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Abstract

This paper mainly discusses and proves the Hyers-Ulam stability of three
types of polynomial operator equations in quasi-Banach algebras, under certain
conditions about coeffi cient operators, by constructing contraction mappings and
using fixed-point methods. It is also shown that the stability of operator equa-
tions depends heavily on the specified spaces, and the results are proposed with
conditions as weak as possible.

1 Introduction and Preliminaries

In 1941, D. H. Hyers [1] proved the stability of additive mappings in Banach spaces
associated with the Cauchy equations. In 1978, Th. M. Rassias [2] proved the stability
of R-linear mappings associated with the Cauchy equations, and in 2002 C. Park [3]
proved the stability of C-linear mappings in Banach modules. The Banach fixed point
theorem [4] is an important tool in the theory of metric spaces because it assures the
existence and uniqueness of fixed points of certain self mappings of metric spaces and
provides a constructive method to find those fixed points. In consequence, the fixed
point method for studying the stability of functional equations was used for the first
time by Baker in 1991 (see [5]). Since then, the stability of some important functional
equations and their applications have been extensively studied by many mathematicians
[6—13].
In recent years, fixed point methods are demonstrated to be powerful in some

problems of equations. Ali, et al. [21] investigated the properties of solutions to toppled
systems of differential equations of noninteger order with fractional integral boundary
conditions in 2017, by converting the system of differential equations to a system of
fixed point problems for condensing mapping, and developed some conditions for the
Hyers-Ulam stability. Khan, et al. [24] studied the Hyers-Ulam stability of solutions
for coupled nonlinear fractional order differential equations (FODEs) with boundary
conditions in 2017, by using Perovs fixed point theorem and Leray-Schauder-type fixed
point theorem. In 2018, Ahmad, et al. [22] investigated the existence, uniqueness, and
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142 On the Hyers-Ulam Stability of Operator Equations

stability of the solutions to a nonlinear implicit type dynamical problem of impulsive
fractional differential equation with nonlocal boundary conditions involving Caputo
derivative by using the Krasnoselskii fixed point theorem. This paper will also broaden
the use of fixed point methods.
Operator equations in Banach spaces are of great significance in pure and applied

mathematics. With functional composition as multiplication and the operator norm
as norm, the algebra of all continuous linear operators on a Banach space forms a
Banach algebra. Polynomial operators are a natural generalization of linear operators.
Such equations encompass a broad spectrum of applied problems including all linear
equations. There have been some results about the Hyers-Ulam stability of equations
in number fields. In 2009, Li and Hua [14] discussed and proved the Hyers-Ulam
stability of the polynomial equation xn + αx + β = 0 over R. In 2010 and 2011, M.
Bidkham, H. A. Soleiman Mezerji, and M. Eshaghi Gordji [15, 16] generalized the
results of Li and Hua, by discussing and proving the Hyers-Ulam stability of general
real polynomial equations, and they established the Hyers-Ulam-Rassias stability of
power series equations, and investigated the generalized Hyers-Ulam stability of them.
Considering that quasi-Banach algebras are the generalization of Banach algebras, it
is of great interest to investigate the operator equations in quasi-Banach algebras.
Motivated by the results mentioned above and [17], this paper will generalize the results
about Hyers-Ulam stability, from equations in number fields to operator equations in
quasi-Banach algebras. In this paper, we will investigate the Hyers-Ulam stability of
three typical operator equations in quasi-Banach algebras.

DEFINITION 1.1. LetX be a linear space over C. A quasi-norm ‖·‖ is a real-valued
function on X satisfying the following properties:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;

(2) ‖λx‖ = |λ|‖x‖ for all λ ∈ C and all x ∈ X;

(3) There is a constant K ≥ 1 such that ‖x+ y‖ ≤ K (‖x‖+ ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X. The
smallest possible K is called the modulus of concavity of ‖ · ‖. A quasi-Banach space is
defined as a complete quasi-normed space. Specially, a quasi-Banach space is a Banach
space when K = 1.

DEFINITION 1.2. Let (X, ‖ · ‖) be a quasi-normed space. (X, ‖ · ‖) is called a
quasi-normed algebra if X is an algebra and there is a constant C > 0 such that
‖xy‖ ≤ C‖x‖‖y‖ for all x, y ∈ X. A complete quasi-normed algebra is called a quasi-
Banach algebra. Specially, a quasi-Banach algebra is a Banach algebra when K = C =
1.

DEFINITION 1.3. A Banach algebra X is called a bounded Banach algebra if there
exists a constant 0 < M <∞ such that ‖x‖‖y‖ ≤M‖xy‖ for all x, y ∈ X.

In this paper, the term algebra refers to an associative algebra over C. For a
Banach algebra or quasi-Banach algebra X, 0 ∈ X denotes the additive identity that
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satisfies x+ 0 = 0 + x = x for every x ∈ X, and e, if exists, denotes the multiplicative
identity that satisfies xe = ex = x for every x ∈ X. Notice that an algebra does
not necessarily have a multiplicative identity. A Banach algebra is called unital if it
has an identity element for the multiplication whose norm is 1. If an algebra has a
multiplicative identity e, its norm ‖e‖ 6= 0 is assigned as 1 without loss of generality,
because otherwise the norm ‖ · ‖ can be redefined by ‖ · ‖1 = ‖e‖−1‖ · ‖, which has the
property that ‖e‖1 = 1. A Banach algebra is called commutative if its multiplication is
commutative. If x is an element of algebra X with multiplicative identity e, we define
x0 = e. x ∈ X is called regularly invertible if x is invertible and ‖x−1‖ = ‖x‖−1.

DEFINITION 1.4. Let X be a quasi-Banach algebra and F (x) = 0 be an equation
in X. If X1 is a subset of X and there exists a constant H > 0 with the following
property: for every ε > 0 and y ∈ X1, if ‖F (y) ‖ ≤ ε, then there exists some z ∈ X1

satisfying F (z) = 0, such that ‖y − z‖ < Hε. Such H is called a Hyers-Ulam stability
constant for equation F (x) = 0. Then we say that the equation F (x) = 0 has the
Hyers-Ulam stability in X1.

DEFINITION 1.5. Let p ∈ R be a real number. Let X be a quasi-Banach algebra
with K = C = 1 and

∑∞
i=0 αix

i = 0 be a power series equation in X. If X1 is a subset
of X and there exists a constant H > 0 with the following property: for every ε > 0
and y ∈ X1, if ∥∥∥∥∥

∞∑
i=0

αiy
i

∥∥∥∥∥ ≤ ε
∞∑
i=0

‖αi‖p
2i

,

then there exists some z ∈ X1 satisfying
∞∑
i=0

αiz
i = 0, such that ‖y − z‖ < Hε. Such

H is called a generalized Hyers-Ulam stability constant for the power series equation∑∞
i=0 αix

i = 0. Then we say that the equation
∞∑
i=0

αix
i = 0 has the generalized

Hyers-Ulam stability in X1.

Let X be a quasi-Banach algebra. This paper will mainly investigate the following
three operator equations in X:

xn + αx+ β = 0, (1)

n∑
i=0

αix
i = 0, (2)

∞∑
i=0

αix
i = 0, (3)

where α, β, αi, βi ∈ X (i = 0, 1, · · · , n, · · · ) are called the coeffi cient operators of the
corresponding equations. B = {x ∈ X|‖x‖ ≤ 1} is a subset of X, and it is called the
closed unit ball of X. This paper mainly proves that the above equations have Hyers-
Ulam stability on the closed unit ball of X, under some conditions of their coeffi cient
operators.
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2 Main Results in Quasi-Banach Algebras

In this section, (X, ‖ · ‖) is a unital and commutative quasi-Banach algebra over C,
with multiplicative identity e, over which the Hyers-Ulam stability of equation (1)—(3)
will be investigated. The closed unit ball of X is defined as B = {x ∈ X|‖x‖ ≤ 1}.
Let K be the modulus of concavity of ‖ · ‖. Let C > 0 be a constant that satisfies
‖xy‖ ≤ C‖x‖‖y‖ for all x, y ∈ X. For x ∈ R, dxe is denoted as the minimum integer
that is not less than x.

LEMMA 2.1. If x1, x2, · · · , xn ∈ X (n ≥ 2) and r = dlog2 ne, then
‖x1 + x2 + · · ·+ xn‖ ≤ Kr (‖x1‖+ ‖x2‖+ · · ·+ ‖xn‖) .

PROOF. Firstly it is evident that r ≥ 1. For n = 2, we have r = dlog2 2e = 1,
and ‖x1 + x2‖ ≤ Kr (‖x1‖+ ‖x2‖). Consider a special case n = 2q (q ∈ Z+), then
q = log2 n, and we have

‖x1 + x2 + · · ·+ xn‖ ≤ K (‖x1 + · · ·+ x2q−1‖+ ‖x2q−1+1 + · · ·+ xn‖)
≤ K2(‖x1 + · · ·+ x2q−2‖+ ‖x2q−2+1 + · · ·+ x2q−1‖

+‖x2q−1+1 + · · ·+ x3·2q−2‖+ ‖x3·2q−2+1 + · · ·+ x2q‖)
...

≤ Kq (‖x1‖+ ‖x2‖+ · · ·+ ‖x2q‖)
= K log2 n (‖x1‖+ ‖x2‖+ · · ·+ ‖xn‖) .

More generally, when n can not be represented as 2q (q ∈ Z+), let q be the minimum
integer that satisfies n ≤ 2q and let the power s be the minimum real number such
that

‖x1 + x2 + · · ·+ xn‖ ≤ Ks (‖x1‖+ ‖x2‖+ · · ·+ ‖xn‖) .
Then it is easy to see that s is not greater than q. Consequently, the power s is not
greater than the minimum integer that is not less than log2 n, so we have

‖x1 + x2 + · · ·+ xn‖ ≤ Ks (‖x1‖+ ‖x2‖+ · · ·+ ‖xn‖)
≤ K log2 n (‖x1‖+ ‖x2‖+ · · ·+ ‖xn‖)
= Kr (‖x1‖+ ‖x2‖+ · · ·+ ‖xn‖) ,

which completes the proof.

In the following context, for equation
∑n
i=0 αix

i = 0 in a quasi-Banach algebra, r
is used to denote dlog2 ne for convenience.

2.1 Hyers-Ulam Stability of Equation (2) in Quasi-Banach Al-
gebras

THEOREM 2.2. If α1 ∈ X is invertible and satisfies

∥∥α−11 ∥∥−1 > CKrmax

K∑
i6=1
‖αi‖ , C

∑
2≤i≤n

i ‖αi‖

 ,
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and y ∈ B satisfies the inequality ∥∥∥∥∥
n∑
i=0

αiy
i

∥∥∥∥∥ ≤ ε,
then there exists a solution v ∈ B of equation (2) such that ‖y−v‖ ≤ Hε where H > 0
is a constant.

PROOF. Let ε > 0 and y ∈ B such that
∥∥∑n

i=0 αiy
i
∥∥ ≤ ε.We will prove that there

exists a positive constant H which is independent of ε and there exists a continuous
linear operator v such that ‖y − v‖ ≤ Hε for some v ∈ B satisfying equation (2). Let
us introduce a new operator on B:

g(x) = −α−11
∑
i6=1

αix
i(x ∈ B).

As a function of x, g(x) is a continuous linear operator and it maps B to X, so we have
the following inequality:

‖g(x)‖ =

∥∥∥∥∥∥α−11
∑
i 6=1

αix
i

∥∥∥∥∥∥ ≤ C ∥∥α−11 ∥∥
∥∥∥∥∥∥
∑
i 6=1

αix
i

∥∥∥∥∥∥ ≤ CKr
∥∥α−11 ∥∥∑

i 6=1
‖αi‖ ≤ 1,

i.e. g(x) ∈ B. It comes that g(x) ∈ B for all x ∈ B.
Let us define a metric d(x, y) = ‖x− y‖ on B, and then it is obvious that (B, d) is

a complete metric space. Next, we will prove that g is a contraction operator from B
to B. For any x, y ∈ B and x 6= y, we have

d(g(x), g(y)) =

∥∥∥∥∥∥α−11
∑
i 6=1

αix
i − α−11

∑
i 6=1

αiy
i

∥∥∥∥∥∥
≤ C2Kr

∥∥α−11 ∥∥ ‖x− y‖ ∑
2≤i≤n

‖αi‖

∥∥∥∥∥∥
∑

0≤j≤i−1
xjyi−1−j

∥∥∥∥∥∥
≤ C2Kr

∥∥α−11 ∥∥ ‖x− y‖ ∑
2≤i≤n

i ‖αi‖ = λd(x, y),

i.e. d(g(x), g(y)) ≤ λd(x, y), where λ = C2Kr
∥∥α−11 ∥∥∑2≤i≤n i ‖αi‖ ∈ (0, 1). Thus g(x)

is a contraction operator that maps B to B. According to Banach fixed-point theorem
[18], there exists a unique continuous linear operator v ∈ B that satisfies g(v) = v.
Hence the equation (2) has a solution in B.

Finally, we will prove that the equation (2) has the Hyers-Ulam stability. Since∥∥α−11 ∥∥−1 > CKr+1
∑
i6=1 ‖αi‖ and then 1−λK > 0, letH = CK(1−λK)−1

∥∥α−11 ∥∥ > 0,
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then
‖y − v‖ = ‖y − g(y) + g(y)− g(v)‖

≤ K‖y − g(y)‖+K‖g(y)− g(v)‖

≤ K

∥∥∥∥∥∥y + α−11
∑
i 6=1

αiy
i

∥∥∥∥∥∥+ λK‖y − v‖
≤ CK

∥∥α−11 ∥∥
∥∥∥∥∥∥
∑
0≤i≤n

αiy
i

∥∥∥∥∥∥+ λK‖y − v‖.
Therefore, we have the inequality

‖y − v‖ ≤ CK(1− λK)−1
∥∥α−11 ∥∥

∥∥∥∥∥∥
∑
0≤i≤n

αiy
i

∥∥∥∥∥∥ ≤ Hε,
so the equation (2) has the Hyers-Ulam stability.

Furthermore, we can derive the following corollary.

COROLLARY 2.3. If α1 ∈ X is regularly invertible and

‖α1‖ > CKrmax

K∑
i6=1
‖αi‖ , C

∑
2≤i≤n

i ‖αi‖

 ,

then the equation (2) has the Hyers-Ulam stability inB, andH = CK(1−λK)−1‖α1‖−1 >
0 is a Hyers-Ulam stability constant for the equation (2) where

λ = C2Kr ‖α1‖−1
n∑
i=2

i‖αi‖ ∈ (0, 1).

2.2 Hyers-Ulam Stability of Equation (1) in Quasi-Banach Al-
gebras

Using the similar methods, we get some results about the Hyers-Ulam stability of
equation (1) in quasi-Banach algebras.

THEOREM 2.4. If α ∈ X is invertible and satisfies
∥∥α−1∥∥−1 > nC2Kr+1, ‖β‖ <

C−1K−1
∥∥α−1∥∥−1 − 1, and y ∈ B satisfies the inequality ‖yn + αy + β‖ ≤ ε, then

there exists a solution v ∈ B of equation (1) such that ‖y − v‖ ≤ Hε where H > 0 is a
constant.

Furthermore, we can derive the following corollary.

COROLLARY 2.5. If α ∈ X is regularly invertible and ‖α‖ > nC2Kr+1, ‖β‖ <
‖α‖
CK − 1, then the equation (1) has the Hyers-Ulam stability in B, and H = CK(1 −
γK)−1‖α‖−1 > 0 is a Hyers-Ulam stability constant for the equation (1), where γ =
nC2Kr ‖α‖−1 ∈ (0, 1).
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3 Special Cases in Banach Algebras

In this section, (X, ‖ · ‖) is a unital and commutative Banach algebra over C, with
multiplicative identity e, over which the Hyers-Ulam stability of equation (1)—(3) will
be investigated. The closed unit ball of X is defined as B = {x ∈ X | ‖x‖ ≤ 1}.
THEOREM 3.1 (Gelfand-Mazur, [19]). If Banach algebra X is also a division

algebra, then X is isometrically isomorphic to the complex field C.

THEOREM 3.2. Let X be a unital Banach algebra. If X is a division algebra, then∥∥x−1∥∥ = ‖x‖−1 for every nonzero operator x ∈ X.
PROOF. Firstly, X is isometrically isomorphic to the complex field C, according

to the Gelfand-Mazur theorem. Let d(x, y) = ‖x− y‖ be the induced metric from the
norm ‖ · ‖, hence (X, d) is a metric space. So there exists an isometrical isomorphism
φ : X → C satisfying ‖φ(x)‖C = ‖x‖ for all x ∈ X, where ‖·‖C denotes the natural
norm of C.
Let x be a nonzero operator in X, then ‖x‖ 6= 0 and its multiplicative inverse x−1

exists. It is evident that φ(x) ∈ C, so we have ‖φ(x)‖C = |φ(x)| = ‖x‖. Since φ is an
isometrical isomorphism, we have

1 = ‖e‖ = |φ(e)| = |φ(xx−1)|
= |φ(x)φ(x−1)|
= |φ(x)||φ(x−1)|
= ‖x‖

∥∥x−1∥∥ .
Therefore,

∥∥x−1∥∥ = ‖x‖−1 holds for every nonzero operator x ∈ X.
THEOREM 3.3 ([19]). If X is a bounded Banach algebra, then X is isometrically

isomorphic to the complex field C.

Similar to the proof of Theorem 3.2, we can derive the following corollary.

COROLLARY 3.4. If X is a unital bounded Banach algebra, then
∥∥x−1∥∥ = ‖x‖−1

for every nonzero operator x ∈ X.

3.1 Hyers-Ulam Stability of Equation (2) in Banach Algebras

Using the methods in the proof of Theorem 2.2, we have the following results.

THEOREM 3.5. If α1 ∈ X is invertible and satisfies

∥∥α−11 ∥∥−1 > max
∑
i 6=1
‖αi‖ ,

∑
2≤i≤n

i ‖αi‖

 ,
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and y ∈ B satisfies the inequality ∥∥∥∥∥
n∑
i=0

αiy
i

∥∥∥∥∥ ≤ ε,
then there exists a solution v ∈ B of equation (2) such that ‖y−v‖ ≤ Hε where H > 0
is a constant.

Furthermore, we can derive the following corollaries.

COROLLARY 3.6. If X is also a division algebra and

‖α1‖ > max

∑
i 6=1
‖αi‖ ,

∑
2≤i≤n

i ‖αi‖

 ,

then the equation (2) has the Hyers-Ulam stability in B, and H = (1−λ)−1‖α1‖−1 > 0
is a Hyers-Ulam stability constant for the equation (2) where

λ =
∥∥α−11 ∥∥ n∑

i=2

i‖αi‖ ∈ (0, 1).

COROLLARY 3.7. If X is bounded and

‖α1‖ > max

∑
i 6=1
‖αi‖ ,

∑
2≤i≤n

i ‖αi‖

 ,

then the equation (2) has the Hyers-Ulam stability in B, and H = (1−λ)−1‖α1‖−1 > 0
is a Hyers-Ulam stability constant for the equation (2) where

λ =
∥∥α−11 ∥∥ n∑

i=2

i‖αi‖ ∈ (0, 1).

COROLLARY 3.8 (Hyers-Ulam stability of equation (1) in Banach algebras). If
α ∈ X is invertible and

∥∥α−1∥∥−1 > n, ‖β‖ <
∥∥α−1∥∥−1 − 1, then the equation (1)

has the Hyers-Ulam stability in B, and H = ‖α−1‖
1−n‖α−1‖ > 0 is a Hyers-Ulam stability

constant for the equation (1).

3.2 Generalized Hyers-Ulam Stability of Equation (3) in Ba-
nach Algebras

THEOREM 3.9. Let p ∈ R be a real number. If α1 ∈ X is invertible and satisfies

∥∥α−11 ∥∥−1 > max
∑
i 6=1
‖αi‖ ,

∑
i≥2

i ‖αi‖

 ,
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and y ∈ B satisfies the inequality∥∥∥∥∥
∞∑
i=0

αiy
i

∥∥∥∥∥ ≤ ε
∞∑
i=0

‖αi‖p
2i

,

then there exists a solution v ∈ B of equation (3) such that ‖y−v‖ ≤ Hε where H > 0
is a constant.

PROOF. Let ε > 0 and y ∈ B such that
∥∥∑∞

i=0 αiy
i
∥∥ ≤ ε

∑∞
i=0

‖αi‖p
2i . We shall

show that there exists a constant H > 0 independent of ε and v such that ‖y−v‖ ≤ Hε
for some v ∈ B satisfying equation (3). If we set g(x) = −α−11

∑
i 6=1 αix

i (x ∈ B), then
we have

‖g(x)‖ =

∥∥∥∥∥∥α−11
∑
i 6=1

αix
i

∥∥∥∥∥∥ ≤ ∥∥α−11 ∥∥
∥∥∥∥∥∥
∑
i 6=1

αix
i

∥∥∥∥∥∥ ≤ ∥∥α−11 ∥∥
∑
i6=1
‖αi‖ ≤ 1,

i.e. g(x) ∈ B. Define a metric d(x, y) = ‖x − y‖ on B and then (B, d) is a complete
metric space. The mapping g maps B to B.

Next, we shall show that g is a contraction mapping from B to B. For any x, y ∈ B
and x 6= y, we have

d(g(x), g(y)) =

∥∥∥∥∥∥α−11
∑
i 6=1

αix
i − α−11

∑
i6=1

αiy
i

∥∥∥∥∥∥
≤
∥∥α−11 ∥∥ ‖x− y‖ ∞∑

i=2

‖αi‖

∥∥∥∥∥∥
i−1∑
j=0

xjyi−1−j

∥∥∥∥∥∥
≤
∥∥α−11 ∥∥ ‖x− y‖ ∞∑

i=2

i ‖αi‖ = θd(x, y),

i.e. d(g(x), g(y)) ≤ θd(x, y), where θ =
∥∥α−11 ∥∥∑∞i=2 i ‖αi‖ ∈ (0, 1).

Thus g is a contraction mapping from B to B. According to Banach fixed-point
theorem [18], there exists a unique v ∈ B such that g(v) = v. Hence the equation (3)
has a solution in B.
Finally, we show that the equation (3) has the generalized Hyers-Ulam stability.

Since
∥∥α−11 ∥∥−1 >

∑
i6=1 ‖αi‖ and then 1 − θK > 0, let us introduce the constant

H = 2(1− θ)−1
∥∥α−11 ∥∥ ‖α1‖p > 0, then

‖y − v‖ = ‖y − g(y) + g(y)− g(v)‖
≤ ‖y − g(y)‖+ ‖g(y)− g(v)‖

≤

∥∥∥∥∥∥y + α−11
∑
i 6=1

αiy
i

∥∥∥∥∥∥+ θ‖y − v‖
≤
∥∥α−11 ∥∥

∥∥∥∥∥∥
∑
0≤i≤n

αiy
i

∥∥∥∥∥∥+ θ‖y − v‖.
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Therefore, we easily have the inequality

‖y − v‖ ≤ (1− θ)−1
∥∥α−11 ∥∥

∥∥∥∥∥
∞∑
i=0

αiy
i

∥∥∥∥∥
≤ (1− θ)−1

∥∥α−11 ∥∥ ε ∞∑
i=0

‖αi‖p
2i

≤ (1− θ)−1
∥∥α−11 ∥∥ ε ∞∑

i=0

‖α1‖p
2i

= 2(1− θ)−1
∥∥α−11 ∥∥ ‖α1‖p ε ≤ Hε,

which completes the proof.

Furthermore, we can derive the following corollaries.

COROLLARY 3.10. Let p ∈ R be a real number. If X is also a division algebra
and

‖α1‖ > max

∑
i 6=1
‖αi‖ ,

∑
i≥2

i ‖αi‖

 ,

then the equation (3) has the generalized Hyers-Ulam stability in B, and H = 2(1 −
θ)−1‖α1‖p−1 > 0 is a generalized Hyers-Ulam stability constant for the equation (3)
where

θ = ‖α1‖−1
∞∑
i=2

i‖αi‖ ∈ (0, 1).

COROLLARY 3.11. Let p ∈ R be a real number. If X is bounded and

‖α1‖ > max

∑
i 6=1
‖αi‖ ,

∑
i≥2

i ‖αi‖

 ,

then the equation (3) has the generalized Hyers-Ulam stability in B, and H = 2(1 −
θ)−1‖α1‖p−1 > 0 is a generalized Hyers-Ulam stability constant for the equation (3)
where

θ = ‖α1‖−1
∞∑
i=2

i‖αi‖ ∈ (0, 1).

Unfortunately, we could not prove the generalized Hyers-Ulam stability of the power
series operator equations in quasi-Banach algebras via the existing methods used above.
It is an interesting open problem whether the power series operator equations have the
generalized Hyers-Ulam stability for the case they have some solutions in quasi-Banach
algebras.
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