −1, i = 1, 2, ..., n − 1, the recurrence relation for single
moments of kth record values will be

E(X
(k)
U(r))

j = E(X
(k)
U(r−1))

j+
j

kαβα

[
E(X

(k)
U(r))

j−α − p
∞∑
u=0

(−1)u
βuα

u!
E(X

(k)
U(r))

j−α(1−u)

]
.

3 Product Moments

CASE I. γi 6= γj , i, j = 1, 2, . . . , n− 1, i 6= j.
The joint pdf of X(r, n, m̃, k) and X(s, n, m̃, k), 1 ≤ r < s ≤ n, is given as (Kamps and
Cramer [24])

fX(r,n,m̃,k).X(s,n,m̃,k)(x, y) = Cs−1

s∑
i=r+1

ai
(r)(s)

(
F̄ (y)

F̄ (x)

)γi [ r∑
i=1

ai(r)[F̄ (x)]γi

]

× f(x)

F̄ (x)

f(y)

F̄ (y)
, x < y, (8)

where

ai
(r)(s) =

s∏
j=r+1
j 6=i

1

(γj − γi)
, r + 1 ≤ i ≤ s ≤ n.

CASE II. mi = m, i = 1, 2, . . . , n− 1.
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The joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n, is given as (Pawlas and
Syznal [32])

fX(r,n,m,k),X(s,n,m,k)(x, y)

=
Cs−1

(r − 1)! (s− r − 1)!
[F̄ (x)]m gr−1m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1 f(x) f(y), −∞ ≤ x < y ≤ ∞.(9)

THEOREM 3.1. Let Case I be satisfied. For the Weibull-geometric distribution as
given in (1) and n ∈ N, m̃ ∈ R, k > 0, 1 ≤ r < s ≤ n, i, j = 1, 2, . . .

E[Xi(r, n, m̃, k).Xj(s, n, m̃, k)]

= E[Xi(r, n, m̃, k).Xj(s− 1, n, m̃, k)]

+
j

γsαβ
α

[
E[Xi(r, n, m̃, k).Xj−α(s, n, m̃, k)]

−p
∞∑
v=0

(−1)v
βvα

v!
E[Xi(r, n, m̃, k).Xj−α(1−v)(s, n, m̃, k)]

]
. (10)

PROOF. We have by Athar and Islam [8],

E[ξ {X(r, n, m̃, k).X(s, n, m̃, k)}]− E[ξ {X(r, n, m̃, k).X(s− 1, n, m̃, k)}]

= Cs−2

∫ ∞
−∞

∫ ∞
x

d

dy
ξ(x, y)

s∑
i=r+1

a
(r)
i (s)

[
F̄ (y)

F̄ (x)

]γi r∑
i=1

ai(r)[F̄ (x)]γi
f(x)

F̄ (x)
dydx.

(11)

Now consider ξ(x, y) = ξ1(x)ξ2(y) = xiyj in (11), then in view of (3), we get

E[Xi(r, n, m̃, k).Xj(s, n, m̃, k)]− E[Xi(r, n, m̃, k)Xj(s− 1, n, m̃, k)]

=
jCr−1
γsαβ

α

∫ ∞
0

∫ ∞
x

[1− pe−(βy)α ]

yα−1
xiyj−1

s∑
i=r+1

a
(r)
i (s)

[
F̄ (x)

F̄ (x)

]γi
×

r∑
i=1

ai(r)[F̄ (x)]γi
f(x)

F̄ (x)

f(y)

F̄ (y)
dy dx,

which leads to (10).

The expression for case II may be obtained on the lines of Theorem 3.1 or by
replacing m̃ with m.

REMARK 3.1. Let mi = m = 0, i = 1, 2, . . . , n− 1 and k = 1. Then the recurrence
relation for product moments of order statistics is given as

E(Xi
r:nX

j
s:n)

= E(Xi
r:nX

j
s−1:n)

+
j

(n− s+ 1)αβα
×
[
E(Xi

r:nX
j−α
s:n )− p

∞∑
v=0

(−1)v
βvα

v!
E(Xi

r:nX
j−α(1−v)
s:n )

]
.
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REMARK 3.2. For mi = −1, i = 1, 2, . . . , n−1, the recurrence relation for product
moments of kth record values is

E[(X
(k)
U(r))

i(X
(k)
U(s))

j ]

= E[(X
(k)
U(r))

i(X
(k)
U(s−1))

j ]

+
j

kαβα

[
E[(X

(k)
U(r))

i(X
(k)
U(s))

j−α]− p
∞∑
u=0

(−1)u
βuα

u!
E[(X

(k)
U(r))

i(X
(k)
U(s))

j−α(1−u)]

]
.

4 Characterizations

This section contains characterization results for the distribution under consideration
through recurrence relations and conditional moment.

THEOREM 4.1. For any non-negative random variable (r.v.) X having absolutely
continuous distribution function F (x) with F (0) = 0 and 0 < F (x) < 1 for all x. Fix
a positive integer j. A necessary and suffi cient condition for a random variable X to
be distributed with pdf given by (1) is that

E[Xj(r, n,m, k)]

= E[Xj(r − 1, n,m, k)] +
j

γrαβ
α

[
E[Xj−α(r, n,m, k)]

−p
∞∑
u=0

(−1)u
βαu

u!
E[Xj−α(1−u)(r, n,m, k)]

]
. (12)

PROOF. The necessary part follows from (7) with m̃ = m. On the other hand, if
the relation (12) is satisfied, that is

E[Xj(r, n,m, k)]− E[Xj(r − 1, n,m, k)]

=
j

γrαβ
α

[
E[Xj−α(r, n,m, k)]− p

∞∑
u=0

(−1)u
βαu

u!
E[Xj−α(1−u)(r, n,m, k)]

]
.

Now in view of Athar and Islam [8] for ξ(x) = xj , we have

j

γr

Cr−1
(r − 1)!

∫ ∞
0

xj−1[F̄ (x)]γr gr−1m (F (x))dx

=
Cr−1

(r − 1)!

j

γrαβ
α

∫ ∞
0

xj−1[F̄ (x)]γr−1 f(x) gr−1m (F (x))

×
{
x1−αf(x)− p

∞∑
u=0

(−1)u
βαu

u!
x1−α+αuf(x)

}
dx
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or

Cr−1
(r − 1)!

j

γrαβ
α

∫ ∞
0

xj−1[F̄ (x)]γr−1 f(x) gr−1m (F (x))

×
{
αβαF̄ (x)− x1−αf(x) + x1−αpe−(βx)

α

f(x)
}
dx = 0. (13)

Applying the extension of Müntz-Śzasz theorem (Hwang and Lin [20]) to (13), we get

f(x) =
αβαxα−1

[1− pe−(βx)α ]
F̄ (x).

This proves the theorem.

THEOREM 4.2. For the condition as stated in Theorem 4.1. Fix positive integers
i and j. A necessary and suffi cient condition for a random variable X to be distributed
with pdf given by (1) is that

E[Xi(r, n, m̃, k)Xj(s, n, m̃, k)]

= E[Xi(r, n, m̃, k)Xj(s− 1, n, m̃, k)]

+
j

γsαβ
α

[
E[Xi(r, n, m̃, k)Xj−α(s, n, m̃, k)]

−p
∞∑
v=0

(−1)v
βvα

v!
E[Xi(r, n, m̃, k)Xj−α(1−v)(s, n, m̃, k)]

]
. (14)

PROOF. The necessary part follows from (10) with m̃ = m. On the other hand, if
the relation (14) is satisfied, that is

E[Xi(r, n, m̃, k)Xj(s, n, m̃, k)]− E[Xi(r, n, m̃, k)Xj(s− 1, n, m̃, k)]

=
j

γsαβ
α

[
E[Xi(r, n, m̃, k)Xj−α(s, n, m̃, k)]

−p
∞∑
v=0

(−1)v
βvα

v!
E[Xi(r, n, m̃, k)Xj−α(1−v)(s, n, m̃, k)]

]
.

Now by using Athar and Islam [8], for ξ(x, y) = xi.yj

j

γs

Cs−1
(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj−1[F̄ (x)]mf(x)gr−1m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γsdydx

=
j

γsαβ
α

Cs−1
(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj−1[F̄ (x)]mf(x)gr−1m (F (x))

×[hm(F (y))− hm(F (x))]s−r−2[F̄ (y)]γs−1
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×
{
y1−αf(y)− p

∞∑
v=0

(−1)v
(βy)αv

v!
y1−αf(y)

}
dydx,

which implies

j

γsαβ
α

Cs−1
(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj−1[F̄ (x)]mf(x)gr−1m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1

×
{
αβαF̄ (y)− y1−αf(y) + y1−αpe−(βy)

α

f(y)
}
dydx = 0. (15)

Applying the extension of Müntz − Sźasz theorem (Hwang and Lin [20]) to (15), we
get

f(y) =
αβαyα−1

[1− pe−(βy)α ]
F̄ (y).

Hence the Theorem.

THEOREM 4.3. Suppose that an absolutely continuous (with respect to Lebesgue
measure) random variable X has the dfF (x) and pdff(x) for 0 < x < ∞ , such that
f ′(x) and E(X|X ≤ x) exist for all x, 0 < x <∞ , then

E(X|X ≤ x) = g(x)η(x), (16)

where

η(x) =
f(x)

F (x)

and

g(x) =
x1−αe(βx)

α(
1− pe−(βx)α

)2
pαβα

{
− x(

1− pe−(βx)α
) +

∫ x

0

1(
1− pe−(βu)α

) du}.
if and only if

f(x) = αβα(1−p)xα−1e−(βx)
α

[1−pe−(βx)
α

]−2, x > 0, α > 0, β > 0, p ∈ (0, 1), (17)

which is the pdf of the Weibull-geometric distribution.

PROOF. First we shall prove the necessary part. For the pdf given in (17), we have

E(X|X ≤ x) =
αβα(1− p)

F (x)

∫ x

0

u. uα−1e−(βu)
α

[1− pe−(βu)
α

]−2 du. (18)

Integrating (18) by parts, taking uα−1e−(βu)
α

[1 − pe−(βu)α ]−2 as the part to be inte-
grated and the rest of the integrand for differentiation, we get

E(X|X ≤ x)

=
1

F (x)

{
− (1− p)

p

x

[1− pe−(βx)α ]
+

(1− p)
p

∫ x

0

1

[1− pe−(βu)α ]
du

}
. (19)
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Multiplying and dividing (19) by f(x), we obtain the result given in (16).
To prove the suffi ciency part, we have from Ahsanullah et al. [4],

f ′(x)

f(x)
=
x− g′(x)

g(x)

or
f ′(x)

f(x)
= −2pαβαxα−1e−(βx)

α

[1− pe−(βx)α ]
+

(α− 1)

x
− αβαxα−1, (20)

where

g′(x) = x+ g(x)

(
2pαβαxα−1e−(βx)

α

[1− pe−(βx)α ]
− (α− 1)

x
+ αβαxα−1

)
.

Integrating both sides of (20) with respect to x, we have

f(x) = cxα−1e−(βx)
α

[1− pe−(βx)
α

]−2.

Now using the condition
∫∞
−∞ f(x)dx = 1, we obtain

f(x) = αβα(1− p)xα−1e−(βx)
α

[1− pe−(βx)
α

]−2,

which completes the proof.
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